SBML Model Report

Model name: "Piedrafita2010_MR_System"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Lukas Endler¹ at August nineth 2010 at 4:31 p.m. and last time modified at April fourth 2014 at 5:44 p.m. Table 1 provides an overview of the quantities of all components of this model.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	11
events	0	constraints	0
reactions	11	function definitions	0
global parameters	19	unit definitions	5
rules	2	initial assignments	0

Table 1: Number of components in this model, which are described in the following sections.

Model Notes

This is the self maintaining metabolism model described in the article:

A Simple Self-Maintaining Metabolic System: Robustness, Autocatalysis, Bistability. Piedrafita G, Montero F, Morn F, Crdenas ML, Cornish-Bowden A, <u>PLoS Computational Biology</u> 2010, 6(8):e1000872. doi:10.1371/journal.pcbi.1000872

Abstract:

A living organism must not only organize itself from within; it must also maintain its organization in the face of changes in its environment and degradation of its components. We show

¹EMBL-EBI, lukas@ebi.ac.uk

here that a simple (M,R)-system consisting of three interlocking catalytic cycles, with every catalyst produced by the system itself, can both establish a non-trivial steady state and maintain this despite continuous loss of the catalysts by irreversible degradation. As long as at least one catalyst is present at a sufficient concentration in the initial state, the others can be produced and maintained. The system shows bistability, because if the amount of catalyst in the initial state is insufficient to reach the non-trivial steady state the system collapses to a trivial steady state in which all fluxes are zero. It is also robust, because if one catalyst is catastrophically lost when the system is in steady state it can recreate the same state. There are three elementary flux modes, but none of them is an enzyme-maintaining mode, the entire network being necessary to maintain the two catalysts

As this is a theoretical model and no units are given in the article, the standard units (mol, seconds and litre) are used for the parameters. k8 and k11 are set equal to k4.

Originally created by libAntimony v1.4 (using libSBML 3.4.1)

2 Unit Definitions

This is an overview of seven unit definitions of which two are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name mole

Definition mol

2.2 Unit time

Name sec

Definition s

2.3 Unit volume

Name litre

Definition 1

2.4 Unit per_time

Name per_time

Definition s⁻¹

2.5 Unit per_time_per_M

Name per_time_per_M Definition $mol^{-1} \cdot s^{-1} \cdot l$

2.6 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

 $\text{Definition} \ m^2$

2.7 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

		Table 2: Pr	operties of all c	compart	ments.		
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
env	environment	0000290	3	1	litre		

3.1 Compartment env

This is a three dimensional compartment with a constant size of one litre.

Name environment

SBO:0000290 physical compartment

[▶] 4 Species

This model contains eleven species. The boundary condition of three of these species is set to true so that these species' amount cannot be changed by any reaction. Section 8 provides further details and the derived rates of change of each species.

		Table 3: Properties of each species.			
Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
S		env	$mol \cdot l^{-1}$		
U		env	$mol \cdot l^{-1}$		
Т		env	$mol \cdot l^{-1}$		
STU		env	$mol \cdot l^{-1}$		
STUS		env	$mol \cdot l^{-1}$		
STUST		env	$mol \cdot l^{-1}$		
STUSU		env	$mol \cdot l^{-1}$		
SU		env	$mol \cdot l^{-1}$		
ST		env	$mol \cdot l^{-1}$		
SUST		env	$mol \cdot l^{-1}$		
SUSTU		env	$mol \cdot l^{-1}$		

5 Parameters

This model contains 19 global parameters.

Table 4: Properties of each parameter.					
Id	Name	SBO	Value	Unit	Constant
k1		0000339	10.00	$mol^{-1} \cdot s^{-1} \cdot l$	
k1r		0000038	10.00	s^{-1}	\checkmark
k2		0000339	10.00	$mol^{-1} \cdot s^{-1} \cdot l$	\checkmark
k2r		0000038	10.00	s^{-1}	\checkmark
k3		0000035	2.00	s^{-1}	\checkmark
k3r		0000039	1.00	$mol^{-1} \cdot s^{-1} \cdot l$	$\overline{\checkmark}$
k4		0000035	0.30	s^{-1}	\checkmark
k5		0000339	1.00	$\mathrm{mol}^{-1} \cdot \mathrm{s}^{-1} \cdot \mathrm{l}$	\checkmark
k5r		0000038	1.00	s^{-1}	\checkmark
k6		0000339	1.00	$\mathrm{mol}^{-1} \cdot \mathrm{s}^{-1} \cdot \mathrm{l}$	\checkmark
k6r		0000038	1.00	s^{-1}	\checkmark
k7		0000035	0.10	s^{-1}	\checkmark
k7r		0000039	0.10	$\mathrm{mol}^{-1} \cdot \mathrm{s}^{-1} \cdot \mathrm{l}$	\checkmark
k8		0000035	0.00	s^{-1}	
k9		0000339	0.10	$\mathrm{mol}^{-1} \cdot \mathrm{s}^{-1} \cdot \mathrm{l}$	
k9r		0000038	0.05	s^{-1}	$\overline{\checkmark}$
k10		0000035	0.05	s^{-1}	$\overline{\checkmark}$
k10r		0000039	0.05	$\mathrm{mol}^{-1} \cdot \mathrm{s}^{-1} \cdot \mathrm{l}$	$\overline{\checkmark}$
k11		0000035	0.00	s^{-1}	

6 Rules

This is an overview of two rules.

6.1 Rule k8

Rule k8 is an assignment rule for parameter k8:

$$k8 = k4 \tag{1}$$

Derived unit s^{-1}

6.2 Rule k11

Rule k11 is an assignment rule for parameter k11:

$$k11 = k4 \tag{2}$$

Derived unit s^{-1}

7 Reactions

This model contains eleven reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

N⁰	Id	Name	Reaction Equation	SBO		
1	reaction1		$S + STU \Longrightarrow STUS$	0000210		
2	reaction2		$T + STUS \Longrightarrow STUST$	0000210		
3	reaction3		$STUST \Longrightarrow ST + STU$	0000178		
4	reaction4		$STU \longrightarrow \emptyset$	0000179		
5	reaction5		$SU + ST \Longrightarrow SUST$	0000210		
6	reaction6		$U + SUST \Longrightarrow SUSTU$	0000210		
7	reaction7		$SUSTU \Longrightarrow STU + SU$	0000178		
8	reaction8		$SU \longrightarrow \emptyset$	0000179		
9	reaction9		$U + STUS \Longrightarrow STUSU$	0000210		
10	reaction10		$STUSU \Longrightarrow STU + SU$	0000178		
11	reaction11		$ST \longrightarrow \emptyset$	0000179		

Table 5: Overview of all reactions

7.1 Reaction reaction1

This is a reversible reaction of two reactants forming one product.

SBO:0000210 addition of a chemical group

Reaction equation

$$S + STU \Longrightarrow STUS$$
 (3)

Reactants

Table	6: Prop	erties of	each re	actant.
	Id	Name	SBO	
	S			
	STU			

Product

Table	7: Prop	erties of	each pro	oduct
	Id	Name	SBO	
	STUS			

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_1 = \operatorname{vol}(\operatorname{env}) \cdot (k1 \cdot [S] \cdot [STU] - k1r \cdot [STUS])$$
(4)

7.2 Reaction reaction2

This is a reversible reaction of two reactants forming one product.

SBO:0000210 addition of a chemical group

Reaction equation

$$T + STUS \Longrightarrow STUST$$
 (5)

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
Т		
STUS		

Product

Table	e 9: Prope	erties of e	ach produ	ct.
	Id	Name	SBO	
	STUST			

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_2 = \operatorname{vol}(\operatorname{env}) \cdot (k2 \cdot [T] \cdot [STUS] - k2r \cdot [STUST])$$
(6)

7.3 Reaction reaction3

This is a reversible reaction of one reactant forming two products.

SBO:0000178 cleavage

Reaction equation

$$STUST \Longrightarrow ST + STU$$
 (7)

Reactant

Table	10: Properties of each reactant.					
	Id	Name	SBO			
	STUST					

Products

 Image: Table 11: Properties of each product.

 Id
 Name

 ST

Id	Name	SBO
STU		

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_3 = \operatorname{vol}(\operatorname{env}) \cdot (k3 \cdot [\operatorname{STUST}] - k3r \cdot [\operatorname{ST}] \cdot [\operatorname{STU}])$$
(8)

7.4 Reaction reaction4

This is an irreversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$STU \longrightarrow \emptyset$$
 (9)

Reactant

Table 1	2: Proj	perties of	f each re	eactant.
	Id	Name	SBO	
	STU			•

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_4 = \operatorname{vol}(\operatorname{env}) \cdot \mathbf{k4} \cdot [\operatorname{STU}] \tag{10}$$

7.5 Reaction reaction5

This is a reversible reaction of two reactants forming one product.

SBO:0000210 addition of a chemical group

Reaction equation

$$SU + ST \Longrightarrow SUST$$
 (11)

Reactants

Produced by SBML2ATEX

10

Table 13: Properties of each reactant.

Id	Name	SBO
SU		
ST		

Product

Table	14: Prop	erties of	each pr	oduct.
	Id	Name	SBO	
	SUST			

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_5 = \operatorname{vol}(\operatorname{env}) \cdot (\mathrm{k5} \cdot [\mathrm{ST}] \cdot [\mathrm{SU}] - \mathrm{k5r} \cdot [\mathrm{SUST}])$$
(12)

7.6 Reaction reaction6

This is a reversible reaction of two reactants forming one product.

SBO:0000210 addition of a chemical group

Reaction equation

$$U + SUST \Longrightarrow SUSTU$$
 (13)

Reactants

Table	15: Prop	perties of	each rea	ictant.
	Id	Name	SBO	
	U			
	SUST			

Product

Table 16: Properties of each product.

Id	Name	SBO
SUSTU		

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_6 = \operatorname{vol}(\operatorname{env}) \cdot (\operatorname{k6} \cdot [U] \cdot [\operatorname{SUST}] - \operatorname{k6r} \cdot [\operatorname{SUSTU}])$$
(14)

7.7 Reaction reaction7

This is a reversible reaction of one reactant forming two products.

SBO:0000178 cleavage

Reaction equation

$$SUSTU \Longrightarrow STU + SU$$
 (15)

Reactant

 Id
 Name
 SBO

SUSTU

Products

 Table 18: Properties of each product.

 Id
 Name
 SBO

 STU
 SU
 SU

Kinetic Law

Derived unit $s^{-1} \cdot mol$

 $v_7 = vol(env) \cdot (k7 \cdot [SUSTU] - k7r \cdot [STU] \cdot [SU])$

(16)

7.8 Reaction reaction8

This is an irreversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$SU \longrightarrow \emptyset$$
 (17)

Reactant

Table 19	9: Pro	perties o	f each r	eactant.
	Id	Name	SBO	
	SU			

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_8 = \operatorname{vol}(\operatorname{env}) \cdot \mathbf{k8} \cdot [SU] \tag{18}$$

7.9 Reaction reaction9

This is a reversible reaction of two reactants forming one product.

SBO:0000210 addition of a chemical group

Reaction equation

$$U + STUS \Longrightarrow STUSU \tag{19}$$

Reactants

Table 2	20: Prop	erties of	each rea	actant.
	Id	Name	SBO	
	U			
	STUS			

Product

Table	21:	Properties of	each p	product.
	Id	Name	SBC)

Iu	Ivanie	Ъ
STUSU		

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_9 = \operatorname{vol}(\operatorname{env}) \cdot (k9 \cdot [U] \cdot [STUS] - k9r \cdot [STUSU])$$
(20)

7.10 Reaction reaction10

This is a reversible reaction of one reactant forming two products.

SBO:0000178 cleavage

Reaction equation

$$STUSU \Longrightarrow STU + SU$$
 (21)

Reactant

 Id
 Name
 SBO

 STUSU
 STUSU

Products

 Table 23: Properties of each product.

 Id
 Name
 SBO

 STU
 SU
 SU

Kinetic Law

Derived unit $s^{-1} \cdot mol$

 $v_{10} = \text{vol}(\text{env}) \cdot (\text{k10} \cdot [\text{STUSU}] - \text{k10r} \cdot [\text{STU}] \cdot [\text{SU}])$

(22)

7.11 Reaction reaction11

This is an irreversible reaction of one reactant forming no product.

