Liu2023 - Acinetobacter baumannii growth inhibition prediction with Deep Learning

Model Identifier
MODEL2405080001
Short description

This model is a Chemprop neural network trained with a growth inhibition dataset. Authors screened ~7,500 molecules for those that inhibited the growth of A. baumannii in vitro. They discovered abaucin, an antibacterial compound with narrow-spectrum activity against A. baumannii.

Model Type: Predictive machine learning model.
Model Relevance: The model predicts the probability of growth inhibition of the bacteria A. Baumannii.
Model Encoded by: Miquel Duran-frigola (Ersilia)
Metadata Submitted in BioModels by: Zainab Ashimiyu-Abdusalam

Implementation of this model code by Ersilia is available here:
https://github.com/ersilia-os/eos3804

Ersilia Logo
Format
Python
Related Publication
  • Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii.
  • Gary Liu, Denise B Catacutan, Khushi Rathod, Kyle Swanson, Wengong Jin, Jody C Mohammed, Anush Chiappino-Pepe, Saad A Syed, Meghan Fragis, Kenneth Rachwalski, Jakob Magolan, Michael G Surette, Brian K Coombes, Tommi Jaakkola, Regina Barzilay, James J Collins, Jonathan M Stokes
  • Nature chemical biology , 11/ 2023 , Volume 19 , Issue 11 , pages: 1342-1350 , PubMed ID: 37231267
Contributors
Submitter of the first revision: Zainab Ashimiyu-Abdusalam
Submitter of this revision: Zainab Ashimiyu-Abdusalam
Annotation Curator: Zainab Ashimiyu-Abdusalam
Code Curator: Miquel Duran-frigola

Metadata information

is (1 statement)
BioModels Database MODEL2405080001

isDescribedBy (2 statements)
PubMed 37231267
Ersilia Model Hub Ersilia Incorporation URL

hasTaxon (2 statements)
hasProperty (15 statements)
BioAssay Ontology 80 percent inhibition
BioAssay Ontology quantitative structure activity relationship analysis
Experimental Factor Ontology infectious disease
EDAM Ontology topic_0154
EDAM Ontology topic_3474
Show more...

hasOutput (1 statement)
hasDataset (1 statement)
NCIt Data Set


Curation status
Non-curated

Modelling approach(es)

Connected external resources