Project: PRJNA697943
We report de novo genome assemblies, transcriptomes, annotations, and methylomes for the 26 maize inbreds that serve as the founders for the maize nested association mapping population. The data indicate that the number of pan-genes in maize exceeds 103,000 and that the ancient tetraploid character of maize continues to degrade by fractionation to the present day. Excellent contiguity over repeat arrays and complete annotation of centromeres further revealed the locations and internal structures of major cytological landmarks. We show that combining structural variation with SNPs can improve the power of quantitative mapping studies. Finally, we document variation at the level of DNA methylation, and demonstrate that unmethylated regions are enriched for cis-regulatory elements that correlate with known QTLs and changes in gene expression. Overall design: Genotype pooling of NAM founder leaf tissues across three biological replicates and two technical replicates of single-cell ATAC-seq libraries. Individual cells were genotyped and reads from cells from the same founder were aggregated.
General