P-type ATPase, subfamily V
Short name | P-type_TPase_V |
Overlapping homologous superfamilies | |
family relationships |
Description
References
1.Evolution of substrate specificities in the P-type ATPase superfamily. Axelsen KB, Palmgren MG. J. Mol. Evol. 46, 84-101, (1998). View articlePMID: 9419228
2.Structural basis of polyamine transport by human ATP13A2 (PARK9). Sim SI, von Bulow S, Hummer G, Park E. Mol Cell 81, 4635-4649.e8, (2021). PMID: 34715013
3.Structure and transport mechanism of P5B-ATPases. Li P, Wang K, Salustros N, Gronberg C, Gourdon P. Nat Commun 12, 3973, (2021). PMID: 34172751
4.Caenorhabditis elegans P5B-type ATPase CATP-5 operates in polyamine transport and is crucial for norspermidine-mediated suppression of RNA interference. Heinick A, Urban K, Roth S, Spies D, Nunes F, Phanstiel O 4th, Liebau E, Luersen K. FASEB J. 24, 206-17, (2010). PMID: 19762559
5.Shadows of an absent partner: ATP hydrolysis and phosphoenzyme turnover of the Spf1 (sensitivity to Pichia farinosa killer toxin) P5-ATPase. Corradi GR, de Tezanos Pinto F, Mazzitelli LR, Adamo HP. J Biol Chem 287, 30477-84, (2012). PMID: 22745129
6.Ergosterol content specifies targeting of tail-anchored proteins to mitochondrial outer membranes. Krumpe K, Frumkin I, Herzig Y, Rimon N, Ozbalci C, Brugger B, Rapaport D, Schuldiner M. Mol Biol Cell 23, 3927-35, (2012). PMID: 22918956
7.Structural mechanisms for gating and ion selectivity of the human polyamine transporter ATP13A2. Tillinghast J, Drury S, Bowser D, Benn A, Lee KPK. Mol Cell 81, 4650-4662.e4, (2021). PMID: 34715014
8.Reduction of the P5A-ATPase Spf1p phosphoenzyme by a Ca2+-dependent phosphatase. Corradi GR, Mazzitelli LR, Petrovich GD, Grenon P, Sorensen DM, Palmgren M, de Tezanos Pinto F, Adamo HP. PLoS One 15, e0232476, (2020). PMID: 32353073
9.ATP13A2 deficiency disrupts lysosomal polyamine export. van Veen S, Martin S, Van den Haute C, Benoy V, Lyons J, Vanhoutte R, Kahler JP, Decuypere JP, Gelders G, Lambie E, Zielich J, Swinnen JV, Annaert W, Agostinis P, Ghesquiere B, Verhelst S, Baekelandt V, Eggermont J, Vangheluwe P. Nature 578, 419-424, (2020). PMID: 31996848
10.ATP13A3 is a major component of the enigmatic mammalian polyamine transport system. Hamouda NN, Van den Haute C, Vanhoutte R, Sannerud R, Azfar M, Mayer R, Cortes Calabuig A, Swinnen JV, Agostinis P, Baekelandt V, Annaert W, Impens F, Verhelst SHL, Eggermont J, Martin S, Vangheluwe P. J Biol Chem 296, 100182, (2021). PMID: 33310703
11.Pleiotropic Effects of the P5-Type ATPase SpfA on Stress Response Networks Contribute to Virulence in the Pathogenic Mold Aspergillus fumigatus. Guirao-Abad JP, Weichert M, Luengo-Gil G, Sze Wah Wong S, Aimanianda V, Grisham C, Malev N, Reddy S, Woollett L, Askew DS. mBio 12, e0273521, (2021). PMID: 34663092
Further reading
14. Mechanisms of ATPases--a multi-disciplinary approach. Rappas M, Niwa H, Zhang X. Curr. Protein Pept. Sci. 5, 89-105, (2004). View articlePMID: 15078220
15. F-type or V-type? The chimeric nature of the archaebacterial ATP synthase. Schafer G, Meyering-Vos M. Biochim. Biophys. Acta 1101, 232-5, (1992). PMID: 1385979
16. The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratio. Cross RL, Muller V. FEBS Lett. 576, 1-4, (2004). View articlePMID: 15473999
17. F-and V-ATPases in the genus Thermus and related species. Radax C, Sigurdsson O, Hreggvidsson GO, Aichinger N, Gruber C, Kristjansson JK, Stan-Lotter H. Syst. Appl. Microbiol. 21, 12-22, (1998). PMID: 9741106
18. Regulation and isoform function of the V-ATPases. Toei M, Saum R, Forgac M. Biochemistry 49, 4715-23, (2010). View articlePMID: 20450191
19. New insights into structure-function relationships between archeal ATP synthase (A1A0) and vacuolar type ATPase (V1V0). Gruber G, Marshansky V. Bioessays 30, 1096-109, (2008). View articlePMID: 18937357
GO terms
biological process
- None
molecular function
cellular component