F
IPR001469

ATP synthase, F1 complex, delta/epsilon subunit

InterPro entry
Short nameATP_synth_F1_dsu/esu
Overlapping
homologous
superfamilies
 
family relationships

Description

This family represents subunits called delta (in mitochondrial ATPase) or epsilon (in bacteria or chloroplast ATPase). The interaction site of subunit C of the F0 complex with the delta or epsilon subunit of the F1 complex may be important for connecting the rotor of F1 (gamma subunit) to the rotor of F0 (C subunit)
[2]
. In bacterial species, the delta subunit is the equivalent of the Oligomycin sensitive subunit (OSCP,
IPR000711
) in metazoans. The C-terminal domain of the epsilon subunit appears to act as an inhibitor of ATPase activity
[3]
.

Transmembrane ATPases are membrane-bound enzyme complexes/ion transporters that use ATP hydrolysis to drive the transport of protons across a membrane. Some transmembrane ATPases also work in reverse, harnessing the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP.

F-ATPases (also known as ATP synthases, F1F0-ATPase, or H(+)-transporting two-sector ATPase) (
7.1.2.2
) are composed of two linked complexes: the F1 ATPase complex is the catalytic core and is composed of 5 subunits (alpha, beta, gamma, delta, epsilon), while the F0 ATPase complex is the membrane-embedded proton channel that is composed of at least 3 subunits (A-C), with additional subunits in mitochondria. Both the F1 and F0 complexes are rotary motors that are coupled back-to-back. In the F1 complex, the central gamma subunit forms the rotor inside the cylinder made of the α(3)β(3) subunits, while in the F0 complex, the ring-shaped C subunits forms the rotor. The two rotors rotate in opposite directions, but the F0 rotor is usually stronger, using the force from the proton gradient to push the F1 rotor in reverse in order to drive ATP synthesis
[1]
. These ATPases can also work in reverse in bacteria, hydrolysing ATP to create a proton gradient.

References

1.Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Yasuda R, Noji H, Yoshida M, Kinosita K Jr, Itoh H. Nature 410, 898-904, (2001). View articlePMID: 11309608

2.ATP synthases: insights into their motor functions from sequence and structural analyses. Hong S, Pedersen PL. J. Bioenerg. Biomembr. 35, 95-120, (2003). View articlePMID: 12887009

3.Inhibition of ATP hydrolysis by thermoalkaliphilic F1Fo-ATP synthase is controlled by the C terminus of the epsilon subunit. Keis S, Stocker A, Dimroth P, Cook GM. J. Bacteriol. 188, 3796-804, (2006). View articlePMID: 16707672

Further reading

4. F-type or V-type? The chimeric nature of the archaebacterial ATP synthase. Schafer G, Meyering-Vos M. Biochim. Biophys. Acta 1101, 232-5, (1992). PMID: 1385979

5. F-and V-ATPases in the genus Thermus and related species. Radax C, Sigurdsson O, Hreggvidsson GO, Aichinger N, Gruber C, Kristjansson JK, Stan-Lotter H. Syst. Appl. Microbiol. 21, 12-22, (1998). PMID: 9741106

6. Regulation and isoform function of the V-ATPases. Toei M, Saum R, Forgac M. Biochemistry 49, 4715-23, (2010). View articlePMID: 20450191

7. New insights into structure-function relationships between archeal ATP synthase (A1A0) and vacuolar type ATPase (V1V0). Gruber G, Marshansky V. Bioessays 30, 1096-109, (2008). View articlePMID: 18937357

8. Mechanisms of ATPases--a multi-disciplinary approach. Rappas M, Niwa H, Zhang X. Curr. Protein Pept. Sci. 5, 89-105, (2004). View articlePMID: 15078220

9. The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio. Cross RL, Muller V. FEBS Lett. 576, 1-4, (2004). View articlePMID: 15473999

GO terms

Cross References

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our Privacy Notice and Terms of Use.