spacer
spacer

PDBsum entry 1m4z

Go to PDB code: 
protein metals Protein-protein interface(s) links
Gene regulation PDB id
1m4z

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
203 a.a. *
Metals
_MN ×3
Waters ×266
* Residue conservation analysis
PDB id:
1m4z
Name: Gene regulation
Title: Crystal structure of the n-terminal bah domain of orc1p
Structure: Origin recognition complex subunit 1. Chain: a, b. Fragment: bah-containing domain (residue 1-235). Synonym: origin recognition complex protein 120 kd subunit. Engineered: yes
Source: Saccharomyces cerevisiae. Baker's yeast. Organism_taxid: 4932. Gene: orc1. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
2.20Å     R-factor:   0.200     R-free:   0.225
Authors: Z.Zhang,M.K.Hayashi,O.Merkel,B.Stillman,R.-M.Xu
Key ref:
Z.Zhang et al. (2002). Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing. EMBO J, 21, 4600-4611. PubMed id: 12198162 DOI: 10.1093/emboj/cdf468
Date:
05-Jul-02     Release date:   11-Sep-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P54784  (ORC1_YEAST) -  Origin recognition complex subunit 1 from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
Seq:
Struc:
 
Seq:
Struc:
914 a.a.
203 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1093/emboj/cdf468 EMBO J 21:4600-4611 (2002)
PubMed id: 12198162  
 
 
Structure and function of the BAH-containing domain of Orc1p in epigenetic silencing.
Z.Zhang, M.K.Hayashi, O.Merkel, B.Stillman, R.M.Xu.
 