SBO:0000179 degradation

Reaction equation

$$ST \longrightarrow \emptyset$$
 (23)

Reactant

Table 24	4: Pro	perties o	f each r	eactant.
,	Id	Name	SBO	
	ST			

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_{11} = \operatorname{vol}(\operatorname{env}) \cdot k_{11} \cdot [ST]$$
(24)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

8.1 Species S

SBO:0000240 material entity

Initial concentration $4 \mod l^{-1}$

This species takes part in one reaction (as a reactant in reaction1), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{S} = 0 \tag{25}$$

8.2 Species U

SBO:0000240 material entity

Initial concentration $1 \mod l^{-1}$

This species takes part in two reactions (as a reactant in reaction6, reaction9), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{U} = 0 \tag{26}$$

8.3 Species T

SBO:0000240 material entity

Initial concentration $2 \mod \cdot l^{-1}$

This species takes part in one reaction (as a reactant in reaction2), which does not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{T} = 0 \tag{27}$$

8.4 Species STU

SBO:0000240 material entity

Initial concentration $5 \text{ mol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in reaction1, reaction4 and as a product in reaction3, reaction7, reaction10).

$$\frac{d}{dt}STU = v_3 + v_7 + v_{10} - v_1 - v_4$$
(28)

8.5 Species STUS

SBO:0000240 material entity

Initial concentration $0 \mod \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction2, reaction9 and as a product in reaction1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{STUS} = v_1 - v_2 - v_9 \tag{29}$$

8.6 Species STUST

SBO:0000240 material entity

Initial concentration $0 \mod \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction3 and as a product in reaction2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{STUST} = v_2 - v_3 \tag{30}$$

Produced by SBML2ATEX

16

8.7 Species STUSU

SBO:0000240 material entity

Initial concentration $0 \mod \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction10 and as a product in reaction9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{STUSU} = v_9 - v_{10} \tag{31}$$

8.8 Species SU

SBO:0000240 material entity

Initial concentration $0 \mod \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction5, reaction8 and as a product in reaction7, reaction10).

$$\frac{d}{dt}SU = v_7 + v_{10} - v_5 - v_8 \tag{32}$$

8.9 Species ST

SBO:0000240 material entity

Initial concentration $0 \mod \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction5, reaction11 and as a product in reaction3).

$$\frac{d}{dt}ST = v_3 - v_5 - v_{11} \tag{33}$$

8.10 Species SUST

SBO:0000240 material entity

Initial concentration $0 \mod \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction6 and as a product in reaction5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SUST} = v_5 - v_6 \tag{34}$$

8.11 Species SUSTU

SBO:0000240 material entity

Initial concentration $0 \mod \cdot l^{-1}$

This species takes part in two reactions (as a reactant in reaction7 and as a product in reaction6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{SUSTU} = v_6 - v_7 \tag{35}$$

A Glossary of Systems Biology Ontology Terms

- **SBO:0000035 forward unimolecular rate constant, continuous case:** Numerical parameter that quantifies the forward velocity of a chemical reaction involving only one reactant. This parameter encompasses all the contributions to the velocity except the quantity of the reactant. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000038 reverse unimolecular rate constant, continuous case:** Numerical parameter that quantifies the reverse velocity of a chemical reaction involving only one product. This parameter encompasses all the contributions to the velocity except the quantity of the product. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000039 reverse bimolecular rate constant, continuous case:** Numerical parameter that quantifies the reverse velocity of a chemical reaction involving only one product. This parameter encompasses all the contributions to the velocity except the quantity of the product. It is to be used in a reaction modelled using a continuous framework
- **SBO:0000178 cleavage:** Rupture of a covalent bond resulting in the conversion of one physical entity into several physical entities
- SBO:0000179 degradation: Complete disappearance of a physical entity
- **SBO:0000210 addition of a chemical group:** Covalent reaction that results in the addition of a chemical group on a molecule
- SBO:0000240 material entity: A real thing that is defined by its physico-chemical structure.
- **SBO:0000290** physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions
- **SBO:0000339 bimolecular association rate constant:** Rate with which two components associate into a complex

BML2^{AT}EX was developed by Andreas Dräger^{*a*}, Hannes Planatscher^{*a*}, Dieudonné M Wouamba^{*a*}, Adrian Schröder^{*a*}, Michael Hucka^{*b*}, Lukas Endler^{*c*}, Martin Golebiewski^{*d*} and Andreas Zell^{*a*}. Please see http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

- ^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
- ^dEML Research gGmbH, Heidelberg, Germany