Gene expression by antigen activated OT-I T cells in vivo in the presence and absence of IL-2

Data files
Download

Too many files!

You can download upto 1000 files at a time. For downloading a higher number of files, please use our alternative downloading methods.

  • Thomas Malek
    Thomas Malek
    Email: tmalek@med.miami.edu
    Role: submitter
    Affiliation: University of Miami
    1
  • 1 University of Miami
    Address: Microbiology/Immunology, University of Miami, 1600 NW 10th Avenue, Miami, FL, USA
AccessionE-GEOD-39110
Study typetranscription profiling by array
OrganismMus musculus
DescriptionMuch is known concerning the cellular and molecular basis for CD8+ T memory immune responses. Nevertheless, conditions that selectively support memory generation have remained elusive. Here we show that an immunization regimen that delivers TCR signals through a defined antigenic peptide, inflammatory signals through LPS, and growth and differentiation signals through the IL-2R initially favors antigen-specific CD8+ T cells to rapidly and substantially develop into tissue-residing T effector-memory cells by TCR transgenic OVA-specific OT-I CD8+ T cells. Amplified CD8+ T memory development depends upon a critical frequency of antigen-specific T cells and direct responsiveness to IL-2. A homologous prime-boost immunization protocol with transiently enhanced IL-2R signaling in normal mice led to persistent polyclonal antigen-specific CD8+ T cells that supported protective immunity to Listeria monocytogenes. These results identify a general approach for amplified T memory development that may be useful to optimize vaccines aimed at generating robust cell-mediated immunity. Gene expression analysis was performed for OT-I T cells on day 3 and day 5 after activation with ovalbumin and LPS in vivo with and without treatment with IL-2 using an agonists IL-2/anti-IL-2 complexes (IL2/Jes-6.1) OT-I T cells were purified and adoptively transferred into congenic syngenic mice. 24 hours later mice were immunization with ovalbumin and LPS. 24 hr later some mice received agonist IL2/anti-IL2. 3 and 5 days after immunization, the activated OT-I T cells were purifed by FACS and total RNA was isolated for genome wide expression analysis using Affymetrix Mouse Gene ST1.0 arrays
Much is known concerning the cellular and molecular basis for CD8+ T memory immune responses. Nevertheless, conditions that selectively support memory generation have remained elusive. Here we show that an immunization regimen that delivers TCR signals through a defined antigenic peptide, inflammatory signals through LPS, and growth and differentiation signals through the IL-2R initially favors antigen-specific CD8+ T cells to rapidly and substantially develop into tissue-residing T effector-memory cells by TCR transgenic OVA-specific OT-I CD8+ T cells. Amplified CD8+ T memory development depends upon a critical frequency of antigen-specific T cells and direct responsiveness to IL-2. A homologous prime-boost immunization protocol with transiently enhanced IL-2R signaling in normal mice led to persistent polyclonal antigen-specific CD8+ T cells that supported protective immunity to Listeria monocytogenes. These results identify a general approach for amplified T memory development that may be useful to optimize vaccines aimed at generating robust cell-mediated immunity. Gene expression analysis was performed for OT-I T cells on day 3 and day 5 after activation with ovalbumin and LPS in vivo with and without treatment with IL-2 using an agonists IL-2/anti-IL-2 complexes (IL2/Jes-6.1) OT-I T cells were purified and adoptively transferred into congenic syngenic mice. 24 hours later mice were immunization with ovalbumin and LPS. 24 hr later some mice received agonist IL2/anti-IL2. 3 and 5 days after immunization, the activated OT-I T cells were purifed by FACS and total RNA was isolated for genome wide expression analysis using Affymetrix Mouse Gene ST1.0 arrays
Protocols show table
Samples
Sample count12
Source Characteristics
Assays and Data
TechnologyArray assay
Assay by MoleculeRNA assay
Raw Data
Processed Data
MAGE-TAB Files
Array Designs 1 link
MIAME Score
Platforms-
Variables-
Processed*
Protocols-
Raw*