  ABSTRACT  
 
The N-terminal domain of the largest subunit of the Saccharomyces cerevisiae origin recognition complex (Orc1p) functions in transcriptional silencing and contains a bromo-adjacent homology (BAH) domain found in some chromatin-associated proteins including Sir3p. The 2.2 A crystal structure of the N-terminal domain of Orc1p revealed a BAH core and a non-conserved helical sub-domain. Mutational analyses demonstrated that the helical sub-domain was necessary and sufficient to bind Sir1p, and critical for targeting Sir1p primarily to the cis-acting E silencers at the HMR and HML silent chromatin domains. In the absence of the BAH domain, approximately 14-20% of cells in a population were silenced at the HML locus. Moreover, the distributions of the Sir2p, Sir3p and Sir4p proteins, while normal, were at levels lower than found in wild-type cells. Thus, in the absence of the Orc1p BAH domain, HML resembled silencing of genes adjacent to telomeres. These data are consistent with the view that the Orc1p-Sir1p interaction at the E silencers ensures stable inheritance of pre-established Sir2p, Sir3p and Sir4p complexes at the silent mating type loci.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 The structure of the N-terminal domain of Orc1p. (A) Structure-guided sequence alignment of the N-terminal region of S.cerevisiae Orc1p (yOrc1) with the BAH domain-containing region of Sir3p (ySir3), human Orc1p (hOrc1), DNA-(cytosine-5)-methyltransferase 1 (Dnmt1), the human metastasis-associated protein 1 (Mta1) and S.cerevisiae Rsc1. The amino acids shown in white letters on a black background are invariant; white letters on a gray background indicate that similar amino acids are found in at least five proteins. Amino acids similar among yOrc1, ySir3 and hOrc1 are highlighted in cyan, and amino acids identical between yOrc1 and ySir3 are in blue rectangles. Green highlights the position of SIR3 mutants suppressing histone H4 and Rap1 mutations (Johnson et al., 1990; Liu and Lustig, 1996). Residues highlighted in yellow and red are class I and class II Sir3p mutants, respectively, which enhance the sir1 mating-defective phenotype (Stone et al., 2000). Secondary structural elements are colored as in (C) and shown above the sequences. Every 10 aa are indicated with a + sign. Residues shown in red were removed in the orc1m1 and orc1m2 mutants of yOrc1. In the orc1m1 mutant, the amino acids shown in red were replaced by the amino acids from hOrc1, also shown in red. (B) The crystal structure is shown in a ribbon representation. (C) Topology diagram showing the fold of the structure. The core of the structure consists mainly of -strands and is colored cyan. The H domain is shown in magenta, and N- and C-terminal helices are shown in red. -strands are numbered consecutively and -helices are labeled alphabetically from the N- to the C-terminus.
Figure 7.
Figure 7 Grasp surface representation of the structure. (A) The location of Sir3p mutants mapped onto the Orc1pN235 structure (with the Orc1p amino acids labeled). As in Figure 1A, green indicates the position of mutants that suppress histone H4 mutations. Red indicates class II and yellow indicates class I sir3 mutants that enhance the sir1mutant defect (Stone et al., 2000). (B) Electrostatic potential distribution on the Orc1pN235 surface. Red indicates negative (-15 K[B]T), white indicates neutral (0 K[B]T) and blue indicates positive (+15 K K[B]T) charges, where K[B] is the Boltzmann constant and T is the temperature.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2002, 21, 4600-4611) copyright 2002.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22398447 A.J.Kuo, J.Song, P.Cheung, S.Ishibe-Murakami, S.Yamazoe, J.K.Chen, D.J.Patel, and O.Gozani (2012).
The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome.
  Nature, 484, 115-119.
PDB codes: 4dov 4dow
21163962 J.Song, O.Rechkoblit, T.H.Bestor, and D.J.Patel (2011).
Structure of DNMT1-DNA complex reveals a role for autoinhibition in maintenance DNA methylation.
  Science, 331, 1036-1040.
PDB codes: 3pt6 3pt9 3pta
21300849 M.Ruault, A.De Meyer, I.Loïodice, and A.Taddei (2011).
