Project: PRJNA90137
Organisms respond to heat stress by reprogramming gene expression. Here we show that genome-wide reprogramming involves enhanced assembly of the TFIID and SAGA regulatory pathways at heat induced genes, and disassembly of the TFIID pathway at heat-repressed genes. While TFIID and SAGA are recruited to heat-induced genes, only SAGA appears to be associated with achieving maximal induction. Mot1, an ATP-dependent inhibitor of the TATA binding protein TBP, assembles at heat-induced SAGA-regulated genes, but functions to attenuate rather than promote activation. Changes in promoter occupancy of bromodomain factor Bdf1 are tightly linked to changes in TFIID occupancy, which further supports the notion that the two work together. Bdf1 is inhibitory to a number of SAGA-regulated genes and dissociates when these genes are activated, suggesting that Bdf1 normally blocks transcription complex assembly at these genes. These linkages in reprogramming of factor occupancy at promoters provide direct evidence for two functionally distinct transcription assembly pathways, and reveal unexpected cross-talk between the pathways. Keywords = Chromatin Immunoprecipitation Keywords = Microarray Keywords = TBP Keywords: other