A member of the dihydrochalcones that is 3,2',4',6'-tetrahydroxy-4-methoxydihydrochalcone attached to a neohesperidosyl residue at position 4' via glycosidic linkage. It is found in sweet orange.

Identification

IUPAC Names

3,5-dihydroxy-4-[3-(3-hydroxy-4-methoxyphenyl)propanoyl]phenyl 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside

Molecular Formula
C28H36O15
Mass
612.57640
Monoisotopic Mass
612.20542
Charge
0
InChI
InChI=1S/C28H36O15/c1-11-21(34)23(36)25(38)27(40-11)43-26-24(37)22(35)19(10-29)42-28(26)41-13-8-16(32)20(17(33)9-13)14(30)5-3-12-4-6-18(39-2)15(31)7-12/h4,6-9,11,19,21-29,31-38H,3,5,10H2,1-2H3/t11-,19+,21-,22+,23+,24-,25+,26+,27-,28+/m0/s1
InChIKey
ITVGXXMINPYUHD-CUVHLRMHSA-N
SMILES
COc1ccc(CCC(=O)c2c(O)cc(O[C@@H]3O[C@H](CO)[C@@H](O)[C@H](O)[C@H]3O[C@@H]3O[C@@H](C)[C@H](O)[C@@H](O)[C@H]3O)cc2O)cc1O

Species

Europe PubMed Central results


2-Hydroxychalcone and xanthohumol inhibit invasion of triple negative breast cancer cells.

Author: Kim SY, Lee IS, Moon A.

Abstract: Breast cancer is estimated as one of the most common causes of cancer death among women. In particular, triple negative breast cancers (TNBCs), which do not express the genes for estrogen/progesterone receptors (ER/PR) and human epidermal growth factor receptor 2 (HER2), have been associated with poor prognosis and metastasis. Chalcones, the biosynthetic precursors of flavonoids present in edible plants, exert cytotoxic and chemopreventive activities. Although mounting evidence suggests the anticancer properties of chalcones, limited information is available regarding the inhibitory effects of chalcones on the aggressiveness of breast cancer cells. The present study aimed to investigate the effects of chalcone and its derivatives on the growth and the invasiveness of TNBC cells. Here, we showed that treatment with chalcone, 2-hydroxychalcone, and xanthohumol for 24h inhibited the growth of MDA-MB-231 cells with IC50 values of 18.1, 4.6, and 6.7 μM, respectively. Similarly, Chalcone, 2-hydroxychalcone, and xanthohumol also exerted cytotoxicity in another TNBC cell line, Hs578T. Neohesperidin dihydrochalcone, 4-methoxychalcone, and hesperidin methylchalcone did not show the cytotoxicity on the MDA-MB-231 cells. Xanthohumol and 2-hydroxychalcone induced apoptosis by Bcl-2 downregulation. Importantly, 2-hydroxychalcone and xanthohumol exerted more potent inhibitory effects on the proliferation, MMP-9 expression and invasive phenotype of MDA-MB-231 than chalcone. These results suggest a potential application of these chalcones as anticancer agents that can alleviate malignant progression of TNBC.

Application of a liquid chromatography-tandem mass spectrometry method to the pharmacokinetics, bioavailability and tissue distribution of neohesperidin dihydrochalcone in rats.

Author: Wang X, Pan Y, Jianshe M, Shi S, Zheng X, Xiang Z.

Abstract: 1. This study was aimed at developing a high sensitive and selective liquid chromatography-tandem mass spectrometry method to quantify neohesperidin dihydrochalcone (NHDC) in rat plasma and tissues for pharmacokinetic, bioavailability and tissue distribution studies. 2. Biological samples were processed with one-step protein precipitation. Rutin was chosen as the internal standard (IS). Chromatographical separation was achieved on an SB-C18 (2.1 mm× 150 mm, 5 μm) column with acetonitrile--0.1% formic acid in water as the mobile phase with gradient elution. Electrospray ionization (ESI) source was applied and operated in negative ion mode; selected ion monitoring mode was used for quantification using target fragment ions m/z 611.4 for NHDC and m/z 609.1 for IS. 3. Calibration plots were linear over the range of 10-3000 ng/mL for NHDC. Lower limit of quantification (LLOQ) for NHDC was 10 ng/mL. Mean recovery of NHDC from plasma and tissues was better than 80.3%. Coefficient of variation of intra-day and inter-day precision were both less than 15%. The bioavailability of NHDC was 21.8%. 4. In conclusion, a sensitive, simple and specific LC-ESI-MS method for the determination of NHDC in rat biological samples was developed. This developed method is successfully used in the pharmacokinetic and tissue distribution study of NHDC in rats.

Protective effects of neohesperidin dihydrochalcone against carbon tetrachloride-induced oxidative damage in vivo and in vitro.

Author: Hu L, Li L, Xu D, Xia X, Pi R, Xu D, Wang W, Du H, Song E, Song Y.

Abstract: The purpose of this study was to investigate the possible hepatoprotective effects of neohesperidin dihydrochalcone (NHDC) on carbon tetrachloride (CCl4)-induced acute oxidative injury in vivo and in vitro. In a mouse model, intraperitoneal injection of CCl4 resulted in a significant increase in serum aspartate transaminase (AST) and alanine transaminase (ALT) activities. Histopathological examination revealed severe hepatocyte necrosis and destruction of architecture in liver lesions, and immunohistochemical staining illustrated a remarkable enhancement of COX-2 and iNOS expression. The levels of hepatic antioxidant, such as, catalase (CAT), total superoxide dismutase (T-SOD), glutathione peroxidase (GP-X) and glutathione (GSH) were decreased, compared to the control group. However, pretreatment of NHDC for six consecutive days significantly ameliorated these changes. Moreover, Western blotting assay indicated pretreatment with NHDC also down-regulated CCl4-induced protein expressions of NF-κB, IL-6, caspase 3 and caspase 8. In HepG2 cell model, CCl4-treatment caused significant decrease in cell viability, antioxidant activities and GSH level, increase in intracellular reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) level. Interestingly, pretreatment of NHDC effectively relieved CCl4-induced oxidative damage in a dose-dependent manner. In conclusion, NHDC appeared to possess promising anti-oxidative and anti-inflammatory capacities, it is possible to be used as a hepatoprotective agent.