Clustering heterochromatin: Sir3 promotes telomere clustering independently of silencing in yeast.
  J Cell Biol, 192, 417-431.  
  21417598 Q.Ding, and D.M.MacAlpine (2011).
Defining the replication program through the chromatin landscape.
  Crit Rev Biochem Mol Biol, 46, 165-179.  
19948882 B.Ozaydin, and J.Rine (2010).
Expanded roles of the origin recognition complex in the architecture and function of silenced chromatin in Saccharomyces cerevisiae.
  Mol Cell Biol, 30, 626-639.  
20974972 M.A.Hickman, and L.N.Rusche (2010).
Transcriptional silencing functions of the yeast protein Orc1/Sir3 subfunctionalized after gene duplication.
  Proc Natl Acad Sci U S A, 107, 19384-19389.  
20351051 M.L.Eaton, K.Galani, S.Kang, S.P.Bell, and D.M.MacAlpine (2010).
Conserved nucleosome positioning defines replication origins.
  Genes Dev, 24, 748-753.  
20595233 P.Müller, S.Park, E.Shor, D.J.Huebert, C.L.Warren, A.Z.Ansari, M.Weinreich, M.L.Eaton, D.M.MacAlpine, and C.A.Fox (2010).
The conserved bromo-adjacent homology domain of yeast Orc1 functions in the selection of DNA replication origins within chromatin.
  Genes Dev, 24, 1418-1433.  
19344485 B.P.Duncker, I.N.Chesnokov, and B.J.McConkey (2009).
The origin recognition complex protein family.
  Genome Biol, 10, 214.  
19886812 E.I.Campos, and D.Reinberg (2009).
Histones: annotating chromatin.
  Annu Rev Genet, 43, 559-599.  
19064704 I.Liachko, and B.K.Tye (2009).
Mcm10 mediates the interaction between DNA replication and silencing machineries.
  Genetics, 181, 379-391.  
19171939 J.E.Gallagher, J.E.Babiarz, L.Teytelman, K.H.Wolfe, and J.Rine (2009).
Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces.
  Genetics, 181, 1477-1491.  
19084573 M.Thompson (2009).
Polybromo-1: the chromatin targeting subunit of the PBAF complex.
  Biochimie, 91, 309-319.  
19273586 V.Sampath, P.Yuan, I.X.Wang, E.Prugar, F.van Leeuwen, and R.Sternglanz (2009).
Mutational analysis of the Sir3 BAH domain reveals multiple points of interaction with nucleosomes.
  Mol Cell Biol, 29, 2532-2545.  
19029247 Z.Hou, J.R.Danzer, L.Mendoza, M.E.Bose, U.Müller, B.Williams, and C.A.Fox (2009).
Phylogenetic conservation and homology modeling help reveal a novel domain within the budding yeast heterochromatin protein Sir1.
  Mol Cell Biol, 29, 687-702.  
17729269 A.May, and M.Zacharias (2008).
Energy minimization in low-frequency normal modes to efficiently allow for global flexibility during systematic protein-protein docking.
  Proteins, 70, 794-809.  
18794362 J.R.Buchberger, M.Onishi, G.Li, J.Seebacher, A.D.Rudner, S.P.Gygi, and D.Moazed (2008).
Sir3-nucleosome interactions in spreading of silent chromatin in Saccharomyces cerevisiae.
  Mol Cell Biol, 28, 6903-6918.  
17803217 A.May, and M.Zacharias (2007).
Protein-protein docking in CAPRI using ATTRACT to account for global and local flexibility.
  Proteins, 69, 774-780.  
17671979 C.Wang, O.Schueler-Furman, I.Andre, N.London, S.J.Fleishman, P.Bradley, B.Qian, and D.Baker (2007).
RosettaDock in CAPRI rounds 6-12.
  Proteins, 69, 758-763.  
17803239 E.Kanamori, Y.Murakami, Y.Tsuchiya, D.M.Standley, H.Nakamura, and K.Kinoshita (2007).
Docking of protein molecular surfaces with evolutionary trace analysis.
  Proteins, 69, 832-838.  
17853449 G.Terashi, M.Takeda-Shitaka, K.Kanou, M.Iwadate, D.Takaya, and H.Umeyama (2007).
The SKE-DOCK server and human teams based on a combined method of shape complementarity and free energy estimation.
  Proteins, 69, 866-872.  
17803212 K.Wiehe, B.Pierce, W.W.Tong, H.Hwang, J.Mintseris, and Z.Weng (2007).
The performance of ZDOCK and ZRANK in rounds 6-11 of CAPRI.
  Proteins, 69, 719-725.  
17894347 S.Chaudhury, A.Sircar, A.Sivasubramanian, M.Berrondo, and J.J.Gray (2007).
Incorporating biochemical information and backbone flexibility in RosettaDock for CAPRI rounds 6-12.
  Proteins, 69, 793-800.  
17410207 S.Huang, H.Zhou, J.Tarara, and Z.Zhang (2007).
A novel role for histone chaperones CAF-1 and Rtt106p in heterochromatin silencing.
  EMBO J, 26, 2274-2283.  
16428441 A.L.Kirchmaier, and J.Rine (2006).
Cell cycle requirements in assembling silent chromatin in Saccharomyces cerevisiae.
