D
IPR024766

Zinc finger, RING-H2-type

InterPro entry
Short nameZnf_RING_H2
Overlapping
homologous
superfamilies
 
domain relationships

Description

Zinc finger (Znf) domains are relatively small protein motifs which contain multiple finger-like protrusions that make tandem contacts with their target molecule. Some of these domains bind zinc, but many do not; instead binding other metals such as iron, or no metal at all. For example, some family members form salt bridges to stabilise the finger-like folds. They were first identified as a DNA-binding motif in transcription factor TFIIIA from Xenopus laevis (African clawed frog), however they are now recognised to bind DNA, RNA, protein and/or lipid substrates
[1, 2, 3, 4, 7]
. Their binding properties depend on the amino acid sequence of the finger domains and of the linker between fingers, as well as on the higher-order structures and the number of fingers. Znf domains are often found in clusters, where fingers can have different binding specificities. There are many superfamilies of Znf motifs, varying in both sequence and structure. They display considerable versatility in binding modes, even between members of the same class (e.g. some bind DNA, others protein), suggesting that Znf motifs are stable scaffolds that have evolved specialised functions. For example, Znf-containing proteins function in gene transcription, translation, mRNA trafficking, cytoskeleton organisation, epithelial development, cell adhesion, protein folding, chromatin remodelling and zinc sensing, to name but a few
[5]
. Zinc-binding motifs are stable structures, and they rarely undergo conformational changes upon binding their target.

This domain constitutes a conserved region found in proteins that participate in diverse functions relevant to chromosome metabolism and cell cycle control
[6]
.The domain contains 8 cysteine/ histidine residues which are proposed to be the conserved residues involved in zinc binding.

References

1.Zinc finger peptides for the regulation of gene expression. Klug A. J. Mol. Biol. 293, 215-8, (1999). View articlePMID: 10529348

2.Multiple modes of RNA recognition by zinc finger proteins. Hall TM. Curr. Opin. Struct. Biol. 15, 367-73, (2005). View articlePMID: 15963892

3.Zinc finger proteins: getting a grip on RNA. Brown RS. Curr. Opin. Struct. Biol. 15, 94-8, (2005). View articlePMID: 15718139

4.Sticky fingers: zinc-fingers as protein-recognition motifs. Gamsjaeger R, Liew CK, Loughlin FE, Crossley M, Mackay JP. Trends Biochem. Sci. 32, 63-70, (2007). View articlePMID: 17210253

5.Zinc finger proteins: new insights into structural and functional diversity. Laity JH, Lee BM, Wright PE. Curr. Opin. Struct. Biol. 11, 39-46, (2001). View articlePMID: 11179890

6.Caenorhabditis elegans RBX1 is essential for meiosis, mitotic chromosomal condensation and segregation, and cytokinesis. Sasagawa Y, Urano T, Kohara Y, Takahashi H, Higashitani A. Genes Cells 8, 857-72, (2003). View articlePMID: 14622138

7.Zinc fingers--folds for many occasions. Matthews JM, Sunde M. IUBMB Life 54, 351-5, (2002). View articlePMID: 12665246

GO terms

biological process

  • None

cellular component

  • None

Cross References

Contributing Member Database Entry
This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our Privacy Notice and Terms of Use.