SBML Model Report

Model name: "Bungay2003_Thrombin_Generation"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following three authors: Harish Dharuri¹, Nick Juty² and Michael Schubert³ at January eighth 2008 at 6:06 p.m. and last time modified at May 28th 2014 at 1:24 p.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	74
events	0	constraints	0
reactions	66	function definitions	0
global parameters	110	unit definitions	1
rules	0	initial assignments	0

Model Notes

This model is from the article:

A mathematical model of lipid-mediated thrombin generation

Bungay Sharene D., Gentry Patricia A., Gentry Rodney D. Mathematical Medicine and Biology Volume

¹California Institute of Technology, hdharuri@cds.caltech.edu

²EMBL-EBI, juty@ebi.ac.uk

³EBI, schubert@ebi.ac.uk

20, Issue 1, 1 March 2003, Pages 105-29 12974500,

Abstract:

Thrombin is an enzyme that is generated in both vascular and non-vascular systems. In blood coagulation, a fundamental process in all species, thrombin induces the formation of a fibrin clot. A dynamical model of thrombin generation in the presence of lipid surfaces is presented. This model also includes the self-regulating thrombin feedback reactions, the thrombomodulinprotein C-protein S inhibitory system, tissue factor pathway inhibitor (TFPI), and the inhibitor, antithrombin (AT). The dynamics of this complex system were found to be highly lipid dependent, as would be expected from experimental studies. Simulations of this model indicate that a threshold lipid level is required to generate physiologically relevant amounts of thrombin. The dependence of the onset, the peak levels, and the duration of thrombin generation on lipid was saturable. The lipid concentration affects the way in which the inhibitors modulate thrombin production. A novel feature of this model is the inclusion of the dynamical protein C pathway, initiated by thrombin feedback. This inhibitory system exerts its effects on the lipid surface, where its substrates are formed. The maximum impact of TFPI occurs at intermediate vesicle concentrations. Inhibition by AT is only indirectly affected by the lipid since AT irreversibly binds only to solution phase proteins. In a system with normal plasma concentrations of the proteins involved in thrombin formation, the combination of these three inhibitors is sufficient both to effectively stop thrombin generation prior to the exhaustion of its precursor, prothrombin, and to inhibit all thrombin formed. This model can be used to predict thrombin generation under extreme lipid conditions that are difficult to implement experimentally and to examine thrombin generation in non-vascular systems.

This model originates from BioModels Database: A Database of Annotated Published Models (http://www.ebi.ac.uk/biomodels/). It is copyright (c) 2005-2011 The BioModels.net Team. For more information see the terms of use.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name nano mole

Definition nmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1. Definition m^2

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

$\textbf{Definition} \hspace{0.1in} s$

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.							
Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment	Cell		3	1	litre		

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

Name Cell

4 Species

This model contains 74 species. Section 7 provides further details and the derived rates of change of each species.

				~	
ld	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
II_f	II_f	compartment	$nmol \cdot l^{-1}$		
II_l	II_1	compartment	$nmol \cdot l^{-1}$		
mIIa_f	mIIa_f	compartment	$nmol \cdot l^{-1}$		
mIIa_l	mIIa_l	compartment	$nmol \cdot l^{-1}$		
V_f	V_f	compartment	$nmol \cdot l^{-1}$		
V_l	V_1	compartment	$nmol \cdot l^{-1}$		
Va_f	Va_f	compartment	$nmol \cdot l^{-1}$		
Va_l	Va_1	compartment	$nmol \cdot l^{-1}$		
VII_f	VII_f	compartment	$nmol \cdot l^{-1}$		
VII_l	VII_1	compartment	$nmol \cdot l^{-1}$		
VIIa_f	VIIa_f	compartment	$nmol \cdot l^{-1}$		
VIIa_l	VIIa_l	compartment	$nmol \cdot l^{-1}$		
VIII_f	VIII_f	compartment	$nmol \cdot l^{-1}$		
VIII_l	VIII_1	compartment	$nmol \cdot l^{-1}$		
VIIIa_f	VIIIa_f	compartment	$nmol \cdot l^{-1}$		
VIIIa_l	VIIIa_l	compartment	$nmol \cdot l^{-1}$		
IX_f	IX_f	compartment	$nmol \cdot l^{-1}$		
IX_1	IX.1	compartment	$nmol \cdot l^{-1}$		
IXa_f	IXa_f	compartment	$nmol \cdot l^{-1}$		
IXa_l	IXa_l	compartment	$nmol \cdot l^{-1}$		
X_f	X_f	compartment	$nmol \cdot l^{-1}$		
X_1	X_l	compartment	$nmol \cdot l^{-1}$		

Table 3: Properties of each species

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
Xa_f	Xa_f	compartment	$nmol \cdot l^{-1}$		
Xa_l	Xa_l	compartment	$nmol \cdot l^{-1}$		
APC_f	APC_f	compartment	$nmol \cdot l^{-1}$		
APC_1	APC_1	compartment	$nmol \cdot l^{-1}$		
PS_f	PS_f	compartment	$nmol \cdot l^{-1}$		
PS_1	PS_1	compartment	$nmol \cdot l^{-1}$		
VIIIai_f	VIIIai_f	compartment	$nmol \cdot l^{-1}$		
VIIIai_l	VIIIai_l	compartment	$nmol \cdot l^{-1}$		
Vai_f	Vai_f	compartment	$nmol \cdot l^{-1}$		
Vai_l	Vai_1	compartment	$nmol \cdot l^{-1}$		
PC_f	PC_f	compartment	$nmol \cdot l^{-1}$		
PC_1	PC_1	compartment	$nmol \cdot l^{-1}$		
TF_1	TF_1	compartment	$nmol \cdot l^{-1}$		
TF_VIIa_1	TF_VIIa_1	compartment	$nmol \cdot l^{-1}$		
TF_VII_1	TF_VII_1	compartment	$nmol \cdot l^{-1}$		
TF_VIIa_IX_1	TF_VIIa_IX_1	compartment	$nmol \cdot l^{-1}$		
TF_VIIa_IXa_l	TF_VIIa_IXa_l	compartment	$nmol \cdot l^{-1}$		
TF_VIIa_X_1	TF_VIIa_X_l	compartment	$nmol \cdot l^{-1}$		
TF_VIIa_Xa_l	TF_VIIa_Xa_1	compartment	$nmol \cdot l^{-1}$		
TF_VII_Xa_1	TF_VII_Xa_l	compartment	$nmol \cdot l^{-1}$		
IXa_VIIIa_l	IXa_VIIIa_1	compartment	$nmol \cdot l^{-1}$		
Xa_Va_l	Xa_Va_l	compartment	$nmol \cdot l^{-1}$		
IXa_VIIIa_X_l	IXa_VIIIa_X_l	compartment	$nmol \cdot l^{-1}$		
V_Xa_l	V_Xa_l	compartment	$nmol \cdot l^{-1}$		
VIII_Xa_l	VIII_Xa_l	compartment	$nmol \cdot l^{-1}$		
IIa_f	IIa_f	compartment	$nmol \cdot l^{-1}$		
V_IIa_l	V_IIa_l	compartment	$nmol \cdot l^{-1}$		

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
VIII_IIa_l	VIII_IIa_1	compartment	$nmol \cdot l^{-1}$		
Xa_Va_II_l	Xa_Va_II_l	compartment	$nmol \cdot l^{-1}$		
Xa_Va_mIIa_l	Xa_Va_mIIa_1	compartment	$nmol \cdot l^{-1}$		
XI_f	XI_f	compartment	$nmol \cdot l^{-1}$		
XI_IIa_l	XI_IIa_1	compartment	$nmol \cdot l^{-1}$		
XIa_l	XIa_l	compartment	$nmol \cdot l^{-1}$		
APC_PS_1	APC_PS_1	compartment	$nmol \cdot l^{-1}$		
APC_PS_VIIIa_1	APC_PS_VIIIa_1	compartment	$nmol \cdot l^{-1}$		
TFPI_f	TFPI_f	compartment	$nmol \cdot l^{-1}$		
AT_f	AT_f	compartment	$nmol \cdot l^{-1}$		
IIa_AT_f	IIa_AT_f	compartment	$nmol \cdot l^{-1}$		
TFPI_Xa_1	TFPI_Xa_1	compartment	$nmol \cdot l^{-1}$		
TFPI_Xa_TF_VIIa_1	TFPI_Xa_TF_VIIa_l	compartment	$nmol \cdot l^{-1}$		
APC_PS_Va_1	APC_PS_Va_1	compartment	$nmol \cdot l^{-1}$		
IXa_AT_f	IXa_AT_f	compartment	$nmol \cdot l^{-1}$		
Xa_AT_f	Xa_AT_f	compartment	$nmol \cdot l^{-1}$		
VII_Xa_l	VII_Xa_l	compartment	$nmol \cdot l^{-1}$		
V_mIIa_l	V_mIIa_l	compartment	$nmol \cdot l^{-1}$		
VIII_mIIa_l	VIII_mIIa_l	compartment	$nmol \cdot l^{-1}$		
TM_1	TM_l	compartment	$nmol \cdot l^{-1}$		
IIa_TM_1	IIa_TM_l	compartment	$nmol \cdot l^{-1}$		
IIa_TM_PC_1	IIa_TM_PC_1	compartment	$nmol \cdot l^{-1}$		
mIIa_AT_l	mIIa_AT_1	compartment	$nmol \cdot l^{-1}$		
XIa_IX_l	XIa_IX_1	compartment	$nmol \cdot l^{-1}$		
LIPID	LIPID	compartment	$nmol \cdot l^{-1}$	Ξ	

5 Parameters

This model contains 110 global parameters.

