Enzymes
UniProtKB help_outline | 4 proteins |
Reaction participants Show >> << Hide
-
Name help_outline
α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol
Identifier
CHEBI:132519
Charge
-2
Formula
(C5H8)n.C84H142N2O57P2
Search links
Involved in 2 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:19519Polymer name: an α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphospho-di-trans,poly-cis-dolicholPolymerization index help_outline n-1Formula C84H142N2O57P2(C5H8)n-1Charge (-2)(0)n-1Mol File for the polymer
-
-
Name help_outline
dolichyl β-D-mannosyl phosphate
Identifier
CHEBI:58211
Charge
-1
Formula
C26H46O9P(C5H8)n
Search links
Involved in 9 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:19501Polymer name: a di-trans,poly-cis-dolichyl β-D-mannosyl phosphatePolymerization index help_outline n-1Formula C26H46O9P(C5H8)n-1Charge (-1)(0)n-1Mol File for the polymer
-
-
Name help_outline
α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol
Identifier
CHEBI:132520
Charge
-2
Formula
(C5H8)n.C90H152N2O62P2
Search links
Involved in 2 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:19520Polymer name: an α-D-Man-(1→2)-α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→3)-[α-D-Man-(1→2)-α-D-Man-(1→6)]-α-D-Man-(1→6)]-β-D-Man-(1→4)-β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphospho-di-trans,poly-cis-dolicholPolymerization index help_outline n-1Formula C90H152N2O62P2(C5H8)n-1Charge (-2)(0)n-1Mol File for the polymer
-
-
Name help_outline
dolichyl phosphate
Identifier
CHEBI:57683
Charge
-2
Formula
C20H35O4P(C5H8)n
Search links
Involved in 24 reaction(s)
Find proteins in UniProtKB for this molecule
Form(s) in this reaction:
-
Identifier: RHEA-COMP:19498Polymer name: a di-trans,poly-cis-dolichyl phosphatePolymerization index help_outline n-1Formula C20H35O4P(C5H8)n-1Charge (-2)(0)n-1Mol File for the polymer
-
- Name help_outline H+ Identifier CHEBI:15378 Charge 1 Formula H InChIKeyhelp_outline GPRLSGONYQIRFK-UHFFFAOYSA-N SMILEShelp_outline [H+] 2D coordinates Mol file for the small molecule Search links Involved in 9,717 reaction(s) Find molecules that contain or resemble this structure Find proteins in UniProtKB for this molecule
Cross-references
RHEA:29539 | RHEA:29540 | RHEA:29541 | RHEA:29542 | |
---|---|---|---|---|
Reaction direction help_outline | undefined | left-to-right | right-to-left | bidirectional |
UniProtKB help_outline |
|
|||
EC numbers help_outline | ||||
Gene Ontology help_outline | ||||
KEGG help_outline | ||||
MetaCyc help_outline |
Publications
-
ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis.
Frank C.G., Aebi M.
N-linked protein glycosylation follows a conserved pathway in eukaryotic cells. The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for the oligosaccharyltransferase (OST), is catalyzed by different glycosyltransferases located at the membrane of the endoplasmic re ... >> More
N-linked protein glycosylation follows a conserved pathway in eukaryotic cells. The assembly of the lipid-linked core oligosaccharide Glc3Man9GlcNAc2, the substrate for the oligosaccharyltransferase (OST), is catalyzed by different glycosyltransferases located at the membrane of the endoplasmic reticulum (ER). The substrate specificity of the different glycosyltransferase guarantees the ordered assembly of the branched oligosaccharide and ensures that only completely assembled oligosaccharide is transferred to protein. The glycosyltransferases involved in this pathway are highly specific, catalyzing the addition of one single hexose unit to the lipid-linked oligosaccharide (LLO). Here, we show that the dolichylphosphomannose-dependent ALG9 mannosyltransferase is the exception from this rule and is required for the addition of two different alpha-1,2-linked mannose residues to the LLO. This report completes the list of lumen-oriented glycosyltransferases required for the assembly of the LLO. << Less
Glycobiology 15:1156-1163(2005) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Quality control of glycoproteins bearing truncated glycans in an ALG9-defective (CDG-IL) patient.
Vleugels W., Keldermans L., Jaeken J., Butters T.D., Michalski J.C., Matthijs G., Foulquier F.
We describe an ALG9-defective (congenital disorders of glycosylation type IL) patient who is homozygous for the p.Y286C (c.860A>G) mutation. This patient presented with psychomotor retardation, axial hypotonia, epilepsy, failure to thrive, inverted nipples, hepatomegaly, and pericardial effusion. ... >> More
We describe an ALG9-defective (congenital disorders of glycosylation type IL) patient who is homozygous for the p.Y286C (c.860A>G) mutation. This patient presented with psychomotor retardation, axial hypotonia, epilepsy, failure to thrive, inverted nipples, hepatomegaly, and pericardial effusion. Due to the ALG9 deficiency, the cells of this patient accumulated the lipid-linked oligosaccharides Man(6)GlcNAc(2)-PP-dolichol and Man(8)GlcNAc(2)-PP-dolichol. It is known that the oligosaccharide structure has a profound effect on protein glycosylation. Therefore, we investigated the influence of these truncated oligosaccharide structures on the protein transfer efficiency, the quality control of newly synthesized glycoproteins, and the eventual degradation of the truncated glycoproteins formed in this patient. We demonstrated that lipid-linked Man(6)GlcNAc(2) and Man(8)GlcNAc(2) are transferred onto proteins with the same efficiency. In addition, glycoproteins bearing these Man(6)GlcNAc(2) and Man(8)GlcNAc(2) structures efficiently entered in the glucosylation/deglucosylation cycle of the quality control system to assist in protein folding. We also showed that in comparison with control cells, patient's cells degraded misfolded glycoproteins at an increasing rate. The Man(8)GlcNAc(2) isomer C on the patient's glycoproteins was found to promote the degradation of misfolded glycoproteins. << Less
-
Mutations of an alpha1,6 mannosyltransferase inhibit endoplasmic reticulum-associated degradation of defective brassinosteroid receptors in Arabidopsis.
Hong Z., Jin H., Fitchette A.C., Xia Y., Monk A.M., Faye L., Li J.
Asn-linked glycans, or the glycan code, carry crucial information for protein folding, transport, sorting, and degradation. The biochemical pathway for generating such a code is highly conserved in eukaryotic organisms and consists of ordered assembly of a lipid-linked tetradeccasaccharide. Most o ... >> More
Asn-linked glycans, or the glycan code, carry crucial information for protein folding, transport, sorting, and degradation. The biochemical pathway for generating such a code is highly conserved in eukaryotic organisms and consists of ordered assembly of a lipid-linked tetradeccasaccharide. Most of our current knowledge on glycan biosynthesis was obtained from studies of yeast asparagine-linked glycosylation (alg) mutants. By contrast, little is known about biosynthesis and biological functions of N-glycans in plants. Here, we show that loss-of-function mutations in the Arabidopsis thaliana homolog of the yeast ALG12 result in transfer of incompletely assembled glycans to polypeptides. This metabolic defect significantly compromises the endoplasmic reticulum-associated degradation of bri1-9 and bri1-5, two defective transmembrane receptors for brassinosteroids. Consequently, overaccumulated bri1-9 or bri1-5 proteins saturate the quality control systems that retain the two mutated receptors in the endoplasmic reticulum and can thus leak out of the folding compartment, resulting in phenotypic suppression of the two bri1 mutants. Our results strongly suggest that the complete assembly of the lipid-linked glycans is essential for successful quality control of defective glycoproteins in Arabidopsis. << Less
Plant Cell 21:3792-3802(2009) [PubMed] [EuropePMC]
This publication is cited by 2 other entries.
-
Identification and functional analysis of a defect in the human ALG9 gene: definition of congenital disorder of glycosylation type IL.
Frank C.G., Grubenmann C.E., Eyaid W., Berger E.G., Aebi M., Hennet T.
Defects of lipid-linked oligosaccharide assembly lead to alterations of N-linked glycosylation known as "type I congenital disorders of glycosylation" (CDG). Dysfunctions along this stepwise assembly pathway are characterized by intracellular accumulation of intermediate lipid-linked oligosacchari ... >> More
Defects of lipid-linked oligosaccharide assembly lead to alterations of N-linked glycosylation known as "type I congenital disorders of glycosylation" (CDG). Dysfunctions along this stepwise assembly pathway are characterized by intracellular accumulation of intermediate lipid-linked oligosaccharides, the detection of which contributes to the identification of underlying enzymatic defects. Using this approach, we have found, in a patient with CDG, a deficiency of the ALG9 alpha 1,2 mannosyltransferase enzyme, which causes an accumulation of lipid-linked-GlcNAc(2)Man(6) and -GlcNAc(2)Man(8) structures, which was paralleled by the transfer of incomplete oligosaccharides precursors to protein. A homozygous point-mutation 1567G-->A (amino acid substitution E523K) was detected in the ALG9 gene. The functional homology between the human ALG9 and Saccharomyces cerevisiae ALG9, as well as the deleterious effect of the E523K mutation detected in the patient with CDG, were confirmed by a yeast complementation assay lacking the ALG9 gene. The ALG9 defect found in the patient with CDG--who presented with developmental delay, hypotonia, seizures, and hepatomegaly--shows that efficient lipid-linked oligosaccharide synthesis is required for proper human development and physiology. The ALG9 defect presented here defines a novel form of CDG named "CDG-IL." << Less
Am. J. Hum. Genet. 75:146-150(2004) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.
-
CDG-IL: an infant with a novel mutation in the ALG9 gene and additional phenotypic features.
Weinstein M., Schollen E., Matthijs G., Neupert C., Hennet T., Grubenmann C.E., Frank C.G., Aebi M., Clarke J.T.R., Griffiths A., Seargeant L., Poplawski N.
We describe the second case of congenital disorder of glycosylation type IL (CDG-IL) caused by deficiency of the ALG9 a1,2 mannosyltransferase enzyme. The female infant's features included psychomotor retardation, seizures, hypotonia, diffuse brain atrophy with delayed myelination, failure to thri ... >> More
We describe the second case of congenital disorder of glycosylation type IL (CDG-IL) caused by deficiency of the ALG9 a1,2 mannosyltransferase enzyme. The female infant's features included psychomotor retardation, seizures, hypotonia, diffuse brain atrophy with delayed myelination, failure to thrive, pericardial effusion, cystic renal disease, hepatosplenomegaly, esotropia, and inverted nipples. Lipodystrophy and dysmorphic facial features were absent. Magnetic resonance imaging of the brain showed volume loss in the cerebral hemispheres and cerebellum and delayed myelination. Laboratory investigations revealed low levels of multiple serum proteins including antithrombin III, factor XI, and cholesterol. Hypoglycosylation was confirmed by the typical CDG type 1 pattern of serum transferrin analyzed by isoelectric focusing. A defect in the ALG9 enzyme was suggested by the accumulation of the DolPP-GlcNAc2Man6 and DolPP-GlcNAc2Man8 in the patient's fibroblasts and confirmed by mutation analysis: the patient is homozygous for the ALG9 mutation p.Y286C. The causal effect of the mutation was shown by complementation assays in alg9 deficient yeast cells. The child described here further delineates the clinical spectrum of CDG-IL and confirms the significant clinical overlap amongst CDG subtypes. << Less
Am. J. Med. Genet. A 136:194-197(2005) [PubMed] [EuropePMC]
This publication is cited by 1 other entry.