InChI=1S/C10H17N3O2S/c11-8(14)4-2-1-3-7-9-6(5-16-7)12-10(15)13-9/h6-7,9H,1-5H2,(H2,11,14)(H2,12,13,15)/t6-,7-,9-/m0/s1 |
XFLVBMBRLSCJAI-ZKWXMUAHSA-N |
[H][C@]12CS[C@@H](CCCCC(N)=O)[C@@]1([H])NC(=O)N2 |
|
Bronsted acid
A molecular entity capable of donating a hydron to an acceptor (Bronsted base).
(via oxoacid )
|
|
human metabolite
Any mammalian metabolite produced during a metabolic reaction in humans (Homo sapiens).
|
|
View more via ChEBI Ontology
5-[(3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl]pentanamide
|
Biotin amide
|
KEGG COMPOUND
|
biotin amide
|
UniProt
|
biotinamide
|
ChemIDplus
|
6929-42-6
|
CAS Registry Number
|
ChemIDplus
|
86836
|
Reaxys Registry Number
|
Reaxys
|
Chen BN, Sharrad DF, Hibberd TJ, Zagorodnyuk VP, Costa M, Brookes SJ (2015) Neurochemical characterization of extrinsic nerves in myenteric ganglia of the guinea pig distal colon. The Journal of comparative neurology 523, 742-756 [PubMed:25380190] [show Abstract] Extrinsic nerves to the gut influence the absorption of water and electrolytes and expulsion of waste contents, largely via regulation of enteric neural circuits; they also contribute to control of blood flow. The distal colon is innervated by extrinsic sympathetic and parasympathetic efferent and spinal afferent neurons, via axons in colonic nerve trunks. In the present study, biotinamide tracing of colonic nerves was combined with immunohistochemical labeling for markers of sympathetic, parasympathetic, and spinal afferent neurons to quantify their relative contribution to the extrinsic innervation. Calcitonin gene-related peptide, vesicular acetylcholine transporter, and tyrosine hydroxylase, which selectively label spinal afferent, parasympathetic, and sympathetic axons, respectively, were detected immunohistochemically in 1 ± 0.5% (n = 7), 15 ± 4.7% (n = 6), and 24 ± 4% (n = 7) of biotinamide-labeled extrinsic axons in myenteric ganglia. Immunoreactivity for vasoactive intestinal polypeptide, nitric oxide synthase, somatostatin, and vesicular glutamate transporters 1 and 2 accounted for a combined maximum of 14% of biotinamide-labeled axons in myenteric ganglia. Thus, a maximum of 53% of biotinamide-labeled extrinsic axons in myenteric ganglia were labeled by antisera to one of these eight markers. Viscerofugal neurons were also labeled by biotinamide. They had distinct morphologies and spatial distributions that correlated closely with their immunoreactivity for nitric oxide synthase and choline acetyltransferase. As reported for the rectum, nearly half of all extrinsic nerve fibers to the distal colon lack the key immunohistochemical markers commonly used for their identification. Their abundance may therefore have been significantly underestimated in previous immunohistochemical studies. | Brumovsky PR, La JH, Gebhart GF (2014) Distribution across tissue layers of extrinsic nerves innervating the mouse colorectum - an in vitro anterograde tracing study. Neurogastroenterology and motility 26, 1494-1507 [PubMed:25185752] [show Abstract]
BackgroundAnterograde in vitro tracing of the pelvic nerve (PN) and visualization in the horizontal plane in whole mount preparations has been fundamental in the analysis of distribution of peripheral nerves innervating the colorectum. Here, we performed a similar analysis, but in cryostat sections of the mouse colorectum, allowing for a more direct visualization of nerve distribution in all tissue layers.MethodsColorectum with attached PNs was dissected from adult male BalbC mice. Presence of active afferents was certified by single fiber recording of fine PN fibers. This was followed by 'bulk' (all fibers) anterograde tracing using biotinamide (BTA). Histo- and immunohistochemical techniques were used for visualization of BTA-positive nerves, and evaluation of co-localization with calcitonin gene-related peptide (CGRP), respectively. Tissue was analyzed using confocal microscopy on transverse or longitudinal colorectum sections.Key resultsAbundant BTA-positive nerves spanning all layers of the mouse colorectum and contacting myenteric plexus neurons, distributing within the muscle layer, penetrating deeper into the organ and contacting blood vessels, submucosal plexus neurons or even penetrating the mucosa, were regularly detected. Several traced axons co-localized CGRP, supporting their afferent nature. Finally, anterograde tracing of the PN also exposed abundant BTA-positive nerves in the major pelvic ganglion.Conclusions & inferencesWe present the patterns of innervation of extrinsic axons across layers in the mouse colorectum, including the labile mucosal layer. The proposed approach could also be useful in the analysis of associations between morphology and physiology of peripheral nerves targeting the different layers of the colorectum. |
|