2g47 Citations

Structures of human insulin-degrading enzyme reveal a new substrate recognition mechanism.

Nature 443 870-4 (2006)
Related entries: 2g48, 2g49, 2g54, 2g56

Cited: 211 times
EuropePMC logo PMID: 17051221

Abstract

Insulin-degrading enzyme (IDE), a Zn2+-metalloprotease, is involved in the clearance of insulin and amyloid-beta (refs 1-3). Loss-of-function mutations of IDE in rodents cause glucose intolerance and cerebral accumulation of amyloid-beta, whereas enhanced IDE activity effectively reduces brain amyloid-beta (refs 4-7). Here we report structures of human IDE in complex with four substrates (insulin B chain, amyloid-beta peptide (1-40), amylin and glucagon). The amino- and carboxy-terminal domains of IDE (IDE-N and IDE-C, respectively) form an enclosed cage just large enough to encapsulate insulin. Extensive contacts between IDE-N and IDE-C keep the degradation chamber of IDE inaccessible to substrates. Repositioning of the IDE domains enables substrate access to the catalytic cavity. IDE uses size and charge distribution of the substrate-binding cavity selectively to entrap structurally diverse polypeptides. The enclosed substrate undergoes conformational changes to form beta-sheets with two discrete regions of IDE for its degradation. Consistent with this model, mutations disrupting the contacts between IDE-N and IDE-C increase IDE catalytic activity 40-fold. The molecular basis for substrate recognition and allosteric regulation of IDE could aid in designing IDE-based therapies to control cerebral amyloid-beta and blood sugar concentrations.

Reviews - 2g47 mentioned but not cited (4)

  1. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertrán E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Förstermann U, Giniatullin R, Giricz Z, Görbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustín P, Hillion M, Huang J, Ilikay S, Jansen-Dürr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kračun D, Krause KH, Křen V, Krieg T, Laranjinha J, Lazou A, Li H, Martínez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milković L, Miranda-Vizuete A, Mojović M, Monsalve M, Mouthuy PA, Mulvey J, Münzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavićević A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Antón N, Rodríguez-Mañas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schröder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanić V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentová K, Van Breusegem F, Varisli L, Veal EA, Yalçın AS, Yelisyeyeva O, Žarković N, Zatloukalová M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt HHHW, Di Lisa F, Daiber A. Redox Biol 13 94-162 (2017)
  2. Amyloid beta-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Malito E, Hulse RE, Tang WJ. Cell Mol Life Sci 65 2574-2585 (2008)
  3. Alzheimer's disease--a panorama glimpse. Zhao LN, Lu L, Chew LY, Mu Y. Int J Mol Sci 15 12631-12650 (2014)
  4. Insulin-Degrading Enzyme, an Under-Estimated Potential Target to Treat Cancer? Lesire L, Leroux F, Deprez-Poulain R, Deprez B. Cells 11 1228 (2022)

Articles - 2g47 mentioned but not cited (21)



Reviews citing this publication (33)

  1. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease. Barage SH, Sonawane KD. Neuropeptides 52 1-18 (2015)
  2. Proteolytic degradation of amyloid β-protein. Saido T, Leissring MA. Cold Spring Harb Perspect Med 2 a006379 (2012)
  3. The interplay of catalysis and toxicity by amyloid intermediates on lipid bilayers: insights from type II diabetes. Hebda JA, Miranker AD. Annu Rev Biophys 38 125-152 (2009)
  4. Protein disulfide engineering. Dombkowski AA, Sultana KZ, Craig DB. FEBS Lett 588 206-212 (2014)
  5. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease? Nalivaeva NN, Beckett C, Belyaev ND, Turner AJ. J Neurochem 120 Suppl 1 167-185 (2012)
  6. Gut hormones: implications for the treatment of obesity. Neary MT, Batterham RL. Pharmacol Ther 124 44-56 (2009)
  7. Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer's disease? Pivovarova O, Höhn A, Grune T, Pfeiffer AF, Rudovich N. Ann Med 48 614-624 (2016)
  8. Targeting Insulin-Degrading Enzyme to Treat Type 2 Diabetes Mellitus. Tang WJ. Trends Endocrinol Metab 27 24-34 (2016)
  9. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa C, Ramamoorthy A. Chem Rev 121 1845-1893 (2021)
  10. The hairpin conformation of the amyloid β peptide is an important structural motif along the aggregation pathway. Abelein A, Abrahams JP, Danielsson J, Gräslund A, Jarvet J, Luo J, Tiiman A, Wärmländer SK. J Biol Inorg Chem 19 623-634 (2014)
  11. Multiple functions of insulin-degrading enzyme: a metabolic crosslight? Tundo GR, Sbardella D, Ciaccio C, Grasso G, Gioia M, Coletta A, Polticelli F, Di Pierro D, Milardi D, Van Endert P, Marini S, Coletta M. Crit Rev Biochem Mol Biol 52 554-582 (2017)
  12. Impact of Insulin Degrading Enzyme and Neprilysin in Alzheimer's Disease Biology: Characterization of Putative Cognates for Therapeutic Applications. Jha NK, Jha SK, Kumar D, Kejriwal N, Sharma R, Ambasta RK, Kumar P. J Alzheimers Dis 48 891-917 (2015)
  13. Mitochondrial accumulation of APP and Abeta: significance for Alzheimer disease pathogenesis. Pavlov PF, Hansson Petersen C, Glaser E, Ankarcrona M. J Cell Mol Med 13 4137-4145 (2009)
  14. Thiol-Disulfide Exchange Reactions in the Mammalian Extracellular Environment. Yi MC, Khosla C. Annu Rev Chem Biomol Eng 7 197-222 (2016)
  15. Amylin structure-function relationships and receptor pharmacology: implications for amylin mimetic drug development. Bower RL, Hay DL. Br J Pharmacol 173 1883-1898 (2016)
  16. Mitochondria and Alzheimer's disease: amyloid-beta peptide uptake and degradation by the presequence protease, hPreP. Alikhani N, Ankarcrona M, Glaser E. J Bioenerg Biomembr 41 447-451 (2009)
  17. Modulation of Insulin Sensitivity by Insulin-Degrading Enzyme. González-Casimiro CM, Merino B, Casanueva-Álvarez E, Postigo-Casado T, Cámara-Torres P, Fernández-Díaz CM, Leissring MA, Cózar-Castellano I, Perdomo G. Biomedicines 9 86 (2021)
  18. Unraveling Alzheimer's: Making Sense of the Relationship between Diabetes and Alzheimer's Disease1. Schilling MA. J Alzheimers Dis 51 961-977 (2016)
  19. Targeting Insulin-Degrading Enzyme in Insulin Clearance. Leissring MA, González-Casimiro CM, Merino B, Suire CN, Perdomo G. Int J Mol Sci 22 2235 (2021)
  20. Brain-specific aminopeptidase: from enkephalinase to protector against neurodegeneration. Hui KS. Neurochem Res 32 2062-2071 (2007)
  21. The irreversible binding of amyloid peptide substrates to insulin-degrading enzyme: a biological perspective. de Tullio MB, Morelli L, Castaño EM. Prion 2 51-56 (2008)
  22. Metallostasis and amyloid β-degrading enzymes. Grasso G, Giuffrida ML, Rizzarelli E. Metallomics 4 937-949 (2012)
  23. Bioinformatic approaches for predicting substrates of proteases. Song J, Tan H, Boyd SE, Shen H, Mahmood K, Webb GI, Akutsu T, Whisstock JC, Pike RN. J Bioinform Comput Biol 9 149-178 (2011)
  24. Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin. Tashima T. Molecules 25 E5188 (2020)
  25. Redox-Active Metal Ions and Amyloid-Degrading Enzymes in Alzheimer's Disease. Kim N, Lee HJ. Int J Mol Sci 22 7697 (2021)
  26. Amylin and its G-protein-coupled receptor: A probable pathological process and drug target for Alzheimer's disease. Qiu WQ. Neuroscience 356 44-51 (2017)
  27. X-ray absorption and diffraction studies of the metal binding sites in amyloid beta-peptide. Streltsov V. Eur Biophys J 37 257-263 (2008)
  28. Alzheimer's Disease and Diabetes Mellitus in Comparison: The Therapeutic Efficacy of the Vanadium Compound. He Z, You G, Liu Q, Li N. Int J Mol Sci 22 11931 (2021)
  29. Target Enzymes Considered for the Treatment of Alzheimer's Disease and Parkinson's Disease. Kim N, Lee HJ. Biomed Res Int 2020 2010728 (2020)
  30. Inhibition of Insulin Degrading Enzyme to Control Diabetes Mellitus and its Applications on some Other Chronic Disease: a Critical Review. Azam MS, Wahiduzzaman M, Reyad-Ul-Ferdous M, Islam MN, Roy M. Pharm Res 39 611-629 (2022)
  31. Amyloid Beta Dynamics in Biological Fluids-Therapeutic Impact. Schreiner TG, Popescu BO. J Clin Med 10 5986 (2021)
  32. Linking hIAPP misfolding and aggregation with type 2 diabetes mellitus: a structural perspective. Hassan S, White K, Terry C. Biosci Rep 42 BSR20211297 (2022)
  33. The Insulin-Degrading Enzyme from Structure to Allosteric Modulation: New Perspectives for Drug Design. Tundo GR, Grasso G, Persico M, Tkachuk O, Bellia F, Bocedi A, Marini S, Parravano M, Graziani G, Fattorusso C, Sbardella D. Biomolecules 13 1492 (2023)

Articles citing this publication (153)