  Mol Cell Biol, 26, 852-862.  
16581798 J.J.Connelly, P.Yuan, H.C.Hsu, Z.Li, R.M.Xu, and R.Sternglanz (2006).
Structure and function of the Saccharomyces cerevisiae Sir3 BAH domain.
  Mol Cell Biol, 26, 3256-3265.
PDB code: 2fvu
16479013 K.H.McConnell, P.Müller, and C.A.Fox (2006).
Tolerance of Sir1p/origin recognition complex-dependent silencing for enhanced origin firing at HMRa.
  Mol Cell Biol, 26, 1955-1966.  
17066079 K.Noguchi, A.Vassilev, S.Ghosh, J.L.Yates, and M.L.DePamphilis (2006).
The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo.
  EMBO J, 25, 5372-5382.  
16648467 R.K.Rowntree, and J.T.Lee (2006).
Mapping of DNA replication origins to noncoding genes of the X-inactivation center.
  Mol Cell Biol, 26, 3707-3717.  
16641491 Z.Hou, J.R.Danzer, C.A.Fox, and J.L.Keck (2006).
Structure of the Sir3 protein bromo adjacent homology (BAH) domain from S. cerevisiae at 1.95 A resolution.
  Protein Sci, 15, 1182-1186.
PDB code: 2fl7
15824130 A.J.Tackett, D.J.Dilworth, M.J.Davey, M.O'Donnell, J.D.Aitchison, M.P.Rout, and B.T.Chait (2005).
Proteomic and genomic characterization of chromatin complexes at a boundary.
  J Cell Biol, 169, 35-47.  
15937111 H.C.Hsu, B.Stillman, and R.M.Xu (2005).
Structural basis for origin recognition complex 1 protein-silence information regulator 1 protein interaction in epigenetic silencing.
  Proc Natl Acad Sci U S A, 102, 8519-8524.
PDB code: 1zbx
16085704 I.Liachko, and B.K.Tye (2005).
Mcm10 is required for the maintenance of transcriptional silencing in Saccharomyces cerevisiae.
  Genetics, 171, 503-515.  
15899874 K.Ghoshal, J.Datta, S.Majumder, S.Bai, H.Kutay, T.Motiwala, and S.T.Jacob (2005).
5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal.
  Mol Cell Biol, 25, 4727-4741.  
15932939 Z.Hou, D.A.Bernstein, C.A.Fox, and J.L.Keck (2005).
Structural basis of the Sir1-origin recognition complex interaction in transcriptional silencing.
  Proc Natl Acad Sci U S A, 102, 8489-8494.
PDB codes: 1z1a 1zhi
15542839 A.Geissenhöner, C.Weise, and A.E.Ehrenhofer-Murray (2004).
Dependence of ORC silencing function on NatA-mediated Nalpha acetylation in Saccharomyces cerevisiae.
  Mol Cell Biol, 24, 10300-10312.  
15082529 D.L.Pappas, R.Frisch, and M.Weinreich (2004).
The NAD(+)-dependent Sir2p histone deacetylase is a negative regulator of chromosomal DNA replication.
  Genes Dev, 18, 769-781.  
15060132 L.Mohrmann, K.Langenberg, J.Krijgsveld, A.J.Kal, A.J.Heck, and C.P.Verrijzer (2004).
Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes.
  Mol Cell Biol, 24, 3077-3088.  
14966276 M.Oki, L.Valenzuela, T.Chiba, T.Ito, and R.T.Kamakaka (2004).
Barrier proteins remodel and modify chromatin to restrict silenced domains.
  Mol Cell Biol, 24, 1956-1967.  
15454564 X.Wang, J.J.Connelly, C.L.Wang, and R.Sternglanz (2004).
Importance of the Sir3 N terminus and its acetylation for yeast transcriptional silencing.
  Genetics, 168, 547-551.  
12952896 A.De Las Peñas, S.J.Pan, I.Castaño, J.Alder, R.Cregg, and B.P.Cormack (2003).
Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing.
  Genes Dev, 17, 2245-2258.  
12620225 A.G.Ladurner, C.Inouye, R.Jain, and R.Tjian (2003).
Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries.
  Mol Cell, 11, 365-376.  
14690605 A.S.Ivessa, B.A.Lenzmeier, J.B.Bessler, L.K.Goudsouzian, S.L.Schnakenberg, and V.A.Zakian (2003).
The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes.
  Mol Cell, 12, 1525-1536.  
12814547 C.M.Lin, H.Fu, M.Martinovsky, E.Bouhassira, and M.I.Aladjem (2003).
Dynamic alterations of replication timing in mammalian cells.
  Curr Biol, 13, 1019-1028.  
12975325 J.A.Sharp, D.C.Krawitz, K.A.Gardner, C.A.Fox, and P.D.Kaufman (2003).
The budding yeast silencing protein Sir1 is a functional component of centromeric chromatin.
  Genes Dev, 17, 2356-2361.  
12676793 L.N.Rusche, A.L.Kirchmaier, and J.Rine (2003).
The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae.
  Annu Rev Biochem, 72, 481-516.  
12586394 R.Giraldo (2003).
Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives.
  FEMS Microbiol Rev, 26, 533-554.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer