SBML Model Report

Model name: "Proctor2005 - Actions of chaperones and their role in ageing"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Carole Proctor¹ and Enuo He² at February 26th 2007 at 1:30 p.m. and last time modified at June third 2014 at 8:38 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in t	his model, which are descri	bed in the following sections.
------------------------------------	-----------------------------	--------------------------------

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	16
events	0	constraints	0
reactions	23	function definitions	0
global parameters	21	unit definitions	1
rules	0	initial assignments	0

Model Notes

Proctor2005 - Actions of chaperones and theirrole in ageing

This model is described in the article:Modelling the actions of chaperones and their role in ageing.Proctor CJ, Soti C, Boys RJ, Gillespie CS, Shanley DP, Wilkinson DJ, Kirkwood TB.Mech. Ageing Dev. 2005 Jan; 126(1): 119-131

¹University of Newcastle, c.j.proctor@ncl.ac.uk

²BNMC, enuo@caltech.edu

Abstract:

Many molecular chaperones are also known as heat shock proteins because they are synthesised in increased amounts after brief exposure of cells to elevated temperatures. They have many cellular functions and are involved in the folding of nascent proteins, the re-folding of denatured proteins, the prevention of protein aggregation, and assisting the targeting of proteins for degradation by the proteasome and lysosomes. They also have a role in apoptosis and are involved in modulating signals for immune and inflammatory responses. Stress-induced transcription of heat shock proteins requires the activation of heat shock factor (HSF). Under normal conditions, HSF is bound to heat shock proteins resulting in feedback repression. During stress, cellular proteins undergo denaturation and sequester heat shock proteins bound to HSF, which is then able to become transcriptionally active. The induction of heat shock proteins is impaired with age and there is also a decline in chaperone function. Aberrant/damaged proteins accumulate with age and are implicated in several important age-related conditions (e.g. Alzheimer's disease, Parkinson's disease, and cataract). Therefore, the balance between damaged proteins and available free chaperones may be greatly disturbed during ageing. We have developed a mathematical model to describe the heat shock system. The aim of the model is two-fold: to explore the heat shock system and its implications in ageing; and to demonstrate how to build a model of a biological system using our simulation system (biology of ageing e-science integration and simulation (BASIS)).

This model is hosted on BioModels Database and identified by: BIOMD000000091.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Definition item

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

$\text{Definition} \ m^2$

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

 $\textbf{Definition} \ m$

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.							
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment			3	1	litre		

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

[▶] 4 Species

This model contains 16 species. The boundary condition of one of these species is set to true so that this species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Hsp90	Hsp90	compartment	item		
HCom	HCom	compartment	item		
HSF1	HSF1	compartment	item		
MisP	MisP	compartment	item		
MCom	MCom	compartment	item		
TriH	TriH	compartment	item		
DiH	DiH	compartment	item		
NatP	NatP	compartment	item		
AggP	AggP	compartment	item		
HSE	HSE	compartment	item		
HSETriH	HSETriH	compartment	item		
Х	X	compartment	item		
ROS	ROS	compartment	item		
ATP	ATP	compartment	item		
ADP	ADP	compartment	item		
source	source	compartment	item		

5 Parameters

This model contains 21 global parameters.

	Table 4: Properties of each parameter.					
Id	Name	SBO Value	Unit	Constant		
k1	k1	10.000		\checkmark		
k2	k2	$2 \cdot 10^{-5}$				
k3	k3	50.000				
k4	k4	10^{-5}				
k5	k5	$4 \cdot 10^{-6}$				
k6	k6	$6 \cdot 10^{-7}$				
k7	k7	10^{-7}				
k8	k8	500.000				
k9	k9	1.000				
k10	k10	0.010				
k11	k11	100.000				
k12	k12	0.500				
k13	k13	0.500				
k14	k14	0.050				
k15	k15	0.080				
k16	k16	1000.000				
k17	k17	$8.02 \cdot 10^{-9}$	1			
k18	k18	12.000				
k19	k19	0.020				
k20	k20	0.100				
k21	k21	0.001		$\overline{\mathbf{Z}}$		

• 6 Reactions

This model contains 23 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

N⁰	Id	Name	Reaction Equation	SBO
1	proteinSynthesis	proteinSynthesis	$0 \text{ source} \longrightarrow \text{NatP}$	
2	misfolding	misfolding	$NatP + ROS \longrightarrow MisP + ROS$	
3	Hsp90MisPBinding	Hsp90MisPBinding	$MisP + Hsp90 \longrightarrow MCom$	
4	unsuccessulRefold	dunguccessfulRefolding	$MCom \longrightarrow MisP + Hsp90$	
5	refolding	refolding	$MCom + ATP \longrightarrow Hsp90 + NatP + ADP$	
6	proteinDegradatio	oproteinDegradation	$MisP + ATP \longrightarrow ADP$	
7	proteinAggregatio	on1	$2 \operatorname{MisP} \longrightarrow \operatorname{AggP}$	
8	proteinAggregatio	on2	$MisP + AggP \longrightarrow 2 AggP$	
9	Hsp90HSF1Binding	Hsp90HSF1Binding	$Hsp90 + HSF1 \longrightarrow HCom$	
10	Hsp90HSF1Release	Hsp90HSF1Release	$HCom \longrightarrow Hsp90 + HSF1$	
11	dimerisation	dimerisation	$2 \text{ HSF1} \longrightarrow \text{DiH}$	
12	trimerisation	trimerisation	$HSF1 + DiH \longrightarrow TriH$	
13	deTrimerisation	deTrimerisation	$TriH \longrightarrow HSF1 + DiH$	
14	deDimerisation	deDimerisation	$DiH \longrightarrow 2 HSF1$	
15	HSETriHBinding	HSETriHBinding	$TriH + HSE \longrightarrow HSETriH$	
16	HSETriHRelease	HSETriHRelease	$HSETriH \longrightarrow HSE + TriH$	
17	Hsp90Transcriptio	oHsp90Transcription	$HSETriH \longrightarrow HSETriH + Hsp90$	
18	Hsp90Degradation	Hsp90Degradation	$Hsp90 + ATP \longrightarrow ADP$	
19	countTime	countTime	$0 \text{ source} \longrightarrow X$	
20	ATPformation	ATPformation	$ADP \longrightarrow ATP$	
21	ATPconsumption	ATPconsumption	$ATP \longrightarrow ADP$	
22	radicalFormation	radicalFormation	$0 \text{ source} \longrightarrow \text{ROS}$	
23	radicalScavenging	gradicalScavenging	$\operatorname{ROS} \longrightarrow \emptyset$	

Table 5: Overview of all reactions

№ Id	Name	Reaction Equation	SBO

6.1 Reaction proteinSynthesis

This is an irreversible reaction of one reactant forming one product.

Name proteinSynthesis

Reaction equation

$$0 \text{ source} \longrightarrow \text{NatP} \tag{1}$$

Reactant

 Id
 Name
 SBO

 source
 source

Product

Table 7: Properties of each product					
	Id	Name	SBO		
	NatP	NatP			

Kinetic Law

Derived unit not available

$$v_1 = k1 \tag{2}$$

6.2 Reaction misfolding

This is an irreversible reaction of two reactants forming two products.

Name misfolding

Reaction equation

$$NatP + ROS \longrightarrow MisP + ROS$$
(3)

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
NatP	NatP	
ROS	ROS	

Products

Id	Name	SBO
MisP	MisP	
ROS	ROS	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = k2 \cdot \text{NatP} \cdot \text{ROS} \tag{4}$$

6.3 Reaction Hsp90MisPBinding

This is an irreversible reaction of two reactants forming one product.

Name Hsp90MisPBinding

Reaction equation

$$MisP + Hsp90 \longrightarrow MCom$$
(5)

Reactants

Table	10: Prope	erties of e	each rea	ctant.
	Id	Name	SBO	
	MisP	MisP		
	Hsp90	Hsp90		

Product

Table 11: Properties of each product.

Id	Name	SBO
MCom	MCom	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \mathbf{k}3 \cdot \mathbf{MisP} \cdot \mathbf{Hsp90} \tag{6}$$

6.4 Reaction unsuccessulRefolding

This is an irreversible reaction of one reactant forming two products.

Name unsuccessfulRefolding

Reaction equation

$$MCom \longrightarrow MisP + Hsp90 \tag{7}$$

Reactant

Table	12: Proj	perties of	each rea	ictant.
	Id	Name	SBO	
	MCom	MCom		

Products

Table	13: Prop	erties of e	each pro	duct.
	Id	Name	SBO	
	MisP	MisP		
	Hsp90	Hsp90		

Kinetic Law

Derived unit contains undeclared units

 $v_4 = k4 \cdot MCom$

(8)

6.5 Reaction refolding

This is an irreversible reaction of two reactants forming three products.

Name refolding

Reaction equation

$$MCom + ATP \longrightarrow Hsp90 + NatP + ADP$$
(9)

Reactants

Table	14: Properties of each reactar					
	Id	Name	SBO			
	MCom ATP	MCom ATP				

Products

Table	15: Prope	erties of e	each pro	duct.
	Id	Name	SBO	
	Hsp90	Hsp90		
	NatP	NatP		
	ADP	ADP		

Kinetic Law

Derived unit contains undeclared units

$$v_5 = k5 \cdot MCom \cdot ATP \tag{10}$$

6.6 Reaction proteinDegradation

This is an irreversible reaction of two reactants forming one product.

Name proteinDegradation

Reaction equation

$$MisP + ATP \longrightarrow ADP \tag{11}$$

Reactants

Produced by SBML2ATEX

Table 16: Properties of each reactant.

Id	Name	SBO
MisP	MisP	
ATP	ATP	

Product

Table 1	7: Pro	perties of	f each p	roduct.
	Id	Name	SBO	
	ADP	ADP		•

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \mathbf{k} \mathbf{6} \cdot \mathbf{M} \mathbf{i} \mathbf{s} \mathbf{P} \cdot \mathbf{A} \mathbf{T} \mathbf{P} \tag{12}$$

6.7 Reaction proteinAggregation1

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$2\operatorname{MisP} \longrightarrow \operatorname{AggP}$$
(13)

Reactant

Table	18: Prop	erties of	each rea	actant.
	Id	Name	SBO	
	MisP	MisP		

Product

Table	e 19: Properties of each produ					
	Id	Name	SBO			
	AggP	AggP				

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \frac{(\text{MisP} - 1) \cdot \text{k7} \cdot \text{MisP}}{2} \tag{14}$$

6.8 Reaction proteinAggregation2

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$MisP + AggP \longrightarrow 2AggP$$
(15)

Reactants

Table	20: Prop	erties of	each re	actant.
·	Id	Name	SBO	•
	MisP	MisP		
	AggP	AggP		

Product

Table	21: Prop	perties of	each pr	oduct.
	Id	Name	SBO	
	AggP	AggP		

Kinetic Law

Derived unit contains undeclared units

$$v_8 = k7 \cdot MisP \cdot AggP \tag{16}$$

6.9 Reaction Hsp90HSF1Binding

This is an irreversible reaction of two reactants forming one product.

Name Hsp90HSF1Binding

Reaction equation

$$Hsp90 + HSF1 \longrightarrow HCom$$
(17)

Produced by SBML2ATEX

Reactants

Id	Name	SBO
Hsp90	Hsp90	
HSF1	HSF1	

Product

Table	23: Proj	perties of	each pr	oduct.
	Id	Name	SBO	
	HCom	HCom		

Kinetic Law

Derived unit contains undeclared units

$$v_9 = k8 \cdot Hsp90 \cdot HSF1 \tag{18}$$

6.10 Reaction Hsp90HSF1Release

This is an irreversible reaction of one reactant forming two products.

Name Hsp90HSF1Release

Reaction equation

$$\text{HCom} \longrightarrow \text{Hsp90} + \text{HSF1}$$
(19)

Reactant

Table	24: Prop	perties of	each rea	actant.
	Id	Name	SBO	
	HCom	HCom		

Products

Table 25: Properties of each product.

Id	Name	SBO
Hsp90	Hsp90	
HSF1	HSFI	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \mathbf{k9} \cdot \mathbf{HCom} \tag{20}$$

6.11 Reaction dimerisation

This is an irreversible reaction of one reactant forming one product.

Name dimerisation

Reaction equation

$$2 \text{HSF1} \longrightarrow \text{DiH}$$
 (21)

Reactant

Table	26: Prop	perties of	each re	actant.
	Id	Name	SBO	
	HSF1	HSF1		

Product

Table 2	27: Pro	perties of	f each p	roduct.
	Id	Name	SBO	
	DiH	DiH		-

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \frac{(\text{HSF1} - 1) \cdot \text{k10} \cdot \text{HSF1}}{2}$$
(22)

Produced by SBML2ATEX

6.12 Reaction trimerisation

This is an irreversible reaction of two reactants forming one product.

Name trimerisation

Reaction equation

$$HSF1 + DiH \longrightarrow TriH$$
 (23)

Reactants

Table 2	28: Prop	perties of	each re	actant.
	Id	Name	SBO	
	HSF1	HSF1		
	DiH	DiH		

Product

Table	29: Prop	erties of	each product.
	Id	Name	SBO
	TriH	TriH	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = k11 \cdot HSF1 \cdot DiH \tag{24}$$

6.13 Reaction deTrimerisation

This is an irreversible reaction of one reactant forming two products.

Name deTrimerisation

Reaction equation

$$TriH \longrightarrow HSF1 + DiH$$
(25)

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
TriH	TriH	

Products

Table	31: Prop	erties of	each pr	oduct.
	Id	Name	SBO	
	HSF1	HSF1		
	DiH	DiH		

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = k_{12} \cdot \text{TriH} \tag{26}$$

6.14 Reaction deDimerisation

This is an irreversible reaction of one reactant forming one product.

Name deDimerisation

Reaction equation

$$\text{DiH} \longrightarrow 2\text{HSF1}$$
 (27)

Reactant

Table 3	2: Proj	perties of	f each re	eactant.
	Id	Name	SBO	-
	DiH	DiH		-

Product

Table	33: Prop	perties of	each pr	oduct.
	Id	Name	SBO	
	HSF1	HSF1		

Name SBO Id

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = k13 \cdot \text{DiH} \tag{28}$$

6.15 Reaction HSETriHBinding

This is an irreversible reaction of two reactants forming one product.

Name HSETriHBinding

Reaction equation

$$TriH + HSE \longrightarrow HSETriH$$
(29)

Reactants

Table 34: Properties of each reactant.					
	Id	Name	SBO		
	TriH	TriH			
	HSE	HSE			

Product

Ta	ble 35: Prop	erties of eac	h product.
	Id	Name	SBO
	HSETriH	HSETriH	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = k14 \cdot \text{HSE} \cdot \text{TriH} \tag{30}$$

6.16 Reaction HSETriHRelease

This is an irreversible reaction of one reactant forming two products.

Name HSETriHRelease

Reaction equation

$$HSETriH \longrightarrow HSE + TriH$$
(31)

Reactant

Ta	Table 36: Properties of each reactant.				
	Id	Name	SBO		
	HSETriH	HSETriH			

Products

Table	37: Prop	perties of	each pr	oduct.
	Id	Name	SBO	
	HSE	HSE		
	TriH	TriH		

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = k15 \cdot \text{HSETriH} \tag{32}$$

6.17 Reaction Hsp90Transcription

This is an irreversible reaction of one reactant forming two products.

Name Hsp90Transcription

Reaction equation

$$HSETriH \longrightarrow HSETriH + Hsp90$$
(33)

Reactant

Tal	Table 38: Properties of each reactant.				
	Id	Name	SBO		
	HSETriH	HSETriH			

Products

Tabl	e 39: Pro	operties of e	ach product.
Ι	d	Name	SBO

Id	Name	SBO
HSETriH	HSETriH	
Hsp90	Hsp90	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = k16 \cdot \text{HSETriH} \tag{34}$$

6.18 Reaction Hsp90Degradation

This is an irreversible reaction of two reactants forming one product.

Name Hsp90Degradation

Reaction equation

$$Hsp90 + ATP \longrightarrow ADP$$
(35)

Reactants

Table	ble 40: Properties of each reactant.				
	Id	Name	SBO		
·	Hsp90 ATP	Hsp90 ATP			

Product

Table 4	1: Pro	perties of	f each product.	•
	Id	Name	SBO	
	ADP	ADP		

Kinetic Law

Derived unit contains undeclared units

6.19 Reaction countTime

This is an irreversible reaction of one reactant forming one product.

Name countTime

Reaction equation

$$0 \text{ source} \longrightarrow X \tag{37}$$

Reactant

Table	e 42: Prope	erties of e	ach react	ant.
	Id	Name	SBO	
	source	source		

Product

Table 43	3: Pro	operties of	of each j	product.
	Id	Name	SBO	
	Х	Х		

Kinetic Law

Derived unit not available

$$v_{19} = 1$$
 (38)

6.20 Reaction ATPformation

This is an irreversible reaction of one reactant forming one product.

Name ATPformation

Reaction equation

$$ADP \longrightarrow ATP \tag{39}$$

Reactant

Produced by SBML2LATEX

Table 44: Properties of each reactant.

Id	Name	SBO
ADP	ADP	

Product

Table 4	5: Pro	perties of	f each p	roduct.
	Id	Name	SBO	
	ATP	ATP		

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \mathbf{k}\mathbf{18} \cdot \mathbf{ADP} \tag{40}$$

6.21 Reaction ATPconsumption

This is an irreversible reaction of one reactant forming one product.

Name ATPconsumption

Reaction equation

$$ATP \longrightarrow ADP \tag{41}$$

Reactant

Table 4	6: Proj	perties of	f each re	eactant.
	Id	Name	SBO	
	ATP	ATP		

Product

Table 4	7: Pro	perties of	f each prod	uct.
	Id	Name	SBO	
·	ADP	ADP		

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = k19 \cdot ATP \tag{42}$$

6.22 Reaction radicalFormation

This is an irreversible reaction of one reactant forming one product.

Name radicalFormation

Reaction equation

$$0 \text{ source} \longrightarrow \text{ROS} \tag{43}$$

Reactant

 Id
 Name
 SBO

 source
 source

Product

Table 4	9: Pro	perties of	f each p	roduct.
	Id	Name	SBO	
	ROS	ROS		

Kinetic Law

Derived unit not available

$$v_{22} = k20$$
 (44)

6.23 Reaction radicalScavenging

This is an irreversible reaction of one reactant forming no product.

Name radicalScavenging

Reaction equation

$$\operatorname{ROS} \longrightarrow \emptyset$$
 (45)

Produced by SBML2ATEX

Reactant

Table 5	0: Proj	perties of	f each re	eactant.
	Id	Name	SBO	
	ROS	ROS		-

Kinetic Law

Derived unit contains undeclared units

$$v_{23} = k21 \cdot ROS \tag{46}$$

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

7.1 Species Hsp90

Name Hsp90

Initial amount 300000 item

This species takes part in seven reactions (as a reactant in Hsp90MisPBinding, Hsp90HSF1Binding, Hsp90Degradation and as a product in unsuccessulRefolding, refolding, Hsp90HSF1Release, Hsp90Transcription).

$$\frac{d}{dt}Hsp90 = v_4 + v_5 + v_{10} + v_{17} - v_3 - v_9 - v_{18}$$
(47)

7.2 Species HCom

Name HCom

Initial amount 5900 item

This species takes part in two reactions (as a reactant in Hsp90HSF1Release and as a product in Hsp90HSF1Binding).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{HCom} = v_9 - v_{10} \tag{48}$$

7.3 Species HSF1

Name HSF1

Initial amount 100 item

This species takes part in six reactions (as a reactant in Hsp90HSF1Binding, dimerisation, trimerisation and as a product in Hsp90HSF1Release, deTrimerisation, deDimerisation).

$$\frac{d}{dt}HSF1 = v_{10} + v_{13} + 2v_{14} - v_9 - 2v_{11} - v_{12}$$
(49)

