H
IPR036878

Glucose permease domain IIB

InterPro entry
Short nameGlu_permease_IIB
Overlapping entries
 

Description

The phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS)
[2, 4]
is a major carbohydrate transport system in bacteria. The PTS catalyzes the phosphorylation of incoming sugar substrates concomitant with their translocation across the cell membrane. The general mechanism of the PTS is the following: a phosphoryl group from phosphoenolpyruvate (PEP) is transferred to enzyme-I (EI) of PTS which in turn transfers it to a phosphoryl carrier protein (HPr). Phospho-HPr then transfers the phosphoryl group to a sugar-specific permease which consists of at least three structurally distinct domains (IIA, IIB, and IIC)
[1]
which can either be fused together in a single polypeptide chain or exist as two or three interactive chains, formerly called enzymes II (EII) and III (EIII).

The first domain (IIA) carries the first permease-specific phoshorylation site, a histidine, which is phosphorylated by phospho-HPr. The second domain (IIB) is phosphorylated by phospho-IIA on a cysteinyl or histidyl residue, depending on the permease. Finally, the phosphoryl group is transferred from the IIB domain to the sugar substrate in a process catalyzed by the IIC domain; this process is coupled to the transmembrane transport of the sugar.

Several PTS permease families are currently recognised, namely, the (i) glucose (including glucoside), (ii) fructose (including mannitol), (iii) lactose (including N,N-diacetylchitobiose), (iv) galactitol, (v) glucitol, (vi) mannose, and (vii) l-ascorbate families
[3]
.

This entry represents the component IIB of the glucose family of PTS systems (type 1). The structure of this domain has a homing endonuclease-like fold, which is composed of an α-β(2)-α-β(2)-α fold arranged into two layers (α/β) with antiparallel sheet.

References

1.Proposed uniform nomenclature for the proteins and protein domains of the bacterial phosphoenolpyruvate: sugar phosphotransferase system. Saier MH Jr, Reizer J. J. Bacteriol. 174, 1433-8, (1992). View articlePMID: 1537788

2.Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Postma PW, Lengeler JW, Jacobson GR. Microbiol. Rev. 57, 543-94, (1993). View articlePMID: 8246840

3.Comparative genomic analyses of the bacterial phosphotransferase system. Barabote RD, Saier MH Jr. Microbiol. Mol. Biol. Rev. 69, 608-34, (2005). View articlePMID: 16339738

4.The bacterial phosphoenolpyruvate: glycose phosphotransferase system. Meadow ND, Fox DK, Roseman S. Annu. Rev. Biochem. 59, 497-542, (1990). View articlePMID: 2197982

GO terms

Cross References

Contributing Member Database Entries
This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our Privacy Notice and Terms of Use.