	Table 4: Properties of each parameter.						
Id	Name	SBO	Value	Unit	Constant		
konII			0.004				
nva			100.000				
koffII			1.000		\checkmark		
konmIIa			0.050		\checkmark		
koffmIIa			0.475		\checkmark		
konV			0.050		\checkmark		
koffV			0.145				
konVa			0.057				
koffVa			0.170				
konVII			0.050				
koffVII			0.660		\checkmark		
konVIIa			0.050				
koffVIIa			0.227				
konVIII			0.050				
koffVIII			0.100				
konVIIIa			0.050				
koffVIIIa			0.335				
konIX			0.050				
koffIX			0.115				
konIXa			0.050				
koffIXa			0.115				
konX			0.010				
koffX			1.900				
konXa			0.029				
koffXa			3.300				
konAPC			0.050				
koffAPC			3.500				
konPS			0.050				
koffPS			0.200				
konVIIIai			0.050				
koffVIIIai	Ĺ		0.335				
konVai			0.057				
koffVai			0.170				
konPC			0.050				
koffPC			11.500				
k1			0.500				
k2			0.005				

Id	Name	SBO	Value	Unit	Constant
k3			0.005		\checkmark
k4			0.005		\checkmark
k5			0.010		\checkmark
k6			2.090		\checkmark
k7			0.340		\checkmark
k8			0.100		\checkmark
k9			32.500		\checkmark
k10			1.500		\checkmark
k75			1.000		
k11			0.050		\checkmark
k12			44.800		\checkmark
k13			15.200		\checkmark
k14			0.100		\checkmark
k15			0.200		\checkmark
k16			1.000		\checkmark
k17			1.000		
k18			0.100		\checkmark
k19			10.700		\checkmark
k20			8.300		\checkmark
k21			0.100		\checkmark
k22			1.000		\checkmark
k23			0.043		
k24			0.100		
k25			2.100		\checkmark
k26			0.023		\checkmark
k27			0.100		\checkmark
k28			6.940		
k29			0.230		
k30			0.100		
k31			13.800		
k32			0.900		
k33			0.100		
k34			100.000		
k35			0.100		
k36			66.000		
k37			13.000		
k38			15.000		
k39			0.050		
k40			44.800		
k41			15.200		
k42			0.100		
k43			10.000		\checkmark

Id	Name	SBO	Value	Unit	Constant
k44			1.430		
k45			0.100		$\overline{\mathbf{Z}}$
k46			1.600		\checkmark
k47			0.400		\checkmark
k48			0.100		\checkmark
k49			1.600		\checkmark
k50			0.400		\checkmark
k51			0.016		\checkmark
k52			$3.3 \cdot 10^{-4}$		\checkmark
k53			0.010		\checkmark
k54			0.001		\checkmark
k55			$4.9 \cdot 10^{-7}$		\checkmark
k56			$2.3 \cdot 10^{-6}$		\checkmark
k57			$6.83 \cdot 10^{-5}$		\checkmark
k58			0.100		\checkmark
k59			6.940		\checkmark
k60			1.035		\checkmark
k61			0.100		\checkmark
k62			13.800		\checkmark
k63			0.900		\checkmark
k64			1.000		\checkmark
k65			0.500		\checkmark
k66			0.100		\checkmark
k67			6.400		\checkmark
k68			3.600		\checkmark
k69			$6.83 \cdot 10^{-6}$		\checkmark
k70			0.100		\checkmark
k71			0.500		\checkmark
k72			0.010		\checkmark
k73			1.417		\checkmark
k74			0.183		

6 Reactions

This model contains 66 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

N⁰	Id	Name	Reaction Equation	SBO
1	LB1	Factor II lipid binding	$II_{-}f + 100 LIPID \longrightarrow II_{-}I$	
2	LB2	Factor mIIa lipid binding	$mIIa_f + 100 LIPID \longrightarrow mIIa_l$	
3	LB3	Factor V lipid binding	$V_f + 100 LIPID \longrightarrow V_l$	
4	LB4	Factor Va lipid binding	$Va_f + 100 LIPID \longrightarrow Va_1$	
5	LB5	Factor VII lipid binding	$VII_f + 100 LIPID \longrightarrow VII_l$	
6	LB6	Factor VIIa lipid binding	$VIIa_f + 100 LIPID \longrightarrow VIIa_l$	
7	LB7	Factor VIII lipid binding	$VIII_f + 100 LIPID \longrightarrow VIII_l$	
8	LB8	Factor VIIIa lipid binding	$VIIIa_f + 100 LIPID \longrightarrow VIIIa_l$	
9	LB9	Factor IX lipid binding	$IX_f + 100 LIPID \longrightarrow IX_l$	
10	LB10	Factor IXa lipid binding	$IXa_f + 100 LIPID \longrightarrow IXa_l$	
11	LB11	Factor X lipid binding	$X_f + 100 LIPID \longrightarrow X_l$	
12	LB12	Factor Xa lipid binding	$Xa_f + 100 LIPID \longrightarrow Xa_l$	
13	LB13	APC lipid binding	$APC_f + 100 LIPID \longrightarrow APC_l$	
14	LB14	PS lipid binding	$PS_f + 100 LIPID \longrightarrow PS_l$	
15	LB15	Factor VIIIai lipid binding	$VIIIai_f + 100 LIPID \longrightarrow VIIIai_l$	
16	LB16	Factor Vai lipid binding	$Vai_f + 100 LIPID \longrightarrow Vai_l$	
17	LB17	PC lipid binding	$PC_f + 100 LIPID \longrightarrow PC_l$	
18	R1	TF ₋ VIIa binding	$VIIa_l + TF_l \longrightarrow TF_VIIa_l$	
19	R2	TF ₋ VII binding	$VII_l + TF_l \longrightarrow TF_VII_l$	
20	R3	IX_TF_VIIa binding	$IX_l + TF_VIIa_l \longrightarrow TF_VIIa_IX_l$	
21	R3b	Factor IX activation	$TF_VIIa_IX_I \longrightarrow TF_VIIa_I + IXa_I$	
22	R4	X_TF_VIIa complex formation	$X_l + TF_VIIa_l \longrightarrow TF_VIIa_X_l$	
23	R4b	Factor X activation	$TF_VIIa_X_1 \longrightarrow TF_VIIa_Xa_1$	

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
24	R4c	Factor Xa release	$TF_VIIa_Xa_1 \longrightarrow Xa_1 + TF_VIIa_1$	
25	R5	Xa_TF_VII binding	$Xa_l + TF_VII_l \longrightarrow TF_VII_Xa_l$	
26	R5b	TF_VII activation	$TF_VII_Xa_l \longrightarrow Xa_l + TF_VIIa_l$	
27	R6	VIIIa_IXa binding	$VIIIa_l + IXa_l \longrightarrow IXa_VIIIa_l$	
28	R7	Va_Xa binding	$Va_l + Xa_l \longrightarrow Xa_Va_l$	
29	R8	X_IXa_VIIIa complex formation	$X_l + IXa_VIIIa_l \longrightarrow IXa_VIIIa_X_l$	
30	R8b	Factor X activation	$IXa_VIIIa_X_l \longrightarrow Xa_l + IXa_VIIIa_l$	
31	R9	V_Xa binding	$Xa_l + V_l \longrightarrow V_Xa_l$	
32	R9b	Factor V activation	$V_Xa_1 \longrightarrow Xa_1 + Va_1$	
33	R10	Xa_VIII binding	$Xa_l + VIII_l \longrightarrow VIII_Xa_l$	
34	R10b	Factor VIII activation	$VIII_Xa_l \longrightarrow Xa_l + VIIIa_l$	
35	R11		$IIa_f + V_l \longrightarrow V_IIa_l$	
36	R11b		$V_IIa_1 \longrightarrow IIa_f + Va_l$	
37	R12		$IIa_f + VIII_l \longrightarrow VIII_IIa_l$	
38	R12b		$VIII_IIa_l \longrightarrow IIa_f + VIIIa_l$	
39	R13		$II_l + Xa_Va_l \longrightarrow Xa_Va_II_l$	
40	R14		$mIIa_l + Xa_Va_l \longrightarrow Xa_Va_mIIa_l$	
41	R15		$Xa_Va_II_I \longrightarrow Xa_Va_mIIa_I$	
42	R15b		$Xa_Va_mIIa_l \longrightarrow IIa_f + Xa_Va_l$	
43	R16		$Xa_l + VII_l \longrightarrow VII_Xa_l$	
44	R16b		$VII_Xa_l \longrightarrow Xa_l + VIIa_l$	
45	R17		$IIa_f + XI_f \longrightarrow XI_IIa_l$	
46	R17b		$XI_IIa_I \longrightarrow IIa_f + XIa_I$	
47	R18		$VIIIa_l + APC_PS_l \longrightarrow APC_PS_VIIIa_l$	
48	R18b		$APC_PS_VIIIa_1 \longrightarrow VIIIai_1 + APC_PS_1$	
49	R19		$Va_l + APC_PS_l \longrightarrow APC_PS_Va_l$	
50	R19b		$APC_PS_Va_1 \longrightarrow Vai_1 + APC_PS_1$	
51	R20		$Xa_f + TFPI_f \longrightarrow TFPI_Xa_l$	
52	R21		$TF_VIIa_l + TFPI_Xa_l \longrightarrow TFPI_Xa_TF_VIIa_l$	

N⁰	Id	Name	Reaction Equation	SBO
53	R22		$AT_f + IXa_f \longrightarrow IXa_AT_f$	
54	R23		$AT_f + Xa_f \longrightarrow Xa_AT_f$	
55	R24		$AT_f + IIa_f \longrightarrow IIa_AT_f$	
56	R25		$mIIa_l + V_l \longrightarrow V_mIIa_l$	
57	R25b		$V_mIIa_l \longrightarrow mIIa_l + Va_l$	
58	R26		$mIIa_l + VIII_l \longrightarrow VIII_mIIa_l$	
59	R26b		$VIII_mIIa_l \longrightarrow mIIa_l + VIIIa_l$	
60	R27		$TM_l + IIa_f \longrightarrow IIa_TM_l$	
61	R28		$PC_l + IIa_TM_l \longrightarrow IIa_TM_PC_l$	
62	R28b		$IIa_TM_PC_l \longrightarrow APC_l + IIa_TM_l$	
63	R29		$AT_f + mIIa_f \longrightarrow mIIa_AT_l$	
64	R30		$PS_I + APC_I \longrightarrow APC_PS_I$	
65	R31		$IX_l + XIa_l \longrightarrow XIa_IX_l$	
66	R31b		$XIa_IX_I \longrightarrow IXa_I + XIa_I$	

6.1 Reaction LB1

This is an irreversible reaction of two reactants forming one product.

Name Factor II lipid binding

Reaction equation

$$II_{-}f + 100 LIPID \longrightarrow II_{-}I$$
 (1)

Reactants

Table 6: Properties of each reactant							
	Id	Name	SBO				
	II_f	II_f					
	LIPID	LIPID					

Product

Table	7: Properties of each product.				
	Id	Name	SBO		
	II_l	II_l			

Kinetic Law

Derived unit contains undeclared units

$$v_{1} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konII} \cdot [\text{II}_\text{f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffII} \cdot [\text{II}_\text{I}]\right)$$
(2)

6.2 Reaction LB2

This is an irreversible reaction of two reactants forming one product.

Name Factor mIIa lipid binding

Reaction equation

$$mIIa_f + 100LIPID \longrightarrow mIIa_l \tag{3}$$

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
mIIa_f	mIIa_f	
LIPID	LIPID	

Table 9: Properties of each product				
	Id	Name	SBO	
	mIIa_l	mIIa_l		

Kinetic Law

Derived unit contains undeclared units

$$v_{2} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konmIIa} \cdot [\text{mIIa}_\text{f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffmIIa} \cdot [\text{mIIa}_\text{l}]\right)$$
(4)

6.3 Reaction LB3

This is an irreversible reaction of two reactants forming one product.

Name Factor V lipid binding

Reaction equation

$$V_f + 100 \text{LIPID} \longrightarrow V_1$$
 (5)

Reactants

Table	10: Properties of each reactant				
	Id	Name	SBO		
	V_f	V_f			
	LIPID	LIPID			

Product

Derived unit contains undeclared units

$$v_{3} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konV} \cdot [\text{V}_\text{f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffV} \cdot [\text{V}_\text{I}]\right)$$
(6)

6.4 Reaction LB4

This is an irreversible reaction of two reactants forming one product.

Name Factor Va lipid binding

Reaction equation

$$Va_f + 100 LIPID \longrightarrow Va_1 \tag{7}$$

Reactants

Table 12: Properties of each reactant				
	Id	Name	SBO	
	Va_f	Va_f		
	LIPID	LIPID		

Product

Table	e 13: Properties of each produce				
	Id	Name	SBO	-	
	Va_l	Va_1			

Kinetic Law

Derived unit contains undeclared units

$$v_{4} = \operatorname{vol}\left(\operatorname{compartment}\right) \cdot \left(\frac{\operatorname{konVa} \cdot [\operatorname{Va_f}] \cdot [\operatorname{LIPID}]}{\operatorname{nva}} - \operatorname{koffVa} \cdot [\operatorname{Va_I}]\right)$$
(8)

Produced by SBML2LATEX

6.5 Reaction LB5

This is an irreversible reaction of two reactants forming one product.

Name Factor VII lipid binding

Reaction equation

$$VII_f + 100 LIPID \longrightarrow VII_1$$
(9)

Reactants

Table	14: Properties of each reactant.			
	Id	Name	SBO	
	VII_f	VII_f		
	LIPID	LIPID		

Product

Table	15: Properties of each product.			
	Id	Name	SBO	
	VII_1	VII_1		

Kinetic Law

Derived unit contains undeclared units

$$v_{5} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konVII} \cdot [\text{VII}_f] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVII} \cdot [\text{VII}_l]\right)$$
(10)

6.6 Reaction LB6

This is an irreversible reaction of two reactants forming one product.

Name Factor VIIa lipid binding

Reaction equation

$$VIIa_f + 100 LIPID \longrightarrow VIIa_l$$
(11)

Reactants

Table 16: Properties of each reactant.

Id	Name	SBO
VIIa_f	VIIa_f	
LIPID	LIPID	

Table	17: Properties of each product.			
_	Id	Name	SBO	
-	VIIa_l	VIIa_1		

Kinetic Law

Derived unit contains undeclared units

$$v_{6} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konVIIa} \cdot [\text{VIIa}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVIIa} \cdot [\text{VIIa}]\right)$$
(12)

6.7 Reaction LB7

This is an irreversible reaction of two reactants forming one product.

Name Factor VIII lipid binding

Reaction equation

$$VIII_f + 100 LIPID \longrightarrow VIII_1$$
(13)

Reactants

Table	e 18: Prope	erties of e	ach read	ctant.
	Id	Name	SBO	
	$VIII_f$	VIII_f		
	LIPID	LIPID		

Product

Table 19: Properties of each product.

Id	Name	SBO
VIII_1	VIII_1	

Derived unit contains undeclared units

$$v_{7} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konVIII} \cdot [\text{VIII}_{f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVIII} \cdot [\text{VIII}_{l}]\right)$$
(14)

6.8 Reaction LB8

This is an irreversible reaction of two reactants forming one product.

Name Factor VIIIa lipid binding

Reaction equation

$$VIIIa_f + 100 LIPID \longrightarrow VIIIa_l$$
(15)

Reactants

Tabl	le 20: Prope	rties of ea	ch reacta	int.
	Id	Name	SBO	
	VIIIa_f	VIIIa_f		
	LIPID	LIPID		

Product

Table 21: Properties of each product.				
	Id	Name	SBO	
	VIIIa_l	VIIIa_l		

Kinetic Law

Derived unit contains undeclared units

$$v_{8} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konVIIIa} \cdot [\text{VIIIa}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVIIIa} \cdot [\text{VIIIa}]\right) \quad (16)$$

6.9 Reaction LB9

This is an irreversible reaction of two reactants forming one product.

Name Factor IX lipid binding

Reaction equation

$$IX_{f} + 100 LIPID \longrightarrow IX_{l}$$
(17)

Reactants

Table	22: Prope	erties of e	each rea	ctant.
	Id	Name	SBO	
	IX_f	IX_f		
	LIPID	LIPID		

Product

Table	23: Prop	perties of	each product.
	Id	Name	SBO
	IX_l	IX_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{9} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konIX} \cdot [\text{IX}_f] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffIX} \cdot [\text{IX}_l]\right)$$
(18)

6.10 Reaction LB10

This is an irreversible reaction of two reactants forming one product.

Name Factor IXa lipid binding

Reaction equation

$$IXa_f + 100 LIPID \longrightarrow IXa_l \tag{19}$$

Reactants

Produced by SBML2LATEX

Table 24: Properties of each reactant.

Id	Name	SBO
IXa_f	IXa_f	
LIPID	LIPID	

Table 25: Properties of each product.				
	Id	Name	SBO	
	IXa_l	IXa_l		

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konIXa} \cdot [\text{IXa}_{\text{f}}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffIXa} \cdot [\text{IXa}_{\text{I}}]\right)$$
(20)

6.11 Reaction LB11

This is an irreversible reaction of two reactants forming one product.

Name Factor X lipid binding

Reaction equation

$$X_{-}f + 100 LIPID \longrightarrow X_{-}1$$
(21)

Reactants

Table	26: Prop	erties of e	each rea	ctant.
	Id	Name	SBO	
	X_f	X_f		
	LIPID	LIPID		

Product

Derived unit contains undeclared units

$$v_{11} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{kon}X \cdot [X_{-f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koff}X \cdot [X_{-l}]\right)$$
(22)

6.12 Reaction LB12

This is an irreversible reaction of two reactants forming one product.

Name Factor Xa lipid binding

Reaction equation

$$Xa_f + 100 LIPID \longrightarrow Xa_l \tag{23}$$

Reactants

Table	28: Prope	erties of e	each rea	ctant.
	Id	Name	SBO	
	Xa_f	Xa_f		
	LIPID	LIPID		

Product

Table 2	e 29: Properties of each product.				
	Id	Name	SBO		
	Xa_l	Xa_l			

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \frac{\text{konXa} \cdot [\text{Xa}_\text{f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffXa} \cdot [\text{Xa}_\text{l}]$$
(24)

Produced by SBML2LATEX

6.13 Reaction LB13

This is an irreversible reaction of two reactants forming one product.

Name APC lipid binding

Reaction equation

$$APC_f + 100LIPID \longrightarrow APC_l$$
 (25)

Reactants

Table	30: Prop	erties of e	each rea	ctant.
	Id	Name	SBO	
	APC_f	APC_f		
	LIPID	LIPID		

Product

Table	31: Prop	erties of	each product.	•
	Id	Name	SBO	
	APC_1	APC_1		

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konAPC} \cdot [\text{APC}_{-f}] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffAPC} \cdot [\text{APC}_{-I}]\right) \quad (26)$$

6.14 Reaction LB14

This is an irreversible reaction of two reactants forming one product.

Name PS lipid binding

Reaction equation

$$PS_f + 100 LIPID \longrightarrow PS_l$$
(27)

Reactants

Table 32: Properties of each reactant.

Id	Name	SBO
PS_f	PS_f	
LIPID	LIPID	

Table 33: Properties of each product.					
	Id	Name	SBO		
	PS_1	PS_1			

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konPS} \cdot [\text{PS}_f] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffPS} \cdot [\text{PS}_l]\right)$$
(28)

6.15 Reaction LB15

This is an irreversible reaction of two reactants forming one product.

Name Factor VIIIai lipid binding

Reaction equation

$$VIIIai_f + 100 LIPID \longrightarrow VIIIai_l$$
(29)

Reactants

Table 34: Prope	rties of eac	h reacta	ant.
Id	Name	SBO	
VIIIai_f	VIIIai_f		•
LIPID	LIPID		

Product

Table 35: Properties of each product.

Id	Name	SBO
VIIIai_l	VIIIai_l	

Derived unit contains undeclared units

$$v_{15} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konVIIIai} \cdot [\text{VIIIai}_f] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVIIIai} \cdot [\text{VIIIai}_l]\right) \quad (30)$$

6.16 Reaction LB16

This is an irreversible reaction of two reactants forming one product.

Name Factor Vai lipid binding

Reaction equation

$$Vai_f + 100 LIPID \longrightarrow Vai_l$$
(31)

Reactants

Table <u>36</u> : Properties of each reactant.				
	Id	Name	SBO	
	Vai_f	Vai_f		
	LIPID	LIPID		

Product

Table	e 37: Properties of each produc			
	Id	Name	SBO	
	Vai_l	Vai_1		

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konVai} \cdot [\text{Vai}_f] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffVai} \cdot [\text{Vai}_l]\right)$$
(32)

6.17 Reaction LB17

This is an irreversible reaction of two reactants forming one product.

Name PC lipid binding

Reaction equation

$$PC_{-}f + 100 LIPID \longrightarrow PC_{-}l$$
(33)

Reactants

Table	38: Prop	erties of e	each rea	ctant.
	Id	Name	SBO	
	PC_f	PC_f		
	LIPID	LIPID		

Product

Table 39: Properties of each product.						
	Id	Name	SBO			
	PC_1	PC_1				

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}(\text{compartment}) \cdot \left(\frac{\text{konPC} \cdot [\text{PC}_f] \cdot [\text{LIPID}]}{\text{nva}} - \text{koffPC} \cdot [\text{PC}_I]\right)$$
(34)

6.18 Reaction R1

This is an irreversible reaction of two reactants forming one product.

Name TF_VIIa binding

Reaction equation

$$VIIa_{l} + TF_{l} \longrightarrow TF_{VIIa_{l}}$$

$$(35)$$

Reactants

Table 40: Properties of each reactant.

Id	Name	SBO
VIIa_l	VIIa_l	
TF_1	TF_1	

Table 41: Properties of each product.				
	Id	Name	SBO	
	TF_VIIa_1	TF_VIIa_l		

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k1} \cdot [\text{TF} \bot] \cdot [\text{VIIa} \bot] - \text{k2} \cdot [\text{TF}_{VIIa} \bot]\right)$$
(36)

6.19 Reaction R2

This is an irreversible reaction of two reactants forming one product.

Name TF_VII binding

Reaction equation

$$VII_l + TF_l \longrightarrow TF_VII_l$$
(37)

Reactants

Table	42: Properties of each reactant.				
	Id	Name	SBO		
	VII_l	VII_l			
	TF_1	TF_1			

Product

Table 43:	Properties	of each	product.
-----------	------------	---------	----------

Id	Name	SBO
TF_VII_1	TF_VII_l	

Derived unit contains undeclared units

 $v_{19} = \text{vol}(\text{compartment}) \cdot (k3 \cdot [\text{TF}_l] \cdot [\text{VII}_l] - k4 \cdot [\text{TF}_\text{VII}_l])$ (38)

6.20 Reaction R3

This is an irreversible reaction of two reactants forming one product.

Name IX_TF_VIIa binding

Reaction equation

$$IX_{l} + TF_{VIIa_{l}} \longrightarrow TF_{VIIa_{I}} X_{l}$$
(39)

Reactants

Table 44: Properties of each reactant.		
Id	Name	SBO
IX_1	IX_1	
TF_VIIa_]	TF_VIIa_1	

Product

Table 45: Properties of each product.		
Id	Name	SBO
TF_VIIa_IX_1	TF_VIIa_IX_1	

Kinetic Law

Derived unit contains undeclared units

 $v_{20} = \text{vol}(\text{compartment}) \cdot (\text{k5} \cdot [\text{TF}_V\text{IIa}_l] \cdot [\text{IX}_l] - \text{k6} \cdot [\text{TF}_V\text{IIa}_l\text{X}_l])$ (40)

6.21 Reaction R3b

This is an irreversible reaction of one reactant forming two products.

Name Factor IX activation

Reaction equation

$$TF_VIIa_IX_I \longrightarrow TF_VIIa_I + IXa_I$$
(41)

Reactant

Table 46: Properties of each reactant.		
Id	Name	SBO
TF_VIIa_IX_1	TF_VIIa_IX_l	

Products

Table 47: Properties of each product.			
	Id	Name	SBO
	TF_VIIa_1	TF_VIIa_l	
	IXa_l	IXa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}\left(\text{compartment}\right) \cdot k7 \cdot \left[\text{TF}_{-}\text{VIIa}_{-}\text{IX}_{-}\text{I}\right]$$
(42)

6.22 Reaction R4

This is an irreversible reaction of two reactants forming one product.

Name X_TF_VIIa complex formation

Reaction equation

$$X_{-}l + TF_{-}VIIa_{-}l \longrightarrow TF_{-}VIIa_{-}X_{-}l$$
(43)

Reactants

Table 48: Properties of each reactant.

Id	Name	SBO
X_1	X_l	
TF_VIIa_1	TF_VIIa_l	

Table 49: Properties of each product.		
Id	Name	SBO
TF_VIIa_X_1	TF_VIIa_X_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{22} = \text{vol}(\text{compartment}) \cdot (\text{k8} \cdot [\text{TF}_V\text{IIa}_l] \cdot [\text{X}_l] - \text{k9} \cdot [\text{TF}_V\text{IIa}_X_l])$$
(44)

6.23 Reaction R4b

This is an irreversible reaction of one reactant forming one product.

Name Factor X activation

Reaction equation

$$TF_VIIa_X_{-}I \longrightarrow TF_VIIa_Xa_{-}I \tag{45}$$

Reactant

Table 50: Properties of each reactant.		
Id	Name	SBO
TF_VIIa_X_l	TF_VIIa_X_1	

Product

Table 51: Properties of each product.		
Id	Name	SBO
TF_VIIa_Xa_1	TF_VIIa_Xa_l	

Id	Name	SBO

Derived unit contains undeclared units

$$v_{23} = \text{vol}(\text{compartment}) \cdot \text{k10} \cdot [\text{TF}_V\text{IIa}_X_l]$$
(46)

6.24 Reaction R4c

This is an irreversible reaction of one reactant forming two products.

Name Factor Xa release

Reaction equation

$$TF_VIIa_Xa_I \longrightarrow Xa_I + TF_VIIa_I$$
(47)

Reactant

Table 52: Properties of each reactant.		
Id	Name	SBO
TF_VIIa_Xa_1	TF_VIIa_Xa_l	

Products

Id	Name	SBO
Xa_l	Xa_l	
TF_VIIa_1	TF_VIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{24} = \text{vol}(\text{compartment}) \cdot \text{k75} \cdot [\text{TF}_V\text{IIa}_X\text{a}_l]$$
(48)

6.25 Reaction R5

This is an irreversible reaction of two reactants forming one product.

Name Xa_TF_VII binding

Reaction equation

$$Xa_l + TF_VII_l \longrightarrow TF_VII_Xa_l$$
(49)

Reactants

Ta	Table 54: Properties of each reactant.			
	Id	Name	SBO	
	Xa_l	Xa_l		
	TF_VII_1	TF_VII_1		

Product

Table 55: Properties of each product.			
Id Name SB			
TF_VII_Xa_1	TF_VII_Xa_l		

Kinetic Law

Derived unit contains undeclared units

 $v_{25} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k11} \cdot \left[\text{TF}_{\text{VII}}\right] \cdot \left[\text{Xa}_{\text{I}}\right] - \text{k12} \cdot \left[\text{TF}_{\text{VII}}\right] \times \left[\text{Xa}_{\text{I}}\right]\right)$ (50)

6.26 Reaction R5b

This is an irreversible reaction of one reactant forming two products.

Name TF_VII activation

Reaction equation

$$TF_VII_Xa_1 \longrightarrow Xa_1 + TF_VIIa_1$$
(51)

Reactant

Table 56: Properties of each reactant.			
Id Name SBO			
TF_VII_Xa_1	TF_VII_Xa_l		

Т	able 57: Prope	erties of each	product.
	Id	Name	SBO
	Xa_l	Xa_l	
	TF_VIIa_1	TF_VIIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{26} = \text{vol}(\text{compartment}) \cdot \text{k13} \cdot [\text{TF}_\text{VII}_\text{Xa_l}]$$
(52)

6.27 Reaction R6

This is an irreversible reaction of two reactants forming one product.

Name VIIIa_IXa binding

Reaction equation

$$VIIIa_l + IXa_l \longrightarrow IXa_VIIIa_l$$
(53)

Reactants

Table 58: Prope	rties of ea	ch react	ant.
Id	Name	SBO	
VIIIa_l	VIIIa_l		
IXa_1	IXa_l		

Product

Table 59: Properties of each product.			
Id	Name	SBO	
IXa_VIIIa_1	IXa_VIIIa_l		

Kinetic Law

Derived unit contains undeclared units

$$v_{27} = \text{vol}(\text{compartment}) \cdot (\text{k14} \cdot [\text{IXa_l}] \cdot [\text{VIIIa_l}] - \text{k15} \cdot [\text{IXa_VIIIa_l}])$$
(54)

6.28 Reaction R7

This is an irreversible reaction of two reactants forming one product.

Name Va_Xa binding

Reaction equation

$$Va_{l} + Xa_{l} \longrightarrow Xa_{v} Va_{l}$$
(55)

Reactants

Table (50: Prop	perties of	each re	actant.
	Id	Name	SBO	
	Va_l	Va_1		
	Xa_l	Xa_l		

Product

Table 61: Properties of each product				
	Id	Name	SBO	
	Xa_Va_l	Xa_Va_l		

Kinetic Law

Derived unit contains undeclared units

$$v_{28} = \text{vol}(\text{compartment}) \cdot (k16 \cdot [Xa_l] \cdot [Va_l] - k17 \cdot [Xa_Va_l])$$
(56)

6.29 Reaction R8

This is an irreversible reaction of two reactants forming one product.

Name X_IXa_VIIIa complex formation

Reaction equation

$$X_{-}I + IXa_{-}VIIIa_{-}I \longrightarrow IXa_{-}VIIIa_{-}X_{-}I$$
(57)

Reactants

Produced by SBML2ATEX

Table 62: Properties of each reactant.

Id	Name	SBO
X_l	X_l	
IXa_VIIIa_l	IXa_VIIIa_l	

Table 63: Properties of each product.			
Id Name SBO			
IXa_VIIIa_X_1	IXa_VIIIa_X_1		

Kinetic Law

Derived unit contains undeclared units

$$v_{29} = \text{vol}(\text{compartment}) \cdot (k18 \cdot [\text{IXa}_V\text{IIIa}_{-}] \cdot [\text{X}_{-}] - k19 \cdot [\text{IXa}_V\text{IIIa}_{-}\text{X}_{-}])$$
(58)

6.30 Reaction R8b

This is an irreversible reaction of one reactant forming two products.

Name Factor X activation

Reaction equation

$$IXa_VIIIa_X_l \longrightarrow Xa_l + IXa_VIIIa_l$$
(59)

Reactant

Table 64: Properties of each reactant.			
Id	Name	SBO	
IXa_VIIIa_X_1	IXa_VIIIa_X_l		

Products

Table 65: Properties of each product.			
Id	Name	SBO	
Xa_l	Xa_l		

Id	Name	SBO
IXa_VIIIa_l	IXa_VIIIa_l	

Derived unit contains undeclared units

$$v_{30} = \text{vol}(\text{compartment}) \cdot \text{k20} \cdot [\text{IXa}_\text{VIIIa}_\text{X}_\text{I}]$$
(60)

6.31 Reaction R9

This is an irreversible reaction of two reactants forming one product.

Name V_Xa binding

Reaction equation

$$Xa_l + V_l \longrightarrow V_Xa_l$$
(61)

Reactants

Table 6	66: Prop	perties of	each re	actant.
,	Id	Name	SBO	
	Xa_l	Xa_l		
	V_l	V_1		

Product

Table	e 67: Prop	erties of e	ach product.	
	Id	Name	SBO	
	V_Xa_l	V_Xa_l		

Kinetic Law

Derived unit contains undeclared units

$$v_{31} = \text{vol}(\text{compartment}) \cdot (k21 \cdot [V_{-}] \cdot [Xa_{-}] - k22 \cdot [V_{-}Xa_{-}])$$
(62)

6.32 Reaction R9b

This is an irreversible reaction of one reactant forming two products.

Produced by SBML2ATEX

Name Factor V activation

Reaction equation

$$V_Xa_I \longrightarrow Xa_I + Va_I \tag{63}$$

Reactant

Table	e 68: Prop	erties of e	ach react	ant.
	Id	Name	SBO	
	V_Xa_1	V_Xa_l		

Products

Table	69: Prop	perties of	each pi	oduct.
	Id	Name	SBO	
	Xa_l	Xa_l		
	Va_l	Va_1		

Kinetic Law

Derived unit contains undeclared units

$$v_{32} = \text{vol}(\text{compartment}) \cdot \text{k23} \cdot [\text{V}_X\text{a.l}]$$
(64)

6.33 Reaction R10

This is an irreversible reaction of two reactants forming one product.

Name Xa_VIII binding

Reaction equation

$$Xa_{-}l + VIII_{-}l \longrightarrow VIII_{-}Xa_{-}l$$
(65)

Reactants

Table	e 70: Properties of each reactan						tant.
	Id		Name		SBO	5	
	Xa	_1	Xa_l				
Id	Name	SBO					
--------	--------	-----					
VIII_1	VIII_1						

Product

Table 71: Properties of each product.

Id	Name	SBO
VIII_Xa_l	VIII_Xa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{33} = k24 \cdot [\text{VIII_l}] \cdot [\text{Xa_l}] - k25 \cdot [\text{VIII_Xa_l}]$$
(66)

6.34 Reaction R10b

This is an irreversible reaction of one reactant forming two products.

Name Factor VIII activation

Reaction equation

$$VIII_Xa_I \longrightarrow Xa_I + VIIIa_I$$
(67)

Reactant

Table 72: Pro	operties of eac	ch reactant.
Id	Name	SBO
VIII_Xa_	1 VIII_Xa_	1

Products

Tabl	e 73: Prope	rties of ea	ch product.
	Id	Name	SBO
	Xa_l	Xa_l	
	VIIIa_l	VIIIa_1	

Produced by SBML2ATEX

Derived unit contains undeclared units

$$v_{34} = \text{vol}(\text{compartment}) \cdot \text{k26} \cdot [\text{VIII}_X\text{a_l}]$$
(68)

6.35 Reaction R11

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$IIa_f + V_{-}I \longrightarrow V_{-}IIa_{-}I \tag{69}$$

Reactants

Table	74: Prope	erties of e	each reactar	ıt.
	Id	Name	SBO	
	IIa_f	IIa_f		
	V_l	V_1		

Product

Tabl	e 75: Prope	erties of ea	ch product.
	Id	Name	SBO
	V_IIa_l	V_IIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{35} = \text{vol}(\text{compartment}) \cdot (k27 \cdot [V_{-}] \cdot [\text{IIa}_{-}f] - k28 \cdot [V_{-}\text{IIa}_{-}])$$
(70)

6.36 Reaction R11b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$V_IIa_I \longrightarrow IIa_f + Va_I$$
(71)

Produced by SBML2ATEX

Reactant

	Table 76:	Properties	of each	reactant.
--	-----------	------------	---------	-----------

Id	Name	SBO
V_IIa_l	V_IIa_l	

Products

Table	77: Prop	erties of	each pro	oduct.
	Id	Name	SBO	
	IIa_f	IIa_f		
	Va_l	Va_l		

Kinetic Law

Derived unit contains undeclared units

$$v_{36} = \text{vol}(\text{compartment}) \cdot \text{k29} \cdot [\text{V_IIa_I}]$$
(72)

6.37 Reaction R12

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$IIa_f + VIII_I \longrightarrow VIII_IIa_I \tag{73}$$

Reactants

Table	78: Prope	rties of e	each reactant.
	Id	Name	SBO
	IIa_f	IIa_f	
	VIII_1	VIII_1	

Product

Table 79:	Properties	of each	product.
-----------	------------	---------	----------

Id	Name	SBO
VIII_IIa_l	VIII_IIa_1	

Derived unit contains undeclared units

 $v_{37} = \text{vol}(\text{compartment}) \cdot (\text{k}30 \cdot [\text{VIII_I}] \cdot [\text{IIa_f}] - \text{k}31 \cdot [\text{VIII_IIa_I}])$ (74)

6.38 Reaction R12b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$VIII_IIa_I \longrightarrow IIa_f + VIIIa_I$$
(75)

Reactant

Table 80: Properties of each reactant.				
	Id	Name	SBO	
	VIII_IIa_l	VIII_IIa_l		

Products

Table 81: Properties of each product.			
Id	Name	SBO	
IIa_f	IIa_f		
VIIIa_l	VIIIa_l		

Kinetic Law

Derived unit contains undeclared units

$$v_{38} = \text{vol}\left(\text{compartment}\right) \cdot \text{k}32 \cdot \left[\text{VIII_IIa_I}\right]$$
(76)

6.39 Reaction R13

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$II_l + Xa_Va_l \longrightarrow Xa_Va_II_l$$
(77)

Reactants

Tab	le 82: Prop	erties of ea	ch reacta	ant.
	Id	Name	SBO	
	II_l	II_l		
	Xa_Va_l	Xa_Va_l		

Product

]	Table 83: Properties of each product.				
	Id	Name	SBO		
	Xa_Va_II_l	Xa_Va_II_1			

Kinetic Law

Derived unit contains undeclared units

 $v_{39} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k33} \cdot \left[\text{Xa}_{\text{Va}}\text{l}\right] \cdot \left[\text{II}_{\text{l}}\right] - \text{k34} \cdot \left[\text{Xa}_{\text{Va}}\text{II}_{\text{l}}\right]\right)$ (78)

6.40 Reaction R14

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$mIIa_l + Xa_Va_l \longrightarrow Xa_Va_mIIa_l$$
(79)

Reactants

Tab	Table 84: Properties of each reactant.				
	Id	Name	SBO		
	mIIa_l	mIIa_l			
	Xa_Va_l	Xa_Va_l			

Product

Table 85: Properties of each product.		
Id	Name	SBO
Xa_Va_mIIa_l	Xa_Va_mIIa_l	

Kinetic Law

Derived unit contains undeclared units

 $v_{40} = \text{vol}(\text{compartment}) \cdot (k35 \cdot [Xa_Va_l] \cdot [mIIa_l] - k36 \cdot [Xa_Va_mIIa_l])$ (80)

6.41 Reaction R15

This is an irreversible reaction of one reactant forming one product.

Reaction equation

$$Xa_Va_II_I \longrightarrow Xa_Va_mIIa_I$$
(81)

Reactant

Table 86: Properties of each reactant.			
Id	Name	SBO	
Xa_Va_	II_l Xa_Va_II	[_]	

Product

Table 87: Properties of each product.			
Id	Name	SBO	
Xa_Va_mIIa_1	Xa_Va_mIIa_l		

Kinetic Law

Derived unit contains undeclared units

 $v_{41} = \text{vol}(\text{compartment}) \cdot \text{k37} \cdot [\text{Xa}_\text{A}_\text{II}]$

(82)

6.42 Reaction R15b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$Xa_Va_mIIa_l \longrightarrow IIa_f + Xa_Va_l$$
(83)

Reactant

Table 88: Properties of each reactant.			
Id	Name	SBO	
Xa_Va_mIIa_l	Xa_Va_mIIa_l		

Products

Tab	le 89: Pro	perties of e	ach product
	Id	Name	SBO
	IIa_f	IIa_f	

Xa_Va_l Xa_Va_l

Kinetic Law

Derived unit contains undeclared units

$$v_{42} = \text{vol}(\text{compartment}) \cdot \text{k38} \cdot [\text{Xa}_\text{A}_\text{mIIa_l}]$$
(84)

6.43 Reaction R16

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Xa_l + VII_l \longrightarrow VII_Xa_l \tag{85}$$

Reactants

Table 90: Properties of each reactant.				
	Id	Name	SBO	
	Xa_l	Xa_l		

Produced by SBML2ATEX

Id	Name	SBO
VII_1	VII_l	

Product

Table 91: Properties of each product.

Id	Name	SBO
VII_Xa_l	VII_Xa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{43} = \text{vol}(\text{compartment}) \cdot (k39 \cdot [\text{VII}_l] \cdot [\text{Xa}_l] - k40 \cdot [\text{VII}_\text{Xa}_l])$$
(86)

6.44 Reaction R16b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$VII_Xa_I \longrightarrow Xa_I + VIIa_I$$
(87)

Reactant

Ta	ble 92: Prope	erties of eac	h reactant.
	Id	Name	SBO
	VII_Xa_l	VII_Xa_l	

Products

Table	93: Prope	erties of e	each pro	duct.
	Id	Name	SBO	
	Xa_l	Xa_l		
	VIIa_l	VIIa_1		

Derived unit contains undeclared units

$$v_{44} = \text{vol}(\text{compartment}) \cdot \text{k41} \cdot [\text{VII}_X\text{a.l}]$$
(88)

6.45 Reaction R17

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$IIa_f + XI_f \longrightarrow XI_IIa_1 \tag{89}$$

Reactants

Table	94: Prop	erties of	each read	ctant.
	Id	Name	SBO	
	IIa_f	IIa_f		
	XI_f	XI_f		

Product

Tał	ole 95: Prope	rties of eac	ch product.
	Id	Name	SBO
	XI_IIa_l	XI_IIa_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{45} = \text{vol}(\text{compartment}) \cdot (\text{k42} \cdot [\text{XI}_{\text{f}}] \cdot [\text{IIa}_{\text{f}}] - \text{k43} \cdot [\text{XI}_{\text{IIa}_{\text{l}}}])$$
(90)

6.46 Reaction R17b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$XI_IIa_I \longrightarrow IIa_f + XIa_I$$
(91)

Produced by SBML2ATEX

Reactant

	Table 96:	Properties	of each	reactant
--	-----------	------------	---------	----------

Id	Name	SBO
XI_IIa_l	XI_IIa_l	

Products

Table	97: Prop	erties of	each pr	oduct.
	Id	Name	SBO	
·	IIa_f	IIa_f		
	XIa_l	XIa_l		

Kinetic Law

Derived unit contains undeclared units

 $v_{46} = \text{vol} \left(\text{compartment} \right) \cdot \text{k44} \cdot \left[\text{XI_IIa_I} \right]$ (92)

6.47 Reaction R18

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$VIIIa_I + APC_PS_I \longrightarrow APC_PS_VIIIa_I$$
(93)

Reactants

Τa	ble 98: Prop	erties of each	n reactant.
	Id	Name	SBO
	VIIIa_l	VIIIa_l	
	APC_PS_1	APC_PS_1	

Product

Table 99: Propert	es of each product.	
-------------------	---------------------	--

Id	Name	SBO
APC_PS_VIIIa_1	APC_PS_VIIIa_1	

Derived unit contains undeclared units

 $v_{47} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k45} \cdot \left[\text{APC_PS_l}\right] \cdot \left[\text{VIIIa_l}\right] - \text{k46} \cdot \left[\text{APC_PS_VIIIa_l}\right]\right) \quad (94)$

6.48 Reaction R18b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APC_PS_VIIIa_1 \longrightarrow VIIIai_1 + APC_PS_1$$
(95)

Reactant

Table 100: Prop	perties of each react	ant.
Id	Name	SBO
APC_PS_VIIIa_1	APC_PS_VIIIa_1	

Products

Та	ble 101: Prop	perties of eac	h product.
	Id	Name	SBO
	VIIIai_l	VIIIai_l	
	APC_PS_1	APC_PS_1	

Kinetic Law

Derived unit contains undeclared units

$$v_{48} = \text{vol}(\text{compartment}) \cdot \text{k47} \cdot [\text{APC}_\text{PS}_\text{VIIIa}_\text{I}]$$
(96)

6.49 Reaction R19

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Va_l + APC_PS_l \longrightarrow APC_PS_Va_l$$
(97)

Reactants

Ta	ble 102: Proj	perties of eac	h reactant.
	Id	Name	SBO
	Va_l	Va_l	
	APC_PS_1	APC_PS_1	

Product

Table 103: Properties of each product.				
Id	Name	SBO		
APC_PS_Va_1	APC_PS_Va_1			

Kinetic Law

Derived unit contains undeclared units

 $v_{49} = \text{vol}(\text{compartment}) \cdot (\text{k48} \cdot [\text{APC}_{PS}] \cdot [\text{Va.l}] - \text{k49} \cdot [\text{APC}_{PS}] \cdot (\text{Va.l}])$ (98)

6.50 Reaction R19b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$APC_PS_Va_1 \longrightarrow Vai_1 + APC_PS_1$$
(99)

Reactant

Table 104: Properties of each reactant.				
Id	Name	SBO		
APC_PS_Va_1	APC_PS_Va_1			

Products

Table 105: Properties of each product.

Id	Name	SBO
Vai_l	Vai_l	
APC_PS_1	APC_PS_1	

Derived unit contains undeclared units

$$v_{50} = \text{vol}(\text{compartment}) \cdot \text{k50} \cdot [\text{APC}_{\text{PS}}\text{Va}_{\text{l}}]$$
(100)

6.51 Reaction R20

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$Xa_f + TFPI_f \longrightarrow TFPI_Xa_1 \tag{101}$$

Reactants

Table	106: Prop	erties of e	each rea	ctant.
	Id	Name	SBO	
	Xa_f	Xa_f		
	$TFPI_f$	TFPI_f		

Product

Та	able 107: Prop	perties of each	product.
	Id	Name	SBO
	TFPI_Xa_l	TFPI_Xa_l	

Kinetic Law

Derived unit contains undeclared units

 $v_{51} = \text{vol}(\text{compartment}) \cdot (\text{k51} \cdot [\text{TFPL}f] \cdot [\text{Xa}f] - \text{k52} \cdot [\text{TFPL}Xal])$ (102)

6.52 Reaction R21

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$TF_VIIa_l + TFPI_Xa_l \longrightarrow TFPI_Xa_TF_VIIa_l$$
(103)

Reactants

Ta	able 108: Prop	perties of each	reactant.
	Id	Name	SBO
	TF_VIIa_1	TF_VIIa_l	
	TFPI_Xa_l	TFPI_Xa_l	

Product

Table 109: Prop	perties of each product.	
Id	Name	SBO
TFPI_Xa_TF_VIIa_1	TFPI_Xa_TF_VIIa_l	

Kinetic Law

Derived unit contains undeclared units

 $v_{52} = vol(compartment) \cdot (k53 \cdot [TFPI_Xa_l] \cdot [TF_VIIa_l] - k54 \cdot [TFPI_Xa_TF_VIIa_l]) \quad (104)$

6.53 Reaction R22

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AT_f + IXa_f \longrightarrow IXa_AT_f$$
(105)

Reactants

Table	110: Properties of each reactant.			
	Id	Name	SBO	
	AT_f	AT_f		

Id	Name	SBO
IXa_f	IXa_f	

Product

	Table	111:	Properties	of	each	product	•
--	-------	------	------------	----	------	---------	---

Id	Name	SBO
IXa_AT_f	IXa_AT_f	

Kinetic Law

Derived unit contains undeclared units

$$v_{53} = \text{vol}(\text{compartment}) \cdot \text{k55} \cdot [\text{IXa}_f] \cdot [\text{AT}_f]$$
(106)

6.54 Reaction R23

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AT_f + Xa_f \longrightarrow Xa_AT_f$$
(107)

Reactants

Table 112: Properties of each reactant.				
	Id	Name	SBO	
	AT_f	$AT_{-}f$		
	Xa_f	Xa_f		

Product

Table 113: Properties of each produc			
	Id	Name	SBO
	Xa_AT_f	Xa_AT_f	

Derived unit contains undeclared units

$$v_{54} = \text{vol}(\text{compartment}) \cdot \text{k56} \cdot [\text{Xa_f}] \cdot [\text{AT_f}]$$
(108)

6.55 Reaction R24

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AT_f + IIa_f \longrightarrow IIa_AT_f$$
(109)

Reactants

Table 114: Properties of each reactant.				
	Id	Name	SBO	
	AT_f	AT_f		
	IIa_f	IIa_f		

Product

Table 115: Properties of each product			
	Id	Name	SBO
	IIa_AT_f	IIa_AT_f	

Kinetic Law

Derived unit contains undeclared units

$$v_{55} = \text{vol}(\text{compartment}) \cdot \text{k57} \cdot [\text{IIa_f}] \cdot [\text{AT_f}]$$
(110)

6.56 Reaction R25

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$mIIa_l + V_l \longrightarrow V_mIIa_l$$
(111)

Reactants

Id	Name	SBO
mIIa_l	mIIa_l	
V_l	V_l	

Product

Tał	ole 117: Prop	perties of each	ch product	•
	Id	Name	SBO	
	V_mIIa_l	V_mIIa_l		

Kinetic Law

Derived unit contains undeclared units

$$v_{56} = \text{vol}(\text{compartment}) \cdot (\text{k58} \cdot [\text{V}_\text{l}] \cdot [\text{mIIa}_\text{l}] - \text{k59} \cdot [\text{V}_\text{mIIa}_\text{l}])$$
(112)

6.57 Reaction R25b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$V_mIIa_l \longrightarrow mIIa_l + Va_l \tag{113}$$

Reactant

Tab	ole 118: Prop	perties of each	ch reactant.
	Id	Name	SBO
	V_mIIa_l	V_mIIa_l	

Products

Table 119: Properties of each product.

Id	Name	SBO
mIIa_l	mIIa_l	
Va_l	Va_l	

Derived unit contains undeclared units

$$v_{57} = \text{vol}(\text{compartment}) \cdot \text{k60} \cdot [\text{V_mIIa_l}]$$
 (114)

6.58 Reaction R26

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$mIIa_l + VIII_l \longrightarrow VIII_mIIa_l$$
(115)

Reactants

Table	120: Prop	erties of e	each rea	ctant.
	Id	Name	SBO	
	mIIa_l	mIIa_l		
	VIII_1	VIII_1		

Product

Table 121: Properties of each product.			
Id	Name	SBO	
VIII_mIIa_l	VIII_mIIa_l		

Kinetic Law

Derived unit contains undeclared units

 $v_{58} = vol(compartment) \cdot (k61 \cdot [VIII_l] \cdot [mIIa_l] - k62 \cdot [VIII_mIIa_l])$ (116)

6.59 Reaction R26b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$VIII_mIIa_l \longrightarrow mIIa_l + VIIIa_l$$
(117)

Reactant

Table 122: Properties of each reactant.			
Id	Name	SBO	
VIII_mIIa_l	VIII_mIIa_l		

Products

Table	e 123: Prop	erties of e	ach pro	duct.
	Id	Name	SBO	
	mIIa_l	mIIa_l		
	VIIIa_l	VIIIa_l		

Kinetic Law

Derived unit contains undeclared units

$$v_{59} = \text{vol}(\text{compartment}) \cdot \text{k63} \cdot [\text{VIII}_m\text{IIa}_l]$$
 (118)

6.60 Reaction R27

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$TM_l + IIa_f \longrightarrow IIa_TM_l$$
(119)

Reactants

Table 124: Properties of each reactant.				
	Id	Name	SBO	
	TM_1	TM_l		

Produced by SBML2ATEX

Id	Name	SBO
IIa_f	IIa_f	

Product

Table	125:	Proper	ties of	each	product.

Id	Name	SBO
IIa_TM_1	IIa_TM_l	

Kinetic Law

Derived unit contains undeclared units

$$v_{60} = \text{vol}(\text{compartment}) \cdot (\text{k64} \cdot [\text{IIa_f}] \cdot [\text{TM_I}] - \text{k65} \cdot [\text{IIa_TM_I}])$$
(120)

6.61 Reaction R28

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$PC_{\perp} + IIa_{\perp}TM_{\perp} \longrightarrow IIa_{\perp}TM_{\perp}PC_{\perp}$$
(121)

Reactants

Tał	Table 126: Properties of each reactant.				
	Id	Name	SBO		
	PC_1	PC_1			
	IIa_TM_1	IIa_TM_l			

Product

Table 127: Properties of each product.			
Id	Name	SBO	
IIa_TM_PC_1	IIa_TM_PC_1		

Derived unit contains undeclared units

$$v_{61} = \text{vol}(\text{compartment}) \cdot (\text{k66} \cdot [\text{IIa}_\text{TM}_\text{l}] \cdot [\text{PC}_\text{l}] - \text{k67} \cdot [\text{IIa}_\text{TM}_\text{PC}_\text{l}])$$
(122)

6.62 Reaction R28b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$IIa_TM_PC_1 \longrightarrow APC_1 + IIa_TM_1$$
(123)

Reactant

Table 128: Properties of each reactant.			
Id Name SBO			
IIa_TM_PC_1	IIa_TM_PC_1		

Products

Table 129: Properties of each product.				
Id	Name	SBO		
APC_1	APC_1			
IIa_TM_l	IIa_TM_l			

Kinetic Law

Derived unit contains undeclared units

$$v_{62} = \text{vol}(\text{compartment}) \cdot \text{k68} \cdot [\text{IIa}_\text{TM}_\text{PC}_\text{-1}]$$
(124)

6.63 Reaction R29

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$AT_f + mIIa_f \longrightarrow mIIa_AT_l$$
(125)

Produced by SBML2LATEX

Reactants

Table	130:	Properties	of each	reactant.
ruore	150.	roperties	or cuch	reactant.

Id	Name	SBO
AT_f	AT_f	
mIIa_f	mIIa_f	

Product

Та	Table 131: Properties of each product.				
	Id	Name	SBO		
	mIIa_AT_l	mIIa_AT_l			

Kinetic Law

Derived unit contains undeclared units

$$v_{63} = \text{vol}(\text{compartment}) \cdot \text{k69} \cdot [\text{mIIa_f}] \cdot [\text{AT_f}]$$
(126)

6.64 Reaction R30

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$PS_I + APC_I \longrightarrow APC_PS_I$$
(127)

Reactants

Table	132: Properties of each reactant.				
	Id	Name	SBO		
	PS_1	PS_1			
	APC_1	APC_1			

Product

Tał	ole	133:	Properties	of	each	produc	ct.
-----	-----	------	------------	----	------	--------	-----

Id	Name	SBO
APC_PS_1	APC_PS_1	

Derived unit contains undeclared units

 $v_{64} = \text{vol}(\text{compartment}) \cdot (k70 \cdot [\text{APC}] \cdot [\text{PS}] - k71 \cdot [\text{APC}PS])$ (128)

6.65 Reaction R31

This is an irreversible reaction of two reactants forming one product.

Reaction equation

$$IX_l + XIa_l \longrightarrow XIa_IX_l \tag{129}$$

Reactants

Table	134: Prop	perties of	each re	actant.
	Id	Name	SBO	
	IX_l	IX_1		
	XIa_l	XIa_l		

Product

Tał	Cable 135: Properties of each product.					
	Id	Name	SBO			
	XIa_IX_l	XIa_IX_l				

Kinetic Law

Derived unit contains undeclared units

$$v_{65} = \text{vol}\left(\text{compartment}\right) \cdot \left(\text{k72} \cdot \left[\text{XIa_l}\right] \cdot \left[\text{IX_l}\right] - \text{k73} \cdot \left[\text{XIa_IX_l}\right]\right)$$
(130)

6.66 Reaction R31b

This is an irreversible reaction of one reactant forming two products.

Reaction equation

$$XIa_IX_I \longrightarrow IXa_I + XIa_I$$
(131)

Reactant

Tab	ble 136: Properties of each reactan			
	Id	Name	SBO	
	XIa_IX_l	XIa_IX_1		

Products

Table 137: Properties of each product.						
Id	Name	SBO				
IXa_l	IXa_l					
XIa_l	XIa_l					
	37: Prop Id IXa_l XIa_l	37: Properties of Id Name IXa_l IXa_l XIa_l XIa_l	37: Properties of each pr Id Name SBO IXa_1 IXa_1 XIa_1 XIa_1			

Kinetic Law

Derived unit contains undeclared units

$$v_{66} = \text{vol}(\text{compartment}) \cdot k74 \cdot [\text{XIa_IX_l}]$$
 (132)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

7.1 Species II_f

Name ${\rm II}_{-}{\rm f}$

Initial concentration $1400 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IL}f = -\nu_1 \tag{133}$$

7.2 Species II_1

Name II_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R13 and as a product in LB1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{II}_{-1} = v_1 - v_{39} \tag{134}$$

7.3 Species $mIIa_f$

Name mIIa_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in LB2, R29).

$$\frac{d}{dt}mIIa_{f} = -v_{2} - v_{63}$$
(135)

7.4 Species mIIa_1

Name mIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R14, R25, R26 and as a product in LB2, R25b, R26b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{mIIa_l} = v_2 + v_{57} + v_{59} - v_{40} - v_{56} - v_{58}$$
(136)

7.5 Species V_f

Name V_f

Initial concentration $20 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{V}_{-}\mathbf{f} = -v_3 \tag{137}$$

61

7.6 Species V_1

Name V_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R9, R11, R25 and as a product in LB3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{V} = v_3 - v_{31} - v_{35} - v_{56}$$
(138)

7.7 Species Va_f

Name Va_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Va}_{-}\mathrm{f} = -\nu_4 \tag{139}$$

7.8 Species Va_1

Name Va_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in six reactions (as a reactant in R7, R19 and as a product in LB4, R9b, R11b, R25b).

$$\frac{d}{dt} Va_{-1} = v_4 + v_{32} + v_{36} + v_{57} - v_{28} - v_{49}$$
(140)

7.9 Species VII_f

Name VII_f

Initial concentration $10 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VII}_{\mathrm{f}}\mathrm{f} = -v_{5} \tag{141}$$

7.10 Species VII_1

Name VII_]

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R2, R16 and as a product in LB5).

$$\frac{d}{dt} \text{VII}_1 = v_5 - v_{19} - v_{43} \tag{142}$$

Produced by SBML2ATEX

7.11 Species VIIa_f

Name VIIa_f

Initial concentration $0.1 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIIa}_{\mathrm{f}}\mathrm{f} = -\nu_{6} \tag{143}$$

7.12 Species VIIa_1

Name VIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R1 and as a product in LB6, R16b).

$$\frac{d}{dt} \text{VIIa} = v_6 + v_{44} - v_{18} \tag{144}$$

7.13 Species VIII_f

Name VIII_f

Initial concentration $0.7 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB7).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIII}_{\mathrm{f}}\mathrm{f} = -\nu_7 \tag{145}$$

7.14 Species VIII_1

Name VIII_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R10, R12, R26 and as a product in LB7).

$$\frac{d}{dt} \text{VIII_l} = v_7 - v_{33} - v_{37} - v_{58} \tag{146}$$

7.15 Species VIIIa_f

Name VIIIa_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB8).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIIIa}_{\mathrm{f}} = -\nu_{8} \tag{147}$$

63

7.16 Species VIIIa_1

Name VIIIa_1

Initial concentration
$$0 \text{ nmol} \cdot 1^{-1}$$

This species takes part in six reactions (as a reactant in R6, R18 and as a product in LB8, R10b, R12b, R26b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIIIa} = v_8 + v_{34} + v_{38} + v_{59} - v_{27} - v_{47} \tag{148}$$

7.17 Species IX_f

Name $\rm IX_f$

Initial concentration $90 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IX}_{-}\mathrm{f} = -\nu_9 \tag{149}$$

7.18 Species IX_1

Name IX_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R3, R31 and as a product in LB9).

$$\frac{d}{dt}IX_{-1} = v_9 - v_{20} - v_{65}$$
(150)

7.19 Species IXa_f

Name IXa_f

```
Initial concentration 0 \text{ nmol} \cdot l^{-1}
```

This species takes part in two reactions (as a reactant in LB10, R22).

$$\frac{d}{dt}IXa_{f} = -v_{10} - v_{53}$$
(151)

Produced by SBML2ATEX

7.20 Species IXa_1

Name IXa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R6 and as a product in LB10, R3b, R31b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IXa}_{-}\mathrm{I} = v_{10} + v_{21} + v_{66} - v_{27}$$
(152)

7.21 Species X_f

Name X_f

Initial concentration $170 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB11).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{X}_{-}\mathrm{f} = -v_{11} \tag{153}$$

7.22 Species X_1

Name X_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R4, R8 and as a product in LB11).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{X} \mathbf{l} = v_{11} - v_{22} - v_{29} \tag{154}$$

7.23 Species Xa_f

Name Xa_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in LB12, R20, R23).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Xa}_{-}\mathrm{f} = -v_{12} - v_{51} - v_{54} \tag{155}$$

65

7.24 Species Xa_1

Name Xa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in twelve reactions (as a reactant in R5, R7, R9, R10, R16 and as a product in LB12, R4c, R5b, R8b, R9b, R10b, R16b).

 $\frac{d}{dt}Xa_{1} = v_{12} + v_{24} + v_{26} + v_{30} + v_{32} + v_{34} + v_{44} - v_{25} - v_{28} - v_{31} - v_{33} - v_{43}$ (156)

7.25 Species APC_f

Name APC_f

```
Initial concentration 0 \text{ nmol} \cdot l^{-1}
```

This species takes part in one reaction (as a reactant in LB13).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{APC}_{\mathrm{f}} = -v_{13} \tag{157}$$

7.26 Species APC_1

Name APC_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R30 and as a product in LB13, R28b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{APC} = v_{13} + v_{62} - v_{64} \tag{158}$$

7.27 Species PS_f

Name PS_f

Initial concentration $300 \text{ nmol} \cdot 1^{-1}$

This species takes part in one reaction (as a reactant in LB14).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PS}_{-}\mathrm{f} = -\nu_{14} \tag{159}$$

Produced by SBML2ATEX

7.28 Species PS_1

Name PS_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R30 and as a product in LB14).

$$\frac{d}{dt} PS_{-1} = v_{14} - v_{64}$$
(160)

7.29 Species VIIIai_f

Name VIIIai_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB15).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIIIai}_{\mathrm{f}} = -\frac{v_{15}}{v_{15}} \tag{161}$$

7.30 Species VIIIai_1

Name VIIIai_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a product in LB15, R18b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIIIai_l} = v_{15} + v_{48} \tag{162}$$

7.31 Species Vai_f

Name Vai_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB16).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Vai}_{-}\mathrm{f} = -\frac{v_{16}}{}$$
(163)

7.32 Species Vai_l

Name Vai_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a product in LB16, R19b).

$$\frac{d}{dt} Vai_l = v_{16} + v_{50}$$
(164)

7.33 Species PC_f

Name PC_f

Initial concentration $60 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in LB17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PC}_{-}\mathrm{f} = -v_{17} \tag{165}$$

7.34 Species PC_1

Name PC_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R28 and as a product in LB17).

$$\frac{d}{dt}PC_{-1} = v_{17} - v_{61}$$
(166)

7.35 Species TF_1

Name TF_1

Initial concentration $0.0050 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R1, R2).

$$\frac{d}{dt}TF_{-1} = -v_{18} - v_{19}$$
(167)

7.36 Species TF_VIIa_1

Name TF_VIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in seven reactions (as a reactant in R3, R4, R21 and as a product in R1, R3b, R4c, R5b).

$$\frac{d}{dt}TF_VIIa_l = v_{18} + v_{21} + v_{24} + v_{26} - v_{20} - v_{22} - v_{52}$$
(168)

7.37 Species TF_VII_1

Name TF_VII_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R5 and as a product in R2).

.1

$$\frac{d}{dt}TF_VII_1 = v_{19} - v_{25}$$
(169)

7.38 Species TF_VIIa_IX_1

Name TF_VIIa_IX_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R3b and as a product in R3).

$$\frac{d}{dt}TF_VIIa_IX_I = v_{20} - v_{21}$$
(170)

7.39 Species TF_VIIa_IXa_1

Name TF_VIIa_IXa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species does not take part in any reactions. Its quantity does hence not change over time:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TF}_{\mathrm{VIIa}_{\mathrm{I}}\mathrm{IXa}_{\mathrm{I}}\mathrm{I}}=0\tag{171}$$

7.40 Species TF_VIIa_X_1

Name TF_VIIa_X_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R4b and as a product in R4).

$$\frac{d}{dt}TF_VIIa_X_l = v_{22} - v_{23}$$
(172)

7.41 Species TF_VIIa_Xa_1

Name TF_VIIa_Xa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R4c and as a product in R4b).

$$\frac{d}{dt}TF_VIIa_Xa_l = v_{23} - v_{24}$$
(173)

7.42 Species TF_VII_Xa_1

Name TF_VII_Xa_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R5b and as a product in R5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TF}_{\mathrm{VII}}\mathrm{Xa}_{\mathrm{I}} = v_{25} - v_{26} \tag{174}$$

Produced by SBML2ATEX

7.43 Species IXa_VIIIa_1

Name IXa_VIIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R8 and as a product in R6, R8b).

$$\frac{d}{dt}IXa_VIIIa_1 = v_{27} + v_{30} - v_{29}$$
(175)

7.44 Species Xa_Va_1

Name Xa_Va_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R13, R14 and as a product in R7, R15b).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Xa}_{-}\mathrm{Va}_{-}\mathrm{I} = v_{28} + v_{42} - v_{39} - v_{40}$$
(176)

7.45 Species IXa_VIIIa_X_1

Name IXa_VIIIa_X_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R8b and as a product in R8).

$$\frac{d}{dt}IXa_VIIIa_X_l = v_{29} - v_{30}$$
(177)

7.46 Species V_Xa_1

Name V_Xa_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R9b and as a product in R9).

$$\frac{d}{dt}V_Xa_1 = v_{31} - v_{32}$$
(178)

7.47 Species VIII_Xa_1

Name VIII_Xa_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R10b and as a product in R10).

$$\frac{d}{dt}VIII_Xa_l = v_{33} - v_{34}$$
(179)

Produced by SBML2ATEX

7.48 Species IIa_f

Name IIa_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in R11, R12, R17, R24, R27 and as a product in R11b, R12b, R15b, R17b).

$$\frac{d}{dt}IIa_{f} = v_{36} + v_{38} + v_{42} + v_{46} - v_{35} - v_{37} - v_{45} - v_{55} - v_{60}$$
(180)

7.49 Species V_IIa_1

Name V_IIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R11b and as a product in R11).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{V_IIa_I} = v_{35} - v_{36} \tag{181}$$

7.50 Species VIII_IIa_1

Name VIII_IIa_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R12b and as a product in R12).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIII_IIa_I} = v_{37} - v_{38} \tag{182}$$

7.51 Species Xa_Va_II_1

Name Xa_Va_II_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R15 and as a product in R13).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Xa}_{\mathrm{Va}_{\mathrm{II}}} = v_{39} - v_{41} \tag{183}$$

7.52 Species Xa_Va_mIIa_1

Name Xa_Va_mIIa_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R15b and as a product in R14, R15).

$$\frac{d}{dt}Xa_Va_mIIa_l = v_{40} + v_{41} - v_{42}$$
(184)

7.53 Species XI_f

Name $\rm XI_f$

Initial concentration $30 \text{ nmol} \cdot 1^{-1}$

This species takes part in one reaction (as a reactant in R17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{XI}_{-}\mathrm{f} = -\nu_{45} \tag{185}$$

7.54 Species XI_IIa_1

Name XI_IIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R17b and as a product in R17).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{XI}_{-}\mathrm{IIa}_{-}\mathrm{I} = v_{45} - v_{46} \tag{186}$$

7.55 Species XIa_1

Name XIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R31 and as a product in R17b, R31b).

$$\frac{d}{dt}XIa_{l} = v_{46} + v_{66} - v_{65}$$
(187)

7.56 Species APC_PS_1

Name APC_PS_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in R18, R19 and as a product in R18b, R19b, R30).

$$\frac{d}{dt}APC_PS_{-1} = v_{48} + v_{50} + v_{64} - v_{47} - v_{49}$$
(188)

7.57 Species APC_PS_VIIIa_1

Name APC_PS_VIIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R18b and as a product in R18).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{APC}_{\mathrm{PS}}\mathrm{VIIIa}_{\mathrm{I}} = v_{47} - v_{48} \tag{189}$$
7.58 Species TFPI_f

Name $\rm TFPI_f$

Initial concentration $2.5 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in R20).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TFPI}_{-}\mathrm{f} = -\nu_{51} \tag{190}$$

7.59 Species AT_f

Name AT_f

Initial concentration $3400 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in R22, R23, R24, R29).

$$\frac{d}{dt}AT_{f} = -v_{53} - v_{54} - v_{55} - v_{63}$$
(191)

7.60 Species IIa_AT_f

Name IIa_AT_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R24).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IIa}_{\mathrm{A}}\mathrm{AT}_{\mathrm{f}}f = v_{55} \tag{192}$$

7.61 Species TFPI_Xa_1

Name TFPI_Xa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R21 and as a product in R20).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TFPI}_{\mathrm{X}a_\mathrm{I}} = v_{51} - v_{52} \tag{193}$$

7.62 Species TFPI_Xa_TF_VIIa_1

Name TFPI_Xa_TF_VIIa_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R21).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{TFPI}_{\mathrm{X}a}\mathrm{TF}_{\mathrm{V}IIa}\mathrm{l} = v_{52} \tag{194}$$

7.63 Species APC_PS_Va_1

Name APC_PS_Va_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R19b and as a product in R19).

$$\frac{d}{dt}APC_PS_Va_1 = v_{49} - v_{50}$$
(195)

7.64 Species IXa_AT_f

Name IXa_AT_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R22).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{IXa}_{-}\mathrm{AT}_{-}\mathrm{f} = v_{53} \tag{196}$$

7.65 Species Xa_AT_f

Name Xa_AT_f

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R23).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{Xa}_{\mathrm{A}}\mathrm{A}\mathrm{T}_{\mathrm{f}}\mathrm{f}=\nu_{54} \tag{197}$$

7.66 Species VII_Xa_1

Name VII_Xa_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R16b and as a product in R16).

$$\frac{d}{dt} \text{VII}_X a_l = v_{43} - v_{44} \tag{198}$$

7.67 Species V_mIIa_l

Name V_mIIa_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R25b and as a product in R25).

$$\frac{d}{dt}V_{m}IIa_{l} = v_{56} - v_{57}$$
(199)

Produced by SBML2ATEX

74

7.68 Species VIII_mIIa_1

Name VIII_mIIa_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R26b and as a product in R26).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{VIII_mIIa_l} = v_{58} - v_{59} \tag{200}$$

7.69 Species TM_1

Name TM_1

Initial concentration $1 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a reactant in R27).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{T}\mathrm{M}_{-}\mathrm{l} = -v_{60} \tag{201}$$

7.70 Species IIa_TM_1

Name IIa_TM_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in R28 and as a product in R27, R28b).

$$\frac{d}{dt} \text{IIa}_{\text{TM}} = v_{60} + v_{62} - v_{61}$$
(202)

7.71 Species IIa_TM_PC_1

Name IIa_TM_PC_1

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R28b and as a product in R28).

$$\frac{d}{dt} \text{IIa}_{\text{TM}} \text{PC}_{\text{-}1} = v_{61} - v_{62}$$
(203)

7.72 Species mIIa_AT_1

Name mIIa_AT_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in one reaction (as a product in R29).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{mIIa}_{\mathrm{A}}\mathrm{A}\mathrm{T}_{\mathrm{A}}\mathrm{I} = v_{63} \tag{204}$$

7.73 Species XIa_IX_1

Name XIa_IX_l

Initial concentration $0 \text{ nmol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in R31b and as a product in R31).

$$\frac{d}{dt}XIa_{I}X_{I} = v_{65} - v_{66}$$
(205)

7.74 Species LIPID

Name LIPID

Initial concentration $849079 \text{ nmol} \cdot l^{-1}$

This species takes part in 17 reactions (as a reactant in LB1, LB2, LB3, LB4, LB5, LB6, LB7, LB8, LB9, LB10, LB11, LB12, LB13, LB14, LB15, LB16, LB17).

$$\frac{d}{dt}LIPID = -100 v_1 - 100 v_2 - 100 v_3 - 100 v_4 - 100 v_5 - 100 v_6 - 100 v_7 - 100 v_8 - 100 v_9 - 100 v_{10} - 100 v_{11} - 100 v_{12} - 100 v_{13} - 100 v_{14} - 100 v_{15} - 100 v_{16} - 100 v_{17}$$
(206)

BML2^{AT}EX was developed by Andreas Dräger^{*a*}, Hannes Planatscher^{*a*}, Dieudonné M Wouamba^{*a*}, Adrian Schröder^{*a*}, Michael Hucka^{*b*}, Lukas Endler^{*c*}, Martin Golebiewski^{*d*} and Andreas Zell^{*a*}. Please see http: //www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany