A monocarboxylic acid that is phenylacetic acid carrying two hydroxy substituents at positions 3 and 5 on the benzene ring.
Identification
(3,5-dihydroxyphenyl)acetic acid
2-(3,5-dihydroxyphenyl)acetic acid
3,5-dihydroxyphenylacetic acid
Species
homo sapiens
NCBI:txid9606 26839171
Europe PubMed Central results
A polyketide synthase in glycopeptide biosynthesis: the biosynthesis of the non-proteinogenic amino acid (S)-3,5-dihydroxyphenylglycine.
Author: Pfeifer V, Nicholson GJ, Ries J, Recktenwald J, Schefer AB, Shawky RM, Schröder J, Wohlleben W, Pelzer S.
Abstract: Balhimycin, a vancomycin-type antibiotic from Amycolatopsis mediterranei, contains the unusual amino acid (S)-3,5-dihydroxyphenylglycine (Dpg), with an acetate-derived carbon backbone. After sequence analysis of the biosynthetic gene cluster, one gene, dpgA, for a predicted polyketide synthase (PKS) was identified, sharing 20-30% identity with plant chalcone synthases. Inactivation of dpgA resulted in loss of balhimycin production, and restoration was achieved by supplementation with 3,5-dihydroxyphenylacetic acid, which is both a possible product of a PKS reaction and a likely precursor of Dpg. Enzyme assays with the protein expressed in Streptomyces lividans showed that this PKS uses only malonyl-CoA as substrate to synthesize 3,5-dihydroxyphenylacetic acid. The PKS gene is organized in an operon-like structure with three downstream genes that are similar to enoyl-CoA-hydratase genes and a dehydrogenase gene. The heterologous co-expression of all four genes led to accumulation of 3,5-dihydroxyphenylglyoxylic acid. Therefore, we now propose a reaction sequence. The final step in the pathway to Dpg is a transamination. A predicted transaminase gene was inactivated, resulting in abolished antibiotic production and accumulation of 3,5-dihydroxyphenylglyoxylic acid. Interestingly, restoration was only possible by simultaneous supplementation with (S)-3,5-dihydroxyphenylglycine and (S)-4-hydroxyphenylglycine, indicating that the transaminase is essential for the formation of both amino acids.
Evaluation of the early response and mechanism of treatment of Parkinson's disease with L-dopa using <sup>18</sup>F-fallypride micro-positron emission tomography scanning.
Author: Fa YH, Ni JQ, Wu XJ, Tan JQ, Wu YW.
Abstract: The aim of the present study was to investigate the use of <sup>18</sup>F-fallypride micro-positron emission tomography (micro-PET) imaging in the evaluation of the early therapeutic efficacy of L-dopa in the treatment of Parkinson's disease (PD) and the underlying mechanism. <sup>18</sup>F-fallypride was synthesized and its specific binding with dopamine (DA) receptors in normal mouse brain was studied. Following the establishment of a mouse model of PD, the animals were divided into normal control, PD model and L-dopa treatment groups. General behavior, swimming test, locomotor activity counts, transmission electron microscopy, immunohistochemical analysis, high performance liquid chromatography-electrochemical detection and <sup>18</sup>F-fallypride micro-PET imaging were used to study intergroup differences and the correlation between the changes of striatal uptake of <sup>18</sup>F-fallypride and the therapeutic efficacy. The general behavioral features of PD model mice were similar to the clinical symptoms of PD patients and were alleviated after treatment. The swimming time, locomotor activity and frequency of standing posture of PD model mice were lower than those of the control mice, but had no difference from those of the control mice after L-dopa treatment. The number of tyrosine hydroxylase-positive neurons and the striatal contents of glutathione peroxidase, superoxide dismutase, DA and its metabolites 3,5-dihydroxyphenylacetic acid and homovanillic acid in the PD group were lower than those in the control group, but were significantly improved following the treatment; the significant reduction in DOPAC/DA and HVA/DA ratios post treatment suggested that the rate of DA metabolism decreased significantly. The striatal malondialdehyde content in the PD group increased compared with that in the control group, but was reduced after L-dopa treatment. Micro-PET imaging indicated that the uptake of <sup>18</sup>F-fallypride in the mouse striatum of the PD group was lower than that of the control group and was significantly increased after the treatment. The mechanism of treatment of PD with L-dopa in mice may involve increasing the number of TH-positive cells and DA receptor levels, as well as reducing the rate of DA metabolism; such changes can be noninvasively observed <i>in vitro</i> by <sup>18</sup>F-fallypride imaging.
Synthesis of (+)-xestodecalactone A.
Author: Reddy GN, Mura Reddy G, Sridhar G, Prasad KRS.
Abstract: The total synthesis of Benzannulated macrolide, (+)-Xestodecalactone A was accomplished starting from commercially available enantiomerically pure propylene oxide and 3,5-dihydroxyphenylacetic acid using Grignard reaction, alkylation of 1,3-dithiane and Yamaguchi macrolactonisation as key steps.
Mechanism-Based Post-Translational Modification and Inactivation in Terpene Synthases.
Author: Kersten RD, Diedrich JK, Yates JR, Noel JP.
Abstract: Terpenes are ubiquitous natural chemicals with diverse biological functions spanning all three domains of life. In specialized metabolism, the active sites of terpene synthases (TPSs) evolve in shape and reactivity to direct the biosynthesis of a myriad of chemotypes for organismal fitness. As most terpene biosynthesis mechanistically involves highly reactive carbocationic intermediates, the protein surfaces catalyzing these cascade reactions possess reactive regions possibly prone to premature carbocation capture and potentially enzyme inactivation. Here, we show using proteomic and X-ray crystallographic analyses that cationic intermediates undergo capture by conserved active site residues leading to inhibitory self-alkylation. Moreover, the level of cation-mediated inactivation increases with mutation of the active site, upon changes in the size and structure of isoprenoid diphosphate substrates, and alongside increases in reaction temperatures. TPSs that individually synthesize multiple products are less prone to self-alkylation then TPSs possessing relatively high product specificity. In total, the results presented suggest that mechanism-based alkylation represents an overlooked mechanistic pressure during the evolution of cation-derived terpene biosynthesis.