InChI=1S/C6H6N4O2/c1-10-4-3(7-2-8-4)5(11)9-6(10)12/h2H,1H3,(H,7,8)(H,9,11,12) |
GMSNIKWWOQHZGF-UHFFFAOYSA-N |
Cn1c2nc[nH]c2c(=O)[nH]c1=O |
|
metabolite
Any intermediate or product resulting from metabolism. The term 'metabolite' subsumes the classes commonly known as primary and secondary metabolites.
(via alkaloid )
animal metabolite
Any eukaryotic metabolite produced during a metabolic reaction in animals that include diverse creatures from sponges, insects to mammals.
(via 3-methylxanthine )
marine metabolite
Any metabolite produced during a metabolic reaction in marine macro- and microorganisms.
(via 3-methylxanthine )
human xenobiotic metabolite
Any human metabolite produced by metabolism of a xenobiotic compound in humans.
(via 3-methylxanthine )
|
|
View more via ChEBI Ontology
3-methyl-3,7-dihydro-1H-purine-2,6-dione
|
3,7-dihydro-3-methyl-1H-purine-2,6-dione
|
ChEBI
|
3-methyl-3,7(9)-dihydro-purine-2,6-dione
|
ChEBI
|
3-methylxanthine
|
UniProt
|
3-methylxanthine
|
ChEBI
|
N1-demethyltheophylline
|
ChEBI
|
1076-22-8
|
CAS Registry Number
|
KEGG COMPOUND
|
180944
|
Reaxys Registry Number
|
Reaxys
|
Lee SW, Zhao L, Pardi A, Xia T (2010) Ultrafast dynamics show that the theophylline and 3-methylxanthine aptamers employ a conformational capture mechanism for binding their ligands. Biochemistry 49, 2943-2951 [PubMed:20214401] [show Abstract] RNAs often exhibit a high degree of conformational dynamics and heterogeneity, leading to a rugged energy landscape. However, the roles of conformational heterogeneity and rapid dynamics in molecular recognition or RNA function have not been extensively elucidated. Ultrafast time-resolved fluorescence spectroscopic experiments were used here to probe picosecond dynamics of the theophylline-binding RNA aptamer. These studies showed that multiple conformations are populated in the free RNA, indicating that this aptamer employs a conformational capture mechanism for ligand binding. The base on residue 27 in an internal loop exists in at least three conformational states in the free RNA, including binding competent and incompetent states that have distinct fluorescence decay signatures indicating different base stacking interactions. Picosecond dynamics were also detected by anisotropy experiments, where these motions indicate additional dynamics for base 27. The picosecond data show that theophylline binding shifts the equilibrium for conformations of base 27 from primarily stacked in the free RNA to mostly unstacked in the RNA-theophylline complex, as observed in the previous NMR structure. In contrast, base 10 in a second internal loop is mostly preorganized in the free RNA, consistent with it being stacked between G11 and G25, as is observed in the bound state. Picosecond dynamics were also measured on a modified aptamer that binds with higher affinity to 3-methylxanthine than theophylline. The modified aptamer shows less heterogeneity in the aptamer-3-methylxanthine complex than what is observed in the theophylline aptamer-theophylline complex. | Georgopoulou E, Mermelekas G, Karena E, Frillingos S (2010) Purine substrate recognition by the nucleobase-ascorbate transporter signature motif in the YgfO xanthine permease: ASN-325 binds and ALA-323 senses substrate. The Journal of biological chemistry 285, 19422-19433 [PubMed:20406814] [show Abstract] The nucleobase-ascorbate transporter (NAT) signature motif is a conserved 11-amino acid sequence of the ubiquitous NAT/NCS2 family, essential for function and selectivity of both a bacterial (YgfO) and a fungal (UapA) purine-transporting homolog. We examined the role of NAT motif in more detail, using Cys-scanning and site-directed alkylation analysis of the YgfO xanthine permease of Escherichia coli. Analysis of single-Cys mutants in the sequence 315-339 for sensitivity to inactivation by 2-sulfonatoethyl methanethiosulfonate (MTSES(-)) and N-ethylmaleimide (NEM) showed a similar pattern: highly sensitive mutants clustering at the motif sequence (323-329) and a short alpha-helical face downstream (332, 333, 336). In the presence of substrate, N325C is protected from alkylation with either MTSES(-) or NEM, whereas sensitivity of A323C to inactivation by NEM is enhanced, shifting IC(50) from 34 to 14 microM. Alkylation or sensitivity of the other mutants is unaffected by substrate; the lack of an effect on Q324C is attributed to gross inability of this mutant for high affinity binding. Site-directed mutants G333R and S336N at the alpha-helical face downstream the motif display specific changes in ligand recognition relative to wild type; G333R allows binding of 7-methyl and 8-methylxanthine, whereas S336N disrupts affinity for 6-thioxanthine. Finally, all assayable motif-mutants are highly accessible to MTSES(-) from the periplasmic side. The data suggest that the NAT motif region lines the solvent- and substrate-accessible inner cavity, Asn-325 is at the binding site, Ala-323 responds to binding with a specific conformational shift, and Gly-333 and Ser-336 form part of the purine permeation pathway. | Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP (2008) Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Molecular pharmacology 74, 980-989 [PubMed:18621927] [show Abstract] Epidemiological evidence suggests that caffeine or its metabolites reduce the risk of developing Parkinson's disease, possibly by protecting dopaminergic neurons, but the underlying mechanism is not clearly understood. Here, we show that the primary metabolite of caffeine, paraxanthine (PX; 1, 7-dimethylxanthine), was strongly protective against neurodegeneration and loss of synaptic function in a culture system of selective dopaminergic cell death. In contrast, caffeine itself afforded only marginal protection. The survival effect of PX was highly specific to dopaminergic neurons and independent of glial cell line-derived neurotrophic factor (GDNF). Nevertheless, PX had the potential to rescue dopaminergic neurons that had matured initially with and were then deprived of GDNF. The protective effect of PX was not mediated by blockade of adenosine receptors or by elevation of intracellular cAMP levels, two pharmacological effects typical of methylxanthine derivatives. Instead, it was attributable to a moderate increase in free cytosolic calcium via the activation of reticulum endoplasmic ryanodine receptor (RyR) channels. Consistent with these observations, PX and also ryanodine, the preferential agonist of RyRs, were protective in an unrelated paradigm of mitochondrial toxin-induced dopaminergic cell death. In conclusion, our data suggest that PX has a neuroprotective potential for diseased dopaminergic neurons. | Geraets L, Moonen HJ, Wouters EF, Bast A, Hageman GJ (2006) Caffeine metabolites are inhibitors of the nuclear enzyme poly(ADP-ribose)polymerase-1 at physiological concentrations. Biochemical pharmacology 72, 902-910 [PubMed:16870158] [show Abstract] The activity of the nuclear enzyme poly(ADP-ribose)polymerase-1 (E.C.2.4.2.30), which is highly activated by DNA strand breaks, is associated with the pathophysiology of both acute as well as chronic inflammatory diseases. PARP-1 overactivation and the subsequent extensive turnover of its substrate NAD+ put a large demand on mitochondrial ATP-production. Furthermore, due to its reported role in NF-kappaB and AP-1 mediated production of pro-inflammatory cytokines, PARP-1 is considered an interesting target in the treatment of these diseases. In this study the PARP-1 inhibiting capacity of caffeine and several metabolites as well as other (methyl)xanthines was tested using an ELISA-assay with purified human PARP-1. Caffeine itself showed only weak PARP-1 inhibiting activity, whereas the caffeine metabolites 1,7-dimethylxanthine, 3-methylxanthine and 1-methylxanthine, as well as theobromine and theophylline showed significant PARP-1 inhibiting activity. Further evaluation of these compounds in H2O2-treated A549 lung epithelial and RF24 vascular endothelial cells revealed that the decrease in NAD+-levels as well as the formation of the poly(ADP-ribose)polymer was significantly prevented by the major caffeine metabolite 1,7-dimethylxanthine. Furthermore, H2O2-induced necrosis could be prevented by a high dose of 1,7-dimethylxanthine. Finally, antioxidant effects of the methylxanthines could be ruled out with ESR and measurement of the TEAC. Concluding, caffeine metabolites are inhibitors of PARP-1 and the major caffeine metabolite 1,7-dimethylxanthine has significant PARP-1 inhibiting activity in cultured epithelial and endothelial cells at physiological concentrations. This inhibition could have important implications for nutritional treatment of acute and chronic inflammatory pathologies, like prevention of ischemia-reperfusion injury or vascular complications in diabetes. | Morimoto T, Kotegawa T, Tsutsumi K, Ohtani Y, Imai H, Nakano S (2004) Effect of St. John's wort on the pharmacokinetics of theophylline in healthy volunteers. Journal of clinical pharmacology 44, 95-101 [PubMed:14681347] [show Abstract] The objective of this study was to investigate the effect of St. John's wort (SJW, Hypericum perforatum) on the pharmacokinetics of theophylline in healthy volunteers. Twelve healthy Japanese male volunteers participated in this randomized, open-labeled, crossover study. The subjects took an SJW caplet (300 mg) three times a day for 15 days. On day 14, they received a single oral dose of 400 mg of theophylline. They took the same dose of theophylline without SJW treatment on another occasion. Plasma and urine samples were obtained during a 48-hour period after theophylline administration. Theophylline concentrations in plasma and urine, as well as the major metabolites (13U, 1U, 3X) in urine, were measured. SJW caused no significant changes in the pharmacokinetics of theophylline in plasma. SJW administration tended to increase the ratio of 1U/the total amount excreted in urine. However, no changes in the ratio of unchanged theophylline, 13U, and 3X were observed. It is unlikely that the effect of 15 days of treatment with SJW on CYPs is sufficient to cause a change in plasma theophylline concentrations. | Yao C, Kunze KL, Kharasch ED, Wang Y, Trager WF, Ragueneau I, Levy RH (2001) Fluvoxamine-theophylline interaction: gap between in vitro and in vivo inhibition constants toward cytochrome P4501A2. Clinical pharmacology and therapeutics 70, 415-424 [PubMed:11719727] [show Abstract]
ObjectiveSeveral reports indicate that fluvoxamine decreases the clearance of cytochrome P4501A2 (CYP1A2) substrates. This study compared in vitro and in vivo inhibition potencies of fluvoxamine toward CYP1A2 with an approach based on inhibition constants (K(i)) determined in vitro and in vivo.MethodsIn vitro inhibition constant values were determined with human liver microsomes and complementary deoxyribonucleic acid-expressed CYP1A2 (supersomes). Fluvoxamine in vivo inhibition constants (K(i)iv) for CYP1A2 were obtained from an investigation of single-dose theophylline (250 mg) disposition in 9 healthy volunteers receiving steady-state (9 days) fluvoxamine at 3 doses (0, 25, or 75 mg/d) in a randomized crossover design.ResultsIn vitro K(i) values based on total inhibitor concentrations were 177 +/- 56 nmol/L, 121 +/- 21 nmol/L, and 52 +/- 13 nmol/L in human liver microsomes with 1 mg/ml protein and 0.5 mg/ml protein and in supersomes with 0.3 mg/ml protein, respectively. The corresponding in vitro K(i) values based on unbound fluvoxamine concentrations were 35 nmol/L, 36 nmol/L, and 36 nmol/L. The ratio of 1-methyluric acid formation clearances (control/inhibited) in 8 subjects was positively correlated with fluvoxamine concentration (r (2) = 0.87; P <.001) with an intercept near 1. Mean values for K(i)iv based on total and unbound plasma concentrations at steady state were 25.3 nmol/L (range, 14-39 nmol/L) and 3.6 nmol/L (range, 2.4-5.9 nmol/L), respectively.ConclusionComparison of in vitro and in vivo K(i) values based on unbound fluvoxamine concentrations suggests that fluvoxamine inhibition potency is approximately 10 times greater in vivo than in vitro. | Cavallaro RA, Filocamo L, Galuppi A, Galione A, Brufani M, Genazzani AA (1999) Potentiation of cADPR-induced Ca(2+)-release by methylxanthine analogues. Journal of medicinal chemistry 42, 2527-2534 [PubMed:10411473] [show Abstract] Caffeine and other methylxanthines are known to induce Ca(2+)-release from intracellular stores via the ryanodine receptor. In the present work, a range of caffeine analogues, in which methyl groups at the 1 and 7 positions were replaced with alkyl chains containing different functional groups (oxo, hydroxyl, propargyl, ester, and acids), were synthesized. These compounds were then screened for their ability to potentiate Ca(2+)-release induced by cADPR (an endogenous modulator of ryanodine receptors) in sea urchin egg homogenates. Two of the synthesized methylxanthines, 1, 3-dimethyl-7-(7-hydroxyoctyl)xanthine (37) and 3-methyl-7-(7-oxooctyl)-1-propargylxanthine (66), were shown to be more potent than caffeine in potentiating cADPR-induced Ca(2+)-release, while 1,3-dimethyl-7-(5-ethylcarboxypentyl)xanthine (14) was shown to be more efficacious. The development of new methylxanthine analogues may lead to a better understanding of ryanodine receptor function and could possibly provide novel therapeutic agents. | Niki Y, Itokawa K, Okazaki O (1998) Effects of DU-6859a, a new quinolone antimicrobial, on theophylline metabolism in in vitro and in vivo studies. Antimicrobial agents and chemotherapy 42, 1751-1755 [PubMed:9661016] [show Abstract] In vitro and in vivo studies were conducted to investigate the drug interaction between a new quinolone antimicrobial, DU-6859a, and theophylline (TP). The effect of DU-6859a on TP metabolism was evaluated in vitro by measuring the rate of TP metabolite formation by using human liver microsomes. DU-6859a inhibited the metabolism of TP, especially the formation of 1-methylxanthine, in vitro, but to a lesser extent than other drugs that are known to interact with TP. TP was administered alone (200 mg twice a day [b.i.d.] for 9 days) or in combination with DU-6859a (50 or 100 mg b.i.d. for 5 days) to six healthy subjects. DU-6859a administered at a dose of 50 mg resulted in no changes in serum TP concentrations, and slight increases in serum TP concentrations were observed at a dose of 100 mg. Moreover, the administration of 100 mg of DU-6859a resulted in decreases in all urinary TP metabolites, with significant differences. It appears that although DU-6859a has a weak inhibitory effect on TP metabolism in vitro, its concomitant use with TP at clinical dosage levels does not cause any adverse effects, showing only a slight increase in blood TP concentrations and a decrease in urinary metabolites. | Chappe V, Mettey Y, Vierfond JM, Hanrahan JW, Gola M, Verrier B, Becq F (1998) Structural basis for specificity and potency of xanthine derivatives as activators of the CFTR chloride channel. British journal of pharmacology 123, 683-693 [PubMed:9517388] [show Abstract] 1. On the basis of their structure, we compared the ability of 35 xanthine derivatives to activate the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel stably expressed in chinese hamster ovary (CHO) cells using the cell-attached patch clamp and iodide efflux techniques. 2. Activation of CFTR channels was obtained with 3-mono, 1,3-di or 1,3,7-tri-substituted alkyl xanthine derivatives (enprofylline, theophylline, aminophylline, IBMX, DPMX and pentoxifylline). By contrast, xanthine derivatives substituted at the C8- or N9-position failed to open CFTR channels. 3. The CFTR chloride channel activity was blocked by glibenclamide (100 microM) but not by DIDS (100 microM). 4. Activation of CFTR by xanthines was not mimicked by the calcium ionophore A23187, adenosine, UTP, ATP or the specific phosphodiesterase inhibitors rolipram, Ro 20-1724 and milrinone. In addition, we found no correlation between the effect of xanthines on CFTR and on the cellular cyclic AMP or ATP levels. 5. We then synthesized a series of 3,7-dimethyl-1-alkyl xanthine derivatives; among them, 3,7-dimethyl-1-propyl xanthine and 3,7-dimethyl-1-isobutyl xanthine both activated CFTR channels without increasing the intracellular cyclic AMP level, while the structurally related 3,7-dimethyl-1-(2-propenyl) xanthine and 3,7-dimethyl-1-(oxiranyl methyl) xanthine were inactive. 6. Our findings delineate a novel function for xanthine compounds and identify the molecular features that enable xanthine activation of CFTR. These results may be useful in the development of new molecules for studying the pharmacology of chloride channels. | Liu W, Meissner G (1997) Structure-activity relationship of xanthines and skeletal muscle ryanodine receptor/Ca2+ release channel. Pharmacology 54, 135-143 [PubMed:9127436] [show Abstract] Caffeine (1,3,7-trimethylxanthine) in the millimolar range is known to activate the skeletal muscle Ca2+ release channel (ryanodine receptor). Xanthine analogs substituted in the 1, 3, 7, 8 and 9 positions were tested for their capacity to increase [3H]ryanodine binding to skeletal muscle sarcoplasmic reticulum vesicles enriched in Ca2+ release activity and ryanodine receptor content. Of the 30 xanthines tested, 9 were more effective than caffeine in increasing [3H]ryanodine binding. The 7-methyl group of caffeine was most important for activating the ryanodine receptor, followed by the methyl groups in the 1 and 3 positions. An increase in hydrophobicity of the side chains in positions 7, 1 and 3 enhanced the ability of xanthines to activate the ryanodine receptor. Substitutions in positions 8 and 9 were without effect or were inhibitory. These results should help in developing xanthines specific for the sarcoplasmic reticulum Ca2+ release channel. | Ogiso T, Iwaki M, Uno S (1995) Inhibition kinetics of theophylline metabolism by mexiletine and its metabolites. Biological & pharmaceutical bulletin 18, 75-81 [PubMed:7735255] [show Abstract] To further characterize the mode of drug interaction between theophylline (TP) and mexiletine (ME), in vitro kinetic studies were carried out using rat liver microsomes and 9000 x g supernatant. The kinetic study revealed that the Km value and Vmax/Km ratio for the metabolic conversion of TP to 1,3-dimethyluric acid (1,3-DMU) were the second lowest and the highest, respectively, of four metabolic pathways. Thus, the rank of efficiency of the oxidative metabolism by microsomal cytochrome P-450 (P-450) isozymes was TP to 1,3-DMU > TP to 1-methylxanthine (1-MX) > TP to 3-MX > 1,3-DMU to 1-methyluric acid, suggesting that the isozyme metabolizing TP would have a higher affinity for the oxidation at the 8-position in TP molecules than at the 1- and 3-positions. Lineweaver-Burk plots showed that the conversion of TP to 3-MX and to 1,3-DMU was inhibited competitively by ME and its metabolites, and that the pathway of TP to 1-MX was inhibited noncompetitively. In consideration of the Ki values calculated, it seems probable that deamino-p-hydroxy ME (DApHME) might be the most potent inhibitor of the metabolic pathways of TP, and that the rank order of inhibition is approximately DApHME > p-hydroxy ME > deamino-hydroxymethyl ME > ME > hydroxymethyl ME, with some exceptions. The mechanism of the interaction between TP and ME is probably due to the metabolic antagonism in the liver, and TP, ME and their metabolites share some of the same metabolic pathways, mediated by P-450 isozymes. |
|