H
IPR014729

Rossmann-like alpha/beta/alpha sandwich fold

InterPro entry
Short nameRossmann-like_a/b/a_fold
Overlapping entries
 

Description

This superfamily represents domains related by a common ancestor that have a Rossmann-like, 3-layer, α/β/α sandwich fold. Protein families in which the domain is found include:


 * Nucleotidylyl transferases (
2.7.7
) such as cytidylyltransferases
[1]
, adenylyltransferases
[2]
.
 * Class I aminoacyl-tRNA synthetases (catalytic domain), such as tyrosyl-tRNA synthetase (
6.1.1.1
) and glutaminyl-tRNA synthetase (
6.1.1.18
)
[3]
.
 * Pantothenate synthetases (
6.3.2.1
)
[4]
.
 * ATP sulphurylase (central domain)
[5]

 * N-type ATP pyrophosphatases, such as beta-lactam synthetase (
6.3.3.4
) and GMP synthase (
6.3.5.2
)
[6]
.
 * PP-loop ATPases such as the cell cycle protein MesJ (N-terminal domain)
[7]
.
 * Phosphoadenylyl sulphate (PAPS) reductase
[8]

 * Electron transfer flavoprotein (ETFP) subunits, such as the N-terminal domains of the alpha and beta subunits
[9]
.
 * Universal stress protein A (UspA)
[10]
.
 * Cryptochrome and DNA photolyase
[11]
.

References

1.Crystal structure of CTP:glycerol-3-phosphate cytidylyltransferase from Staphylococcus aureus: examination of structural basis for kinetic mechanism. Fong DH, Yim VC, D'Elia MA, Brown ED, Berghuis AM. Biochim. Biophys. Acta 1764, 63-9, (2006). View articlePMID: 16344011

2.Structure and implications for the thermal stability of phosphopantetheine adenylyltransferase from Thermus thermophilus. Takahashi H, Inagaki E, Fujimoto Y, Kuroishi C, Nodake Y, Nakamura Y, Arisaka F, Yutani K, Kuramitsu S, Yokoyama S, Yamamoto M, Miyano M, Tahirov TH. Acta Crystallogr. D Biol. Crystallogr. 60, 97-104, (2004). PMID: 14684898

3.Architectures of class-defining and specific domains of glutamyl-tRNA synthetase. Nureki O, Vassylyev DG, Katayanagi K, Shimizu T, Sekine S, Kigawa T, Miyazawa T, Yokoyama S, Morikawa K. Science 267, 1958-65, (1995). View articlePMID: 7701318

4.Crystal structure of the pantothenate synthetase from Mycobacterium tuberculosis, snapshots of the enzyme in action. Wang S, Eisenberg D. Biochemistry 45, 1554-61, (2006). View articlePMID: 16460002

5.Molecular basis for G protein control of the prokaryotic ATP sulfurylase. Mougous JD, Lee DH, Hubbard SC, Schelle MW, Vocadlo DJ, Berger JM, Bertozzi CR. Mol. Cell 21, 109-22, (2006). View articlePMID: 16387658

6.The crystal structure of GMP synthetase reveals a novel catalytic triad and is a structural paradigm for two enzyme families. Tesmer JJ, Klem TJ, Deras ML, Davisson VJ, Smith JL. Nat. Struct. Biol. 3, 74-86, (1996). View articlePMID: 8548458

7.Structural basis for lysidine formation by ATP pyrophosphatase accompanied by a lysine-specific loop and a tRNA-recognition domain. Nakanishi K, Fukai S, Ikeuchi Y, Soma A, Sekine Y, Suzuki T, Nureki O. Proc. Natl. Acad. Sci. U.S.A. 102, 7487-92, (2005). View articlePMID: 15894617

8.Crystal structure of phosphoadenylyl sulphate (PAPS) reductase: a new family of adenine nucleotide alpha hydrolases. Savage H, Montoya G, Svensson C, Schwenn JD, Sinning I. Structure 5, 895-906, (1997). View articlePMID: 9261082

9.Three-dimensional structure of human electron transfer flavoprotein to 2.1-A resolution. Roberts DL, Frerman FE, Kim JJ. Proc. Natl. Acad. Sci. U.S.A. 93, 14355-60, (1996). View articlePMID: 8962055

10.The Pseudomonas aeruginosa universal stress protein PA4352 is essential for surviving anaerobic energy stress. Boes N, Schreiber K, Hartig E, Jaensch L, Schobert M. J. Bacteriol. 188, 6529-38, (2006). View articlePMID: 16952944

11.Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity. Huang Y, Baxter R, Smith BS, Partch CL, Colbert CL, Deisenhofer J. Proc. Natl. Acad. Sci. U.S.A. 103, 17701-6, (2006). View articlePMID: 17101984

Cross References

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our Privacy Notice and Terms of Use.