7.4 Species MisP

Name MisP

Initial amount 0 item

This species takes part in six reactions (as a reactant in Hsp90MisPBinding, proteinDegradation, proteinAggregation1, proteinAggregation2 and as a product in misfolding, unsuccessulRefolding).

$$\frac{d}{dt}MisP = v_2 + v_4 - v_3 - v_6 - 2v_7 - v_8$$
(50)

7.5 Species MCom

Name MCom

Initial amount 0 item

This species takes part in three reactions (as a reactant in unsuccessulRefolding, refolding and as a product in Hsp90MisPBinding).

$$\frac{d}{dt}MCom = v_3 - v_4 - v_5$$
(51)

7.6 Species TriH

Name TriH

Initial amount 0 item

This species takes part in four reactions (as a reactant in deTrimerisation, HSETriHBinding and as a product in trimerisation, HSETriHRelease).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TriH} = v_{12} + v_{16} - v_{13} - v_{15}$$
(52)

7.7 Species DiH

Name DiH

Initial amount 0 item

This species takes part in four reactions (as a reactant in trimerisation, deDimerisation and as a product in dimerisation, deTrimerisation).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{DiH} = v_{11} + v_{13} - v_{12} - v_{14}$$
(53)

7.8 Species NatP

Name NatP

Initial amount 6000000 item

This species takes part in three reactions (as a reactant in misfolding and as a product in proteinSynthesis, refolding).

$$\frac{d}{dt}NatP = v_1 + v_5 - v_2$$
(54)

7.9 Species AggP

Name AggP

Initial amount 0 item

This species takes part in three reactions (as a reactant in proteinAggregation2 and as a product in proteinAggregation1, proteinAggregation2).

$$\frac{d}{dt}AggP = v_7 + 2 v_8 - v_8$$
(55)

7.10 Species HSE

Name HSE

Initial amount 1 item

This species takes part in two reactions (as a reactant in HSETriHBinding and as a product in HSETriHRelease).

$$\frac{d}{dt}HSE = v_{16} - v_{15}$$
(56)

7.11 Species HSETriH

Name HSETriH

Initial amount 0 item

This species takes part in four reactions (as a reactant in HSETriHRelease, Hsp90Transcription and as a product in HSETriHBinding, Hsp90Transcription).

$$\frac{d}{dt}HSETriH = v_{15} + v_{17} - v_{16} - v_{17}$$
(57)

7.12 Species X

Name X

Initial amount 0 item

This species takes part in one reaction (as a product in countTime).

$$\frac{\mathrm{d}}{\mathrm{d}t}X = v_{19} \tag{58}$$

7.13 Species ROS

Name ROS

Initial amount 100 item

This species takes part in four reactions (as a reactant in misfolding, radicalScavenging and as a product in misfolding, radicalFormation).

$$\frac{d}{dt}ROS = v_2 + v_{22} - v_2 - v_{23}$$
(59)

7.14 Species ATP

Name ATP

Initial amount 10000 item

This species takes part in five reactions (as a reactant in refolding, proteinDegradation, Hsp90Degradation, ATPconsumption and as a product in ATPformation).

$$\frac{d}{dt}ATP = v_{20} - v_5 - v_6 - v_{18} - v_{21}$$
(60)

7.15 Species ADP

Name ADP

Initial amount 1000 item

This species takes part in five reactions (as a reactant in ATPformation and as a product in refolding, proteinDegradation, Hsp90Degradation, ATPconsumption).

$$\frac{d}{dt}ADP = v_5 + v_6 + v_{18} + v_{21} - v_{20}$$
(61)

7.16 Species source

Name source

Initial amount 0 item

This species takes part in three reactions (as a reactant in proteinSynthesis, countTime, radicalFormation), which do not influence its rate of change because this species is on the boundary of the reaction system:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{source} = 0 \tag{62}$$

BML2^{AT}EX was developed by Andreas Dräger^{*a*}, Hannes Planatscher^{*a*}, Dieudonné M Wouamba^{*a*}, Adrian Schröder^{*a*}, Michael Hucka^{*b*}, Lukas Endler^{*c*}, Martin Golebiewski^{*d*} and Andreas Zell^{*a*}. Please see http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany