InChI=1S/C19H21ClN4/c20-15-5-3-4-14(12-15)13-22-18-19(8-10-21-11-9-19)24-17-7-2-1-6-16(17)23-18/h1-7,12,21,24H,8-11,13H2,(H,22,23) |
YAFQFNOUYXZVPZ-UHFFFAOYSA-N |
ClC1=CC(CNC2=NC3=CC=CC=C3NC22CCNCC2)=CC=C1 |
|
radical scavenger
A role played by a substance that can react readily with, and thereby eliminate, radicals.
antioxidant
A substance that opposes oxidation or inhibits reactions brought about by dioxygen or peroxides.
Bronsted base
A molecular entity capable of accepting a hydron from a donor (Bronsted acid).
(via organic amino compound )
|
|
ferroptosis inhibitor
Any substance that inhibits the process of ferroptosis (a type of programmed cell death dependent on iron and characterized by the accumulation of lipid peroxides) in organisms.
|
|
cardioprotective agent
Any protective agent that is able to prevent damage to the heart.
|
|
View more via ChEBI Ontology
N-(3-chlorobenzyl)-1'H-spiro[piperidine-4,2'-quinoxalin]-3'-amine
|
Lip-1
|
ChEBI
|
liproxstatin 1
|
ChEBI
|
liproxstatin1
|
ChEBI
|
N-[(3-chlorophenyl)methyl]-1'H-spiro[piperidine-4,2'-quinoxalin]-3'-amine
|
IUPAC
|
950455-15-9
|
CAS Registry Number
|
ChEBI
|
Klobucar K, Côté JP, French S, Borrillo L, Guo ABY, Serrano-Wu MH, Lee KK, Hubbard B, Johnson JW, Gaulin JL, Magolan J, Hung DT, Brown ED (2021) Chemical Screen for Vancomycin Antagonism Uncovers Probes of the Gram-Negative Outer Membrane. ACS chemical biology 16, 929-942 [PubMed:33974796] [show Abstract] The outer membrane of Gram-negative bacteria is a formidable permeability barrier which allows only a small subset of chemical matter to penetrate. This outer membrane barrier can hinder the study of cellular processes and compound mechanism of action, as many compounds including antibiotics are precluded from entry despite having intracellular targets. Consequently, outer membrane permeabilizing compounds are invaluable tools in such studies. Many existing compounds known to perturb the outer membrane also impact inner membrane integrity, such as polymyxins and their derivatives, making these probes nonspecific. We performed a screen of ∼140 000 diverse synthetic compounds, for those that antagonized the growth inhibitory activity of vancomycin at 15 °C in Escherichia coli, to enrich for chemicals capable of perturbing the outer membrane. This led to the discovery that liproxstatin-1, an inhibitor of ferroptosis in human cells, and MAC-0568743, a novel cationic amphiphile, could potentiate the activity of large-scaffold antibiotics with low permeation into Gram-negative bacteria at 37 °C. Liproxstatin-1 and MAC-0568743 were found to physically disrupt the integrity of the outer membrane through interactions with lipopolysaccharide in the outer leaflet of the outer membrane. We showed that these compounds selectively disrupt the outer membrane while minimally impacting inner membrane integrity, particularly at the concentrations needed to potentiate Gram-positive-targeting antibiotics. Further exploration of these molecules and their structural analogues is a promising avenue for the development of outer membrane specific probes. | Tao N, Li K, Liu J, Fan G, Sun T (2021) Liproxstatin-1 alleviates bleomycin-induced alveolar epithelial cells injury and mice pulmonary fibrosis via attenuating inflammation, reshaping redox equilibrium, and suppressing ROS/p53/α-SMA pathway. Biochemical and biophysical research communications 551, 133-139 [PubMed:33735625] [show Abstract] With undetermined etiology and limited treatment option, idiopathic pulmonary fibrosis (IPF) an age related disease is extremely lethal. Persistent injury of epithelial cells, abnormal activation of fibroblasts/myofibroblasts, and superabundant deposition of extracellular matrix protein pathologically characterize IPF. Redox imbalance is reported to play a vital role in both IPF development and senescence. This study aim to investigate whether and how Liproxstatin-1 (Lip-1), a strong lipid autoxidation inhibitor, regulates bleomycin (BLM) induced pulmonary fibrosis both in vivo and in vitro. It's demonstrated that Lip-1 exerted a potent anti-fibrotic function in BLM-induced mice pulmonary fibrosis via alleviating inflammatory, reshaping redox equilibrium, and ameliorating collagen deposition. Lip-1 reduced the level of reactive oxygen species (ROS) and methane dicarboxylic aldehyde (MDA), promoted the expression of glutathione (GSH), catalase (CAT), and total superoxide dismutase (T-SOD) after BLM treatment. Moreover, in vitro experiments verified that Lip-1 protected A549 cells from BLM-induced injury and fibrosis. Lip-1 seemed to attenuate BLM-induced fibrosis by targeting ROS/p53/α-SMA signaling both in vivo and in vitro. In summary, this study demonstrates that Lip-1 administration performs a protective role in against pulmonary fibrosis and lights up the potential of Lip-1 treatment for patient with IPF in future. | Qu XF, Liang TY, Wu DG, Lai NS, Deng RM, Ma C, Li X, Li HY, Liu YZ, Shen HT, Chen G (2021) Acyl-CoA synthetase long chain family member 4 plays detrimental role in early brain injury after subarachnoid hemorrhage in rats by inducing ferroptosis. CNS neuroscience & therapeutics 27, 449-463 [PubMed:33314758] [show Abstract]
AimsAcyl-CoA synthetase long chain family member 4 (ACSL4) is closely related to tumor genesis and development in certain tissues. However, the function of ACSL4 in early brain injury (EBI) caused by subarachnoid hemorrhage (SAH) is unclear. In this study, we investigated the expression patterns and role of ACSL4 in SAH and post-SAH EBI using a rat model of SAH.MethodsThe rat model of SAH was induced by autologous blood injection into the prechiasmatic cistern of rats. We also used two specific inhibitors of ferroptosis (Ferrostatin-1 and Liproxstatin-1) to investigate the role of ferroptosis in EBI.ResultsWe found that ACSL4 levels in brain tissue increased significantly in post-SAH EBI. Inhibiting the expression of ACSL4 using small interfering RNAs alleviated inflammation, blood-brain barrier (BBB) impairment, oxidative stress, brain edema, and behavioral and cognitive deficits, and increased the number of surviving neurons, after SAH. Similar effects were obtained by suppressing ferroptosis.ConclusionsACSL4 exacerbated SAH-induced EBI by mediating ferroptosis. These findings may provide a theoretical basis for potential therapy aimed at alleviating post-SAH EBI. | Guo Y, Du J, Xiao C, Xiang P, Deng Y, Hei Z, Li X (2021) Inhibition of ferroptosis-like cell death attenuates neuropathic pain reactions induced by peripheral nerve injury in rats. European journal of pain (London, England) 25, 1227-1240 [PubMed:33497529] [show Abstract]
BackgroundRelationships between iron-dependent ferroptosis and nerve system diseases have been recently revealed. However, the role of ferroptosis in neuropathic pain (NeP) remains to be elucidated. Thus, we aimed to investigate whether ferroptosis in spinal cord contributes to NeP induced by a chronic constriction injury (CCI) of the sciatic nerve.MethodsForty Sprague-Dawley rats received CCI or sham surgery, and were randomly assigned to the following four groups: sham group; CCI + LIP group; CCI + Veh group; and CCI group. Liproxstatin-1 or corn oil were separately injected intraperitoneally for three consecutive days after surgery in the CCI + LIP or CCI + Veh group. The mechanical and thermal hypersensitivities were tested after surgery. Biochemical and morphological changes related to ferroptosis in the spinal cord were also assessed. These included iron content, glutathione peroxidase 4 (GPX4) and anti-acyl-CoA synthetase long-chain family member 4 (ACSL4) expression, lipid peroxidation assays, as well as mitochondrial morphology.ResultsCCI-induced NeP was followed by iron accumulation, increased lipid peroxidation and dysregulation of ACSL4 and GPX4. Moreover transmission electron microscopy confirmed the presence of aberrant morphological changes on mitochondrial, such as mitochondria shrinkage and membrane rupture. Furthermore, the administration of liproxstatin-1 on CCI rats attenuated hypersensitivities, lowered the iron level, decreased spinal lipid peroxidation, restored the dysregulations in GPX4 and ACSL4 levels, and protected against CCI induced morphological changes in mitochondria.ConclusionsOur findings indicated the involvement of ferroptosis in CCI induced NeP, and point to ferroptosis inhibitors such as liproxstatin-1 as potential therapies for hypersensitivity induced by peripheral nerve injury.SignificanceThe spinal ferroptosis-like cell death was involved in the development of neuropathic pain resulted from peripheral nerve injury, and inhibition of ferroptosis by liproxstatin-1 could alleviate mechanical and thermal hypersensitivities. This knowledge suggested that ferroptosis could represent a potential therapeutic target for neuropathic pain. | Zhao X, Gao M, Liang J, Chen Y, Wang Y, Wang Y, Xiao Y, Zhao Z, Wan X, Jiang M, Luo X, Wang F, Sun X (2021) SLC7A11 Reduces Laser-Induced Choroidal Neovascularization by Inhibiting RPE Ferroptosis and VEGF Production. Frontiers in cell and developmental biology 9, 639851 [PubMed:33681224] [show Abstract] In age-related macular degeneration (AMD), one of the principal sources of vascular endothelial growth factor (VEGF) is retinal pigment epithelium (RPE) cells under hypoxia or oxidative stress. Solute carrier family 7 member 11 (SLC7A11), a key component of cystine/glutamate transporter, regulates the level of cellular lipid peroxidation, and restrains ferroptosis. In our study, we assessed the role of SLC7A11 in laser-induced choroidal neovascularization (CNV) and explored the underlying mechanism. We established a mouse model of CNV to detect the expression level of SLC7A11 and VEGF during disease progression. We found the expression of the SLC7A11 protein in RPE cells peaked at 3 days after laser treatment, which was correlated with the expression of VEGF. Intraperitoneal injection of SLC7A11 inhibitor expanded the area of CNV. We examined functional proteins related to oxidative stress and Fe2+ and found laser-induced ferroptosis accompanied by increased Fe2+ content and GPX4 expression in the RPE-choroidal complex after laser treatment. We verified the expression of SLC7A11 in the ARPE19 cell line and the effects of its inhibitors on cell viability and lipid peroxidation in vitro. Application of SLC7A11 inhibitor and SLC7A11 knockdown increased the level of lipid peroxidation and reduced the cell viability of ARPE19 which can be rescued by ferroptosis inhibitors ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1). Conversely, SLC7A11 overexpression induced resistance to erastin or RSL3-induced ferroptosis. Moreover, we tested the possible regulatory transcription factor NF-E2-related factor 2 (NRF2) of SLC7A11 by Western blot. Knock-down of NRF2 decreased the expression of SLC7A11. Our study suggests that SLC7A11 plays a key role in the laser-induced CNV model by protecting RPE cells from ferroptosis. SLC7A11 provides a new therapeutic target for neovascular AMD patients. | Chen J, Yang L, Geng L, He J, Chen L, Sun Q, Zhao J, Wang X (2021) Inhibition of Acyl-CoA Synthetase Long-Chain Family Member 4 Facilitates Neurological Recovery After Stroke by Regulation Ferroptosis. Frontiers in cellular neuroscience 15, 632354 [PubMed:33889074] [show Abstract]
BackgroundIschemic stroke is the main cause of disability worldwide, leading to a serious socioeconomic burden. Ferroptosis is a non-apoptotic form of programmed cell death and is related to various diseases. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is considered a target of ferroptosis, but its specific role in ischemic stroke remains unclear. In this study, we investigate whether the inhibition of ACSL4 promotes the recovery of neurological function in a way that prevents ferroptosis.MethodsA transient cerebral ischemia model was established for mice by middle cerebral artery occlusion (MCAO); glutathione peroxidase 4 (GPx4), ACSL4 and cyclooxygenase 2 (COX2) were detected by Western blot, and changes to mitochondria were observed by a transmission electron microscope. A kit was used to determine iron levels and lipid peroxide indicators, such as glutathione peroxidase (GPx), reduced glutathione (GSH), total glutathione/oxidized glutathione (GSH/GSSG), lipid peroxidation, reactive oxygen species, superoxide and malonaldehyde. Following MCAO, a ferroptosis inhibitor, liproxstatin-1, was administered intranasally immediately at a concentration of 10 mg/kg. Rosiglitazone was used to inhibit ACSL4 and was administered intravenously 1 h before MCAO at a concentration of 0.4 mg/kg. Brain injury was determined by neurological deficit scores, neuroscore (28-point), corner test and gait analyses, at 24 and 72 h after stroke. Brain infarct volume was determined by 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining at 72 h after stroke.ResultsAfter MCAO, GPx4 protein expression decreased, ACSL4 and COX2 protein expression increased, GPx activity decreased and iron accumulation. Transmission electron microscopy confirmed that the outer mitochondrial membrane of neurons had ruptured and mitochondrial cristae had decreased or disappeared. Liproxstatin-1 could significantly attenuate the decrease of GPx4 and the increase of COX2 after MCAO, dramatically reducing iron accumulation and decreasing GPx activity, accompanied by a marked reduction in changes in lipid peroxidation indicators. The use of rosiglitazone to inhibit ACSL4 could significantly improve neurological function and reduce the brain infarct volume at 72 h after stroke. Importantly, inhibiting ACSL4 could significantly attenuate the decline of GPx4 after MCAO and markedly attenuate iron accumulation and a decrease in GPx activity. Additionally, changes in lipid peroxidation indicators were also significantly inhibited.ConclusionThis study indicates that inhibiting ACSL4 can promote the recovery of neurological function after stroke by suppression of ferroptosis. | Li Y, Zeng X, Lu D, Yin M, Shan M, Gao Y (2021) Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis. Human reproduction (Oxford, England) 36, 951-964 [PubMed:33378529] [show Abstract]
Study questionCould erastin activate ferroptosis to regress endometriotic lesions?Summary answerErastin could induce ferroptosis to regress endometriotic lesions in endometriosis.What is known alreadyEctopic endometrial stromal cells (EESCs) are in an iron overloading microenvironment and tend to be more sensitive to oxidative damage. The feature of erastin-induced ferroptosis is iron-dependent accumulation of lethal lipid reactive oxygen species (ROS).Study design, size, durationEleven patients without endometriosis and 21 patients with endometriosis were recruited in this study. Primary normal and ectopic endometrial stromal cells were isolated, cultured and subjected to various treatments. The in vivo study involved 10 C57BL/6 female mice to establish the model of endometriosis.Participants/materials, setting, methodsThe markers of ferroptosis were assessed by cell viability, lipid peroxidation level and morphological changes. The cell viability was measured by colorimetric method, lipid peroxidation levels were measured by flow cytometry, and morphological changes were observed by transmission electron microscopy. Immunohistochemistry and western blot were used to detect ferroportin (FPN) expression. Prussian blue staining and immunofluorescent microscopy of catalytic ferrous iron were semi-quantified the levels of iron. Adenovirus-mediated overexpression and siRNA-mediated knockdown were used to investigate the role of FPN on erastin-induced ferroptosis in EESCs.Main results and the role of chanceEESCs were more susceptible to erastin treatment, compared to normal endometrial stromal cells (NESCs) (P<0.05). Treatment of cultured EESCs with erastin dramatically increased the total ROS level (P<0.05, versus control), lipid ROS level (P<0.05, versus NESCs) and intracellular iron level (P<0.05, versus NESCs). The cytotoxicity of erastin could be attenuated by iron chelator, deferoxamine (DFO), and ferroptosis inhibitors, ferrostatin-1 and liproxstatin-1, (P<0.05, versus erastin) in EESCs. In EESCs with erastin treatment, shorter and condensed mitochondria were observed by electron microscopy. These findings together suggest that erastin is capable to induce EESC death by ferroptosis. However, the influence of erastin on NESCs was slight. The process of erastin-induced ferroptosis in EESCs accompanied iron accumulation and decreased FPN expression. The overexpression of FPN ablated erastin-induced ferroptosis in EESCs. In addition, knockdown of FPN accelerated erastin-induced ferroptosis in EESCs. In a mouse model of endometriosis, we found ectopic lesions were regressed after erastin administration.Large scale dataN/A.Limitations, reasons for cautionThis study was mainly conducted in primary human endometrial stromal cells. Therefore, the function of FPN in vivo need to be further investigated.Wider implications of the findingsOur findings reveal that erastin may serve as a potential therapeutic treatment for endometriosis.Study funding/competing interest(s)This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors. The authors declare no conflict of interest. | Fan BY, Pang YL, Li WX, Zhao CX, Zhang Y, Wang X, Ning GZ, Kong XH, Liu C, Yao X, Feng SQ (2021) Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural regeneration research 16, 561-566 [PubMed:32985488] [show Abstract] Our previous studies showed that ferroptosis plays an important role in the acute and subacute stages of spinal cord injury. High intracellular iron levels and low glutathione levels make oligodendrocytes vulnerable to cell death after central nervous system trauma. In this study, we established an oligodendrocyte (OLN-93 cell line) model of ferroptosis induced by RSL-3, an inhibitor of glutathione peroxidase 4 (GPX4). RSL-3 significantly increased intracellular concentrations of reactive oxygen species and malondialdehyde. RSL-3 also inhibited the main anti-ferroptosis pathway, i.e., SLC7A11/glutathione/glutathione peroxidase 4 (xCT/GSH/GPX4), and downregulated acyl-coenzyme A synthetase long chain family member 4. Furthermore, we evaluated the ability of several compounds to rescue oligodendrocytes from ferroptosis. Liproxstatin-1 was more potent than edaravone or deferoxamine. Liproxstatin-1 not only inhibited mitochondrial lipid peroxidation, but also restored the expression of GSH, GPX4 and ferroptosis suppressor protein 1. These findings suggest that GPX4 inhibition induces ferroptosis in oligodendrocytes, and that liproxstatin-1 is a potent inhibitor of ferroptosis. Therefore, liproxstatin-1 may be a promising drug for the treatment of central nervous system diseases. | Cao Y, Li Y, He C, Yan F, Li JR, Xu HZ, Zhuang JF, Zhou H, Peng YC, Fu XJ, Lu XY, Yao Y, Wei YY, Tong Y, Zhou YF, Wang L (2021) Selective Ferroptosis Inhibitor Liproxstatin-1 Attenuates Neurological Deficits and Neuroinflammation After Subarachnoid Hemorrhage. Neuroscience bulletin 37, 535-549 [PubMed:33421025] [show Abstract] Ferroptosis is a form of iron-dependent regulated cell death. Evidence of its existence and the effects of its inhibitors on subarachnoid hemorrhage (SAH) is still lacking. In the present study, we found that liproxstatin-1 protected HT22 cells against hemin-induced injury by protecting mitochondrial functions and ameliorating lipid peroxidation. In in vivo experiments, we demonstrated the presence of characteristic shrunken mitochondria in ipsilateral cortical neurons after SAH. Moreover, liproxstatin-1 attenuated the neurological deficits and brain edema, reduced neuronal cell death, and restored the redox equilibrium after SAH. The inhibition of ferroptosis by liproxstatin-1 was associated with the preservation of glutathione peroxidase 4 and the downregulation of acyl-CoA synthetase long-chain family member 4 as well as cyclooxygenase 2. In addition, liproxstatin-1 decreased the activation of microglia and the release of IL-6, IL-1β, and TNF-α. These data enhance our understanding of cell death after SAH and shed light on future preclinical studies. | Du J, Wang L, Huang X, Zhang N, Long Z, Yang Y, Zhong F, Zheng B, Lan W, Lin W, Ma W (2021) Shuganning injection, a traditional Chinese patent medicine, induces ferroptosis and suppresses tumor growth in triple-negative breast cancer cells. Phytomedicine : international journal of phytotherapy and phytopharmacology 85, 153551 [PubMed:33827043] [show Abstract]
BackgroundTriple-negative breast cancer (TNBC), lacking targeted therapies currently, is susceptible to ferroptosis, a recently defined form of cell death.PurposeTo evaluate the anticancer activity of Shuganning injection (SGNI), a traditional Chinese patent medicine, on TNBC cells; To elucidate the mechanism of SGNI induced ferroptosis.MethodsThe anticancer activity of SGNI was examined via in vitro cell proliferation assays and in vivo xenograft growth assay. Ferroptosis was determined by flow-cytometric analysis of lipid ROS, labile iron pool measurement, and propidium iodide exclusion assay. The dependency on heme oxygenase 1 (HO-1) of SGNI induced ferroptosis was confirmed by genetic knockdown and pharmacological inhibition of the protein.ResultsSGNI selectively inhibited the proliferation of TNBC cells compared to non-TNBC breast cancer cells and normal cells. The cell death induced by SGNI in TNBC cells showed distinct morphology from apoptosis and could not be rescued by the pan-caspase inhibitor Z-VAD(OMe)-FMK. On the other hand, SGNI induced cell death was blocked by the lipid ROS scavengers ferrostatin-1 and liproxstatin-1, the acyl-CoA synthetase long chain family member 4 inhibitor rosiglitazone, and the iron chelators 1,10-phenanthroline and deferoxamine. These data indicated that SGNI induced a ferroptotic cell death of TNBC cells. Mechanistically, SGNI induced ferroptosis was dependent on HO-1, which promotes intracellular labile iron pool accumulation, and was alleviated by HO-1 knockdown and inhibition by tin protoporphyrin IX. In line with the in vitro data, SGNI significantly inhibited the xenograft growth of TNBC cell line MD-MB-231 in nude mice.ConclusionCollectively, our study elaborates on a promising regimen for TNBC treatment through induction of ferroptosis by SGNI, a traditional Chinese patent medicine currently available in the clinic, which merits further investigation. | Southon A, Szostak K, Acevedo KM, Dent KA, Volitakis I, Belaidi AA, Barnham KJ, Crouch PJ, Ayton S, Donnelly PS, Bush AI (2020) CuII (atsm) inhibits ferroptosis: Implications for treatment of neurodegenerative disease. British journal of pharmacology 177, 656-667 [PubMed:31655003] [show Abstract]
Background and purposeDiacetyl-bis(4-methyl-3-thiosemicarbazonato)copperII (CuII (atsm)) ameliorates neurodegeneration and delays disease progression in mouse models of amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD), yet the mechanism of action remains uncertain. Promising results were recently reported for separate Phase 1 studies in ALS patients and PD patients. Affected tissue in these disorders shares features of elevated Fe, low glutathione and increased lipid peroxidation consistent with ferroptosis, a novel form of regulated cell death. We therefore evaluated the ability of CuII (atsm) to inhibit ferroptosis.Experimental approachFerroptosis was induced in neuronal cell models by inhibition of glutathione peroxidase-4 activity with RSL3 or by blocking cystine uptake with erastin. Cell viability and lipid peroxidation were assessed and the efficacy of CuII (atsm) was compared to the known antiferroptotic compound liproxstatin-1.Key resultsCuII (atsm) protected against lipid peroxidation and ferroptotic lethality in primary and immortalised neuronal cell models (EC50 : ≈130 nM, within an order of magnitude of liproxstatin-1). NiII (atsm) also prevented ferroptosis with similar potency, whereas ionic CuII did not. In cell-free systems, CuII (atsm) and NiII (atsm) inhibited FeII -induced lipid peroxidation, consistent with these compounds quenching lipid radicals.Conclusions and implicationsThe antiferroptotic activity of CuII (atsm) could therefore be the disease-modifying mechanism being tested in ALS and PD trials. With potency in vitro approaching that of liproxstatin-1, CuII (atsm) possesses favourable properties such as oral bioavailability and entry into the brain that make it an attractive investigational product for clinical trials of ferroptosis-related diseases. | Chen Y, Zhang P, Chen W, Chen G (2020) Ferroptosis mediated DSS-induced ulcerative colitis associated with Nrf2/HO-1 signaling pathway. Immunology letters 225, 9-15 [PubMed:32540488] [show Abstract] Ulcerative colitis (UC) is an inflammatory disease characterized by an uncontrolled inflammatory response. Previous study showed that the immunological impairment elicted the alteration of inflammatory mediators, and ferroptosis was implicated with the lethal accumulation of reactive oxygen species (ROS). Therefore, this study aimed to investigate the role of ferroptosis in dextran sulfate sodium (DSS)-induced UC. The animal model was established and the molecular markers of ferroptosis were detected by using western blot. The results suggested that the expression of COX2 and ACSL4 was increased dramatically, while the level of GPX4 and FTH1 was deceased in 3% DSS group compared with Control group (P < 0.05). Meanwhile, the body weight and colon length were significantly increased, and the inflammation indexes and MDA levels were reduced in 3% DSS+ ferrostatin-1 group, 3% DSS+ liproxstatin-1 group and 3% DSS+ deferprone group compared to 3% DSS group (P < 0.05). Additionally, the mRNA and protein level of COX2 and ACSL4 were obviously upregulated, but the GPX4 and FTH1 expression were downregulated in 3% DSS group (P < 0.05); however, the expression level of COX2, ACSL4, GPX4 and FTH1 was revered after ferrostatin-1, liproxstatin-1 (Lip-1) or deferprone (DFP) administration. The immunohistochemical assay showed that the staining intensity of COX2 was decreased and the staining intensity of GPX4 was increased in 3% DSS+ Ferr-1 group compared with 3% DSS group (P < 0.05). Moreover, the nuclear factor erythoid 2-related 2 (Nrf2) and HO-1 expression were lower in 3% DSS+ Ferr-1 group than 3% DSS group (P < 0.05). These data revealed that suppressing ferroptosis could effectively ameliorate DSS-induced UC involved in blocking Nrf2/HO-1 signaling pathway. | Zheng Z, Tang D, Zhao L, Li W, Han J, Hu B, Nie G, He Y (2020) Liproxstatin-1 Protects Hair Cell-Like HEI-OC1 Cells and Cochlear Hair Cells against Neomycin Ototoxicity. Oxidative medicine and cellular longevity 2020, 1782659 [PubMed:33343803] [show Abstract] Ferroptosis is a recently discovered iron-dependent form of oxidative programmed cell death distinct from caspase-dependent apoptosis. In this study, we investigated the effect of ferroptosis in neomycin-induced hair cell loss by using selective ferroptosis inhibitor liproxstatin-1 (Lip-1). Cell viability was identified by CCK8 assay. The levels of reactive oxygen species (ROS) were determined by DCFH-DA and cellROX green staining. The mitochondrial membrane potential (ΔΨm) was evaluated by TMRM staining. Intracellular iron and lipid peroxides were detected with Mito-FerroGreen and Liperfluo probes. We found that ferroptosis can be induced in both HEI-OC1 cells and neonatal mouse cochlear explants, as evidenced by Mito-FerroGreen and Liperfluo staining. Further experiments showed that pretreatment with Lip-1 significantly alleviated neomycin-induced increased ROS generation and disruption in ΔΨm in the HEI-OC1 cells. In parallel, Lip-1 significantly attenuated neomycin-induced hair cell damage in neonatal mouse cochlear explants. Collectively, these results suggest a novel mechanism for neomycin-induced ototoxicity and suggest that ferroptosis inhibition may be a new clinical intervention to prevent hearing loss. | Guiney SJ, Adlard PA, Lei P, Mawal CH, Bush AI, Finkelstein DI, Ayton S (2020) Fibrillar α-synuclein toxicity depends on functional lysosomes. The Journal of biological chemistry 295, 17497-17513 [PubMed:33453994] [show Abstract] Neurodegeneration in Parkinson's disease (PD) can be recapitulated in animals by administration of α-synuclein preformed fibrils (PFFs) into the brain. However, the mechanism by which these PFFs induce toxicity is unknown. Iron is implicated in PD pathophysiology, so we investigated whether α-synuclein PFFs induce ferroptosis, an iron-dependent cell death pathway. A range of ferroptosis inhibitors were added to a striatal neuron-derived cell line (STHdhQ7/7 cells), a dopaminergic neuron-derived cell line (SN4741 cells), and WT primary cortical neurons, all of which had been intoxicated with α-synuclein PFFs. Viability was not recovered by these inhibitors except for liproxstatin-1, a best-in-class ferroptosis inhibitor, when used at high doses. High-dose liproxstatin-1 visibly enlarged the area of a cell that contained acidic vesicles and elevated the expression of several proteins associated with the autophagy-lysosomal pathway similarly to the known lysosomal inhibitors, chloroquine and bafilomycin A1. Consistent with high-dose liproxstatin-1 protecting via a lysosomal mechanism, we further de-monstrated that loss of viability induced by α-synuclein PFFs was attenuated by chloroquine and bafilomycin A1 as well as the lysosomal cysteine protease inhibitors, leupeptin, E-64D, and Ca-074-Me, but not other autophagy or lysosomal enzyme inhibitors. We confirmed using immunofluorescence microscopy that heparin prevented uptake of α-synuclein PFFs into cells but that chloroquine did not stop α-synuclein uptake into lysosomes despite impairing lysosomal function and inhibiting α-synuclein toxicity. Together, these data suggested that α-synuclein PFFs are toxic in functional lysosomes in vitro. Therapeutic strategies that prevent α-synuclein fibril uptake into lysosomes may be of benefit in PD. | Chen X, Zhang B, Liu T, Feng M, Zhang Y, Zhang C, Yao W, Wan L (2019) Liproxstatin-1 Attenuates Morphine Tolerance through Inhibiting Spinal Ferroptosis-like Cell Death. ACS chemical neuroscience 10, 4824-4833 [PubMed:31682397] [show Abstract] Morphine tolerance is a classic, challenging clinical issue. However, the mechanism underlying this phenomenon remains poorly understood. Recently, studies have shown that ferroptosis correlates with drug resistance. Therefore, this study investigated whether spinal cord ferroptosis contributes to morphine tolerance. C57BL/6 mice were continuously subcutaneously injected with morphine, with or without the ferroptosis inhibitor liproxstatin-1. We found that chronic morphine exposure led to morphine antinociception tolerance, accompanied by loss of spinal cord neurons, increase in the levels of iron, malondialdehyde, and reactive oxygen species, and decreases in the levels of superoxide dismutase. Additionally, inflammatory response and mitochondrial shrinkage, processes that are involved in ferroptosis, were observed. Simultaneously, we found that 10 mg/kg of liproxstatin-1 could alleviate iron overload by balancing transferrin receptor protein 1/ferroportin expression and attenuate morphine tolerance by increasing glutathione peroxidase 4 levels, while reducing the levels of malondialdehyde and reactive oxygen species. It also downregulated the expression of extracellularly regulated protein kinases that had been induced by chronic morphine exposure. Our results indicate that spinal cord ferroptosis contributes to morphine tolerance, while liproxstatin-1 attenuates the development of morphine tolerance. These findings suggest that ferroptosis may be a potential therapeutic target for morphine tolerance. | Feng Y, Madungwe NB, Imam Aliagan AD, Tombo N, Bopassa JC (2019) Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels. Biochemical and biophysical research communications 520, 606-611 [PubMed:31623831] [show Abstract] Ferroptosis is a distinct iron-dependent mechanism of regulated cell death recognized in cancer and ischemia/reperfusion (I/R) injury of different organs. It has been reported that molecules such as liproxstatin-1 (Lip-1) inhibit ferroptosis and promote cell survival however, the mechanisms underlying this action are not clearly understood. We investigated the role and mechanism of Lip-1 in reducing cell death in the ischemic myocardium. Using an I/R model of isolated perfused mice hearts in which Lip-1 was given at the onset of reperfusion, we found that Lip-1 protects the heart by reducing myocardial infarct sizes and maintaining mitochondrial structural integrity and function. Further investigation revealed that Lip-1-induced cardioprotection is mediated by a reduction of VDAC1 levels and oligomerization, but not VDAC2/3. Lip-1 treatment also decreased mitochondrial reactive oxygen species production and rescued the reduction of the antioxidant GPX4 caused by I/R stress. Meanwhile, mitochondrial Ca2+ retention capacity needed to induce mitochondrial permeability transition pore opening did not change with Lip-1 treatment. Thus, we report that Lip-1 induces cardioprotective effects against I/R injury by reducing VDAC1 levels and restoring GPX4 levels. | Kajarabille N, Latunde-Dada GO (2019) Programmed Cell-Death by Ferroptosis: Antioxidants as Mitigators. International journal of molecular sciences 20, E4968 [PubMed:31597407] [show Abstract] Iron, the fourth most abundant element in the Earth's crust, is vital in living organisms because of its diverse ligand-binding and electron-transfer properties. This ability of iron in the redox cycle as a ferrous ion enables it to react with H2O2, in the Fenton reaction, to produce a hydroxyl radical (•OH)-one of the reactive oxygen species (ROS) that cause deleterious oxidative damage to DNA, proteins, and membrane lipids. Ferroptosis is a non-apoptotic regulated cell death that is dependent on iron and reactive oxygen species (ROS) and is characterized by lipid peroxidation. It is triggered when the endogenous antioxidant status of the cell is compromised, leading to lipid ROS accumulation that is toxic and damaging to the membrane structure. Consequently, oxidative stress and the antioxidant levels of the cells are important modulators of lipid peroxidation that induce this novel form of cell death. Remedies capable of averting iron-dependent lipid peroxidation, therefore, are lipophilic antioxidants, including vitamin E, ferrostatin-1 (Fer-1), liproxstatin-1 (Lip-1) and possibly potent bioactive polyphenols. Moreover, most of the enzymes and proteins that cascade or interact in the pathway of ferroptosis such as a subunit of the cystine/glutamate transporter xc- (SLC7A11), glutathione peroxidase 4 (GPX4), and the glutamate-cysteine ligase (GCLC) iron metabolism genes transferrin receptor 1 (TfR1) ferroportin, (Fpn) heme oxygenase 1 (HO-1) and ferritin are regulated by the antioxidant response element of the transcription factor, Nrf2. These, as well as other radical trapping antioxidants (RTAs), are discussed in the current review. | Wenz C, Faust D, Linz B, Turmann C, Nikolova T, Bertin J, Gough P, Wipf P, Schröder AS, Krautwald S, Dietrich C (2018) t-BuOOH induces ferroptosis in human and murine cell lines. Archives of toxicology 92, 759-775 [PubMed:28975372] [show Abstract] Reactive oxygen species (ROS)-induced apoptosis has been extensively studied. Increasing evidence suggests that ROS, for instance, induced by hydrogen peroxide (H2O2), might also trigger regulated necrotic cell death pathways. Almost nothing is known about the cell death pathways triggered by tertiary-butyl hydroperoxide (t-BuOOH), a widely used inducer of oxidative stress. The lipid peroxidation products induced by t-BuOOH are involved in the pathophysiology of many diseases, such as cancer, cardiovascular diseases, or diabetes. In this study, we exposed murine fibroblasts (NIH3T3) or human keratinocytes (HaCaT) to t-BuOOH (50 or 200 μM, respectively) which induced a rapid necrotic cell death. Well-established regulators of cell death, i.e., p53, poly(ADP)ribose polymerase-1 (PARP-1), the stress kinases p38 and c-Jun N-terminal-kinases 1/2 (JNK1/2), or receptor-interacting serine/threonine protein kinase 1 (RIPK1) and 3 (RIPK3), were not required for t-BuOOH-mediated cell death. Using the selective inhibitors ferrostatin-1 (1 μM) and liproxstatin-1 (1 μM), we identified ferroptosis, a recently discovered cell death mechanism dependent on iron and lipid peroxidation, as the main cell death pathway. Accordingly, t-BuOOH exposure resulted in a ferrostatin-1- and liproxstatin-1-sensitive increase in lipid peroxidation and cytosolic ROS. Ferroptosis was executed independently from other t-BuOOH-mediated cellular damages, i.e., loss of mitochondrial membrane potential, DNA double-strand breaks, or replication block. H2O2 did not cause ferroptosis at equitoxic concentrations (300 μM) and induced a (1) lower and (2) ferrostatin-1- or liproxstatin-1-insensitive increase in lipid peroxidation. We identify that t-BuOOH and H2O2 produce a different pattern of lipid peroxidation, thereby leading to different cell death pathways and present t-BuOOH as a novel inducer of ferroptosis. | Zilka O, Shah R, Li B, Friedmann Angeli JP, Griesser M, Conrad M, Pratt DA (2017) On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS central science 3, 232-243 [PubMed:28386601] [show Abstract] Ferroptosis is a form of regulated necrosis associated with the iron-dependent accumulation of lipid hydroperoxides that may play a key role in the pathogenesis of degenerative diseases in which lipid peroxidation has been implicated. High-throughput screening efforts have identified ferrostatin-1 (Fer-1) and liproxstatin-1 (Lip-1) as potent inhibitors of ferroptosis - an activity that has been ascribed to their ability to slow the accumulation of lipid hydroperoxides. Herein we demonstrate that this activity likely derives from their reactivity as radical-trapping antioxidants (RTAs) rather than their potency as inhibitors of lipoxygenases. Although inhibited autoxidations of styrene revealed that Fer-1 and Lip-1 react roughly 10-fold more slowly with peroxyl radicals than reactions of α-tocopherol (α-TOH), they were significantly more reactive than α-TOH in phosphatidylcholine lipid bilayers - consistent with the greater potency of Fer-1 and Lip-1 relative to α-TOH as inhibitors of ferroptosis. None of Fer-1, Lip-1, and α-TOH inhibited human 15-lipoxygenase-1 (15-LOX-1) overexpressed in HEK-293 cells when assayed at concentrations where they inhibited ferroptosis. These results stand in stark contrast to those obtained with a known 15-LOX-1 inhibitor (PD146176), which was able to inhibit the enzyme at concentrations where it was effective in inhibiting ferroptosis. Given the likelihood that Fer-1 and Lip-1 subvert ferroptosis by inhibiting lipid peroxidation as RTAs, we evaluated the antiferroptotic potential of 1,8-tetrahydronaphthyridinols (hereafter THNs): rationally designed radical-trapping antioxidants of unparalleled reactivity. We show for the first time that the inherent reactivity of the THNs translates to cell culture, where lipophilic THNs were similarly effective to Fer-1 and Lip-1 at subverting ferroptosis induced by either pharmacological or genetic inhibition of the hydroperoxide-detoxifying enzyme Gpx4 in mouse fibroblasts, and glutamate-induced death of mouse hippocampal cells. These results demonstrate that potent RTAs subvert ferroptosis and suggest that lipid peroxidation (autoxidation) may play a central role in the process. | Sheng X, Shan C, Liu J, Yang J, Sun B, Chen D (2017) Theoretical insights into the mechanism of ferroptosis suppression via inactivation of a lipid peroxide radical by liproxstatin-1. Physical chemistry chemical physics : PCCP 19, 13153-13159 [PubMed:28489094] [show Abstract] Ferroptosis is a recently discovered iron-dependent form of non-apoptotic cell death caused by the accumulation of membrane lipid peroxidation products, which is involved in various pathological conditions of the brain, kidney, liver and heart. A potent spiroquinoxalinamine derivative named liproxstatin-1 is discovered by high-throughput screening, which is able to suppress ferroptosis via lipid peroxide scavenging in vivo. Thus, molecular simulations, density functional theory (DFT) and variational transition-state theory with a small-curvature tunneling (SCT) coefficient are utilized to elucidate the detailed mechanisms of inactivation of a lipid peroxide radical by liproxstatin-1. H-atom abstracted from liproxstatin-1 by a CH3OO˙ radical occurs preferentially at the aromatic amine site (1'-NH) under thermodynamic and frontier molecular orbital analysis. The value of a calculated rate constant at 300 K is up to 6.38 × 103 M-1 S-1, indicating that the quantum tunneling effect is responsible for making a free radical trapping reaction more efficient by liproxstatin-1. The production of a liproxstatin-1 radical is easily regenerated to the active reduced form by ubiquinol in the body to avoid secondary damage by free radicals. A benzene ring and the higher HOMO energy are beneficial to enhance the lipid radical scavenging activity based on the structure-activity relationship study. Overall, the present results provide theoretical insights into the exploration of novel ferroptosis inhibitors. |
|