

Full wwPDB X-ray Structure Validation Report (i)

Jun 15, 2024 – 06:20 PM EDT

PDB ID	:	2QJI
Title	:	M. jannaschii ADH synthase complexed with dihydroxyacetone phosphate and
		glycerol
Authors	:	Ealick, S.E.; Morar, M.
Deposited on	:	2007-07-07
Resolution	:	2.80 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	2.37.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	3140 (2.80-2.80)
Clashscore	141614	3569(2.80-2.80)
Ramachandran outliers	138981	3498 (2.80-2.80)
Sidechain outliers	138945	3500 (2.80-2.80)
RSRZ outliers	127900	3078 (2.80-2.80)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	Δ	273	659/	219/	
	11	210	63% %	31%	••
1	В	273	65%	31%	•••
1	\mathbf{C}	273	7° 66%	30%	•••
1		070	%		
	D	273	67% %	29%	••
1	Ε	273	65%	28%	5%•

Mol	Chain	Length	Quality of chain		
1	F	273	64%	31%	•••
1	G	273	64%	30%	• ••
1	Н	273	68%	27%	••
1	Ι	273	63%	32%	•••
1	J	273	67%	28%	•••
1	Κ	273	% 66%	30%	••
1	L	273	70%	26%	••
1	М	273	2% 62%	34%	••
1	Ν	273	4% 63%	33%	•••
1	Ο	273	% 70%	27%	•••
1	Р	273	71%	25%	•••
1	Q	273	% • 67%	27%	5%•
1	R	273	% 68%	29%	••
1	S	273	^{2%} 64%	32%	. .
1	Т	273	% • 66%	27%	5%•

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	GOL	С	500	-	-	Х	Х
3	GOL	D	500	-	-	Х	Х
3	GOL	Ι	500	-	-	Х	-
3	GOL	J	500	-	-	Х	Х
3	GOL	М	500	-	-	Х	-
3	GOL	0	500	-	-	Х	-
3	GOL	Р	500	-	-	Х	-
3	GOL	R	500	-	-	Х	-

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 41213 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	Δ	971	Total	С	Ν	0	\mathbf{S}	0	0	0
	11	211	2042	1278	365	388	11	0	0	0
1	В	271	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
		211	2034	1273	364	386	11	0	0	0
1	C	271	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	<u> </u>	211	2029	1272	362	384	11	Ŭ	Ŭ	0
1	D	271	Total	С	Ν	0	\mathbf{S}	0	0	0
-			2038	1276	365	386	11	Ŭ		
1	Е	271	Total	С	Ν	0	\mathbf{S}	0	0	0
			2051	1285	368	387	11	Ŭ		
1	F	271	Total	С	Ν	Ο	\mathbf{S}	0	0	0
-	-		2045	1282	365	387	11	Ŭ		U
1	G	271	Total	С	Ν	Ο	S	0	0	0
			2044	1279	368	386	11	Ŭ		
1	Н	271	Total	С	Ν	0	S	0	0	0
		-	2036	$\frac{1276}{3}$	363	386	11			
1	Ι	271	Total	C	N	0	S	0	0	0
			2038	1276	365	386	<u> </u>			
1	J	271	Total	C	N	0	S	0	0	0
			2032	1273	362	386	<u> </u>			
1	K	271	Total	C 1079	N	0	S	0	0	0
			2032	1273	362	386	<u></u>			
1	L	271	Total	C 1079	N DC4	0	S 11	0	0	0
			2034	1273	364	380				
1	М	271	Total	C 1070	N DCT	0	S 11	0	0	0
			2038	1270	305 N	380	11			
1	Ν	271	Total	U 1079	N 2C0		5 11	0	0	0
			2032	1273	302 N	380	11			
1	Ο	271	Total	U 1970	IN 261	0 206	5 11	0	0	0
			2028	$\frac{1270}{C}$	301 N	380	<u>11</u>			
1	Р	271		U 1070			5	0	0	0
			2044	1279	368	386	11			

• Molecule 1 is a protein called Putative aldolase MJ0400.

2QJI

Contentaca front process as page										
Mol	Chain	Residues		\mathbf{At}	\mathbf{oms}		ZeroOcc	AltConf	Trace	
1	0	971	Total	С	Ν	0	S	0	0	0
1	Q	271	2032	1273	362	386	11	0	0	U
1	D	971	Total	otal C N O S	0	0	0			
1	n	271	2038	1276	365	386	11	0	0	0
1	C	071	Total	С	Ν	0	S	0	0	0
1 5	271	2038	1276	365	386	11	0	0	0	
1 T	260	Total	С	Ν	0	S	0	0	0	
	269	2021	1267	359	384	11	0	0	0	

• Molecule 2 is 1,3-DIHYDROXYACETONEPHOSPHATE (three-letter code: 13P) (formula: $C_3H_7O_6P$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
2	А	1	Total 0	C 3	0 5	P 1	0	0
2	В	1	Total	C	0	P	0	0
		-	9 Tetal	$\frac{3}{C}$	$\frac{5}{0}$	1 	Ŭ Ŭ	
2	С	1	10tal 9	$\frac{0}{3}$	$\frac{1}{5}$	г 1	0	0
2	D	1	Total	С	0	P 0 0	0	
		1	9	3	5	1	0	0
2	E	1	Total	С	0	Р	0	0
		-	9	3	5	1	Ŭ	
2	F	1	Total	С	Ο	Р	0	0
	1	1	9	3	5	1	0	
2	G	1	Total	Ċ	Ō	Р	0	0
2 G	1	9	3	5	1	0	0	

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	Н	1	Total C O P 9 3 5 1	0	0
2	Ι	1	Total C O P 9 3 5 1	0	0
2	J	1	Total C O P 9 3 5 1	0	0
2	K	1	Total C O P 9 3 5 1	0	0
2	L	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{P} \\ 9 & 3 & 5 & 1 \end{array}$	0	0
2	М	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{P} \\ 9 & 3 & 5 & 1 \end{array}$	0	0
2	Ν	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{P} \\ 9 & 3 & 5 & 1 \end{array}$	0	0
2	Ο	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{P} \\ 9 & 3 & 5 & 1 \end{array}$	0	0
2	Р	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{P} \\ 9 & 3 & 5 & 1 \end{array}$	0	0
2	Q	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{P} \\ 9 & 3 & 5 & 1 \end{array}$	0	0
2	R	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{P} \\ 9 & 3 & 5 & 1 \end{array}$	0	0
2	S	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{P} \\ 9 & 3 & 5 & 1 \end{array}$	0	0
2	Т	1	$\begin{array}{cccc} \text{Total} & \text{C} & \text{O} & \text{P} \\ 9 & 3 & 5 & 1 \end{array}$	0	0

• Molecule 3 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	F	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	G	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	J	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	К	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
3	L	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	М	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	Ν	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	Р	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	Q	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	R	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	S	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
3	Т	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	10	Total O 10 10	0	0
4	В	15	Total O 15 15	0	0
4	С	7	Total O 7 7	0	0
4	D	6	Total O 6 6	0	0
4	Ε	12	Total O 12 12	0	0
4	F	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0	0
4	G	6	Total O 6 6	0	0
4	Н	12	Total O 12 12	0	0
4	Ι	10	Total O 10 10	0	0
4	J	8	Total O 8 8	0	0
4	К	12	Total O 12 12	0	0
4	L	10	Total O 10 10	0	0
4	М	9	Total O 9 9	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Ν	6	Total O 6 6	0	0
4	Ο	10	Total O 10 10	0	0
4	Р	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0	0
4	Q	16	Total O 16 16	0	0
4	R	12	Total O 12 12	0	0
4	S	8	Total O 8 8	0	0
4	Т	8	Total O 8 8	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Putative aldolase MJ0400

• Molecule 1: Putative aldolase MJ0400

E269 1270 R271 K272 LYS • Molecule 1: Putative aldolase MJ0400 Chain L: 70% 26% MET E2 V246 V246 C248 C248 I249 T250 R251 I256 N239 1240 D244 E264 E265 A266 LYS • Molecule 1: Putative aldolase MJ0400 Chain M: 62% 34% . . F219 F219 L220 Q221 V246 V247 G248 I249 T250 R251 Q242 H243 D244 N21 • Molecule 1: Putative aldolase MJ0400 Chain N: 63% 33% MET

<mark>K272</mark> LYS • Molecule 1: Putative aldolase MJ0400 Chain O: 70% 27% . . r250 R251 1270 R271 K272 LYS G24 • Molecule 1: Putative aldolase MJ0400 Chain P: 71% 25% • • • Molecule 1: Putative aldolase MJ0400 Chain Q: 67% 27% 5%• MET 667 168 168 V65 D262 V263 E264 E265 A266 L267 G248 I249 T250 R251 LYS • Molecule 1: Putative aldolase MJ0400 Chain R: 68% 29% . .

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	94.14Å 103.54Å 153.99Å	Deperitor
a, b, c, α , β , γ	90.05° 87.97° 82.04°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	41.19 - 2.80	Depositor
Resolution (A)	47.81 - 2.38	EDS
% Data completeness	88.3 (41.19-2.80)	Depositor
(in resolution range)	87.2 (47.81-2.38)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$0.00 (at 2.37 \text{\AA})$	Xtriage
Refinement program	CNS 1.2	Depositor
D D	0.244 , 0.296	Depositor
Λ, Λ_{free}	0.237 , 0.289	DCC
R_{free} test set	14868 reflections (10.00%)	wwPDB-VP
Wilson B-factor $(Å^2)$	46.0	Xtriage
Anisotropy	0.414	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.30 , 22.8	EDS
L-test for twinning ²	$< L >=0.46, < L^2>=0.28$	Xtriage
Estimated twinning fraction	0.029 for -h,-k,l	Xtriage
F_o, F_c correlation	0.88	EDS
Total number of atoms	41213	wwPDB-VP
Average B, all atoms $(Å^2)$	59.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 14.17% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 13P, GOL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain Bond		nd lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.42	0/2074	0.62	0/2806	
1	В	0.38	0/2066	0.59	0/2797	
1	С	0.37	0/2061	0.58	0/2790	
1	D	0.37	0/2070	0.60	0/2801	
1	Е	0.45	0/2084	1.14	9/2819~(0.3%)	
1	F	0.39	0/2078	0.66	2/2812~(0.1%)	
1	G	0.42	0/2076	0.63	1/2808~(0.0%)	
1	Н	0.43	0/2068	0.62	0/2798	
1	Ι	0.41	0/2070	0.64	2/2801~(0.1%)	
1	J	0.37	0/2064	0.61	2/2794~(0.1%)	
1	Κ	0.44	2/2064~(0.1%)	0.62	0/2794	
1	L	0.39	0/2066	0.62	0/2797	
1	М	0.38	0/2070	0.60	0/2801	
1	Ν	0.42	1/2064~(0.0%)	0.67	3/2794~(0.1%)	
1	0	0.38	0/2060	1.03	4/2790~(0.1%)	
1	Р	0.42	0/2076	0.61	0/2808	
1	Q	0.40	0/2064	0.63	1/2794~(0.0%)	
1	R	0.42	0/2070	0.66	2/2801~(0.1%)	
1	S	0.42	0/2070	1.00	3/2801~(0.1%)	
1	Т	0.37	0/2052	0.59	0/2775	
All	All	0.40	3/41367~(0.0%)	0.70	29/55981~(0.1%)	

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	Κ	166	GLU	CG-CD	6.07	1.61	1.51
1	Ν	166	GLU	CD-OE2	5.48	1.31	1.25
1	Κ	166	GLU	CB-CG	-5.08	1.42	1.52

All (29) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	0	18	ARG	NE-CZ-NH2	-29.62	105.49	120.30
1	S	110	ARG	NE-CZ-NH1	-28.80	105.90	120.30
1	0	18	ARG	NE-CZ-NH1	28.17	134.38	120.30
1	S	110	ARG	NE-CZ-NH2	27.27	133.94	120.30
1	Е	238	ARG	NE-CZ-NH1	-26.27	107.17	120.30
1	Ε	238	ARG	NE-CZ-NH2	24.95	132.78	120.30
1	Е	22	ARG	NE-CZ-NH1	-21.89	109.35	120.30
1	Е	22	ARG	NE-CZ-NH2	20.14	130.37	120.30
1	S	110	ARG	CD-NE-CZ	13.77	142.88	123.60
1	0	18	ARG	CD-NE-CZ	13.70	142.77	123.60
1	Е	238	ARG	CD-NE-CZ	11.51	139.72	123.60
1	F	77	GLY	N-CA-C	10.59	139.57	113.10
1	Е	22	ARG	CD-NE-CZ	8.53	135.54	123.60
1	0	213	THR	N-CA-C	-7.51	90.73	111.00
1	F	214	ASN	N-CA-C	7.45	131.12	111.00
1	Ι	213	THR	N-CA-C	-7.30	91.30	111.00
1	R	213	THR	N-CA-C	-6.74	92.81	111.00
1	Ε	238	ARG	CB-CG-CD	-6.58	94.51	111.60
1	R	78	LYS	N-CA-C	-6.56	93.28	111.00
1	Ε	214	ASN	N-CA-C	6.30	128.01	111.00
1	G	213	THR	N-CA-C	-6.10	94.52	111.00
1	Ν	213	THR	N-CA-C	-5.95	94.94	111.00
1	Ι	214	ASN	N-CA-C	5.91	126.97	111.00
1	Ε	22	ARG	CG-CD-NE	5.80	123.97	111.80
1	J	213	THR	N-CA-C	-5.54	96.05	111.00
1	Ν	77	GLY	N-CA-C	5.51	126.88	113.10
1	J	214	ASN	N-CA-C	5.48	125.81	111.00
1	Ν	214	ASN	N-CA-C	5.44	125.70	111.00
1	Q	214	ASN	N-CA-C	5.11	124.79	111.00

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2042	0	2041	89	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	В	2034	0	2026	88	0
1	С	2029	0	2024	104	0
1	D	2038	0	2037	85	0
1	Е	2051	0	2055	113	0
1	F	2045	0	2044	96	0
1	G	2044	0	2048	112	0
1	Н	2036	0	2037	83	0
1	Ι	2038	0	2037	88	0
1	J	2032	0	2026	88	0
1	Κ	2032	0	2026	91	0
1	L	2034	0	2026	76	0
1	М	2038	0	2037	97	0
1	Ν	2032	0	2026	104	0
1	0	2028	0	2015	84	0
1	Р	2044	0	2048	82	0
1	Q	2032	0	2026	83	0
1	R	2038	0	2037	86	0
1	S	2038	0	2037	91	0
1	Т	2021	0	2016	92	0
2	А	9	0	5	3	0
2	В	9	0	5	2	0
2	С	9	0	5	2	0
2	D	9	0	5	3	0
2	Ε	9	0	5	2	0
2	F	9	0	5	2	0
2	G	9	0	5	3	0
2	Н	9	0	5	2	0
2	Ι	9	0	5	2	0
2	J	9	0	5	2	0
2	K	9	0	5	2	0
2	L	9	0	5	2	0
2	М	9	0	5	2	0
2	Ν	9	0	5	2	0
2	0	9	0	5	2	0
2	Р	9	0	5	2	0
2	Q	9	0	5	2	0
2	R	9	0	5	3	0
2	S	9	0	5	2	0
2	Т	9	0	5	2	0
3	А	6	0	8	3	0
3	В	6	0	8	1	0
3	С	6	0	8	7	0

 \mathbf{Mol}

3

3

H(added)	Clashes	Symm-Clashes
8	4	0
8	2	0
8	3	0
8	1	0
8	2	0
8	4	0
8	4	0
8	1	0
8	3	0
8	5	0
8	3	0
8	6	0
8	4	0
8	1	0
8	8	0
8	3	0
8	2	0
0	0	0
0	1	0
0	0	0

α \cdot \cdot \cdot	C	•	
Continued	from	previous	page
	•	-	

Non-H

6

6

H(model)

0

0

Chain

D

Е

3	\mathbf{F}	6	0	8	3	0
3	G	6	0	8	1	0
3	Н	6	0	8	2	0
3	Ι	6	0	8	4	0
3	J	6	0	8	4	0
3	Κ	6	0	8	1	0
3	L	6	0	8	3	0
3	М	6	0	8	5	0
3	Ν	6	0	8	3	0
3	0	6	0	8	6	0
3	Р	6	0	8	4	0
3	Q	6	0	8	1	0
3	R	6	0	8	8	0
3	S	6	0	8	3	0
3	Т	6	0	8	2	0
4	А	10	0	0	0	0
4	В	15	0	0	1	0
4	С	7	0	0	3	0
4	D	6	0	0	1	0
4	Ε	12	0	0	5	0
4	F	5	0	0	4	0
4	G	6	0	0	1	0
4	Η	12	0	0	0	0
4	Ι	10	0	0	1	0
4	J	8	0	0	3	0
4	Κ	12	0	0	3	0
4	L	10	0	0	1	0
4	М	9	0	0	3	0
4	Ν	6	0	0	2	0
4	0	10	0	0	2	0
4	Р	5	0	0	0	0
4	Q	16	0	0	1	0
4	R	12	0	0	4	0
4	S	8	0	0	2	0
4	Т	8	0	0	3	0
All	All	41213	0	40929	1666	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 20.

All (1666) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom-2	Interatomic	Clash
Atom-1		distance (Å)	overlap (Å)
1:H:30:VAL:HG21	1:H:54:VAL:HG11	1.38	1.05
1:D:212:LYS:HD2	1:D:239:ASN:HA	1.37	1.05
1:E:74:ARG:HG3	1:E:74:ARG:HH11	1.12	1.04
1:B:9:ASN:ND2	1:B:12:LYS:H	1.55	1.03
1:M:265:GLU:HA	1:M:268:LYS:HD3	1.37	1.02
1:A:47:ILE:HD13	1:A:47:ILE:H	1.26	1.00
1:Q:47:ILE:HD13	1:Q:47:ILE:H	1.27	1.00
1:G:51:VAL:HG12	1:G:74:ARG:HD3	1.40	1.00
1:D:47:ILE:HD13	1:D:47:ILE:H	1.26	0.99
1:P:47:ILE:HD13	1:P:47:ILE:H	1.26	0.99
1:R:47:ILE:HD13	1:R:47:ILE:H	1.27	0.99
1:B:47:ILE:HD13	1:B:47:ILE:H	1.28	0.98
1:0:47:ILE:HD13	1:O:47:ILE:H	1.27	0.98
1:H:47:ILE:HD13	1:H:47:ILE:H	1.27	0.98
1:I:47:ILE:HD13	1:I:47:ILE:H	1.26	0.98
1:C:47:ILE:H	1:C:47:ILE:HD13	1.28	0.98
1:F:47:ILE:HD13	1:F:47:ILE:H	1.28	0.98
1:N:47:ILE:HD13	1:N:47:ILE:H	1.28	0.97
1:M:47:ILE:HD13	1:M:47:ILE:H	1.28	0.97
1:S:47:ILE:HD13	1:S:47:ILE:H	1.28	0.96
1:A:30:VAL:HG21	1:A:54:VAL:HG11	1.47	0.95
1:T:47:ILE:H	1:T:47:ILE:HD13	1.28	0.95
1:L:47:ILE:HD13	1:L:47:ILE:H	1.27	0.95
1:J:47:ILE:HD13	1:J:47:ILE:H	1.29	0.95
1:R:16:LEU:HD23	1:R:19:ILE:HD11	1.49	0.95
1:S:16:LEU:HD23	1:S:19:ILE:HD11	1.46	0.95
1:S:264:GLU:HA	1:S:267:LEU:HD12	1.48	0.94
1:F:16:LEU:HD23	1:F:19:ILE:HD11	1.49	0.94
1:T:16:LEU:HD23	1:T:19:ILE:HD11	1.49	0.94
1:G:47:ILE:HD13	1:G:47:ILE:H	1.30	0.94
1:M:16:LEU:HD23	1:M:19:ILE:HD11	1.46	0.94
1:G:74:ARG:NH2	1:G:78:LYS:H	1.65	0.94
1:J:9:ASN:HD22	1:J:12:LYS:H	0.96	0.94
1:N:16:LEU:HD23	1:N:19:ILE:HD11	1.49	0.94
1:K:30:VAL:HG21	1:K:54:VAL:HG11	1.49	0.93
1:C:98:LYS:HE3	4:C:508:HOH:O	1.67	0.93
1:E:47:ILE:HD13	1:E:47:ILE:H	1.32	0.93
1:K:47:ILE:HD13	1:K:47:ILE:H	1.28	0.93
1:E:16:LEU:HD23	1:E:19:ILE:HD11	1.50	0.93
1:O:16:LEU:HD23	1:O:19:ILE:HD11	1.50	0.93
1:J:16:LEU:HD23	1:J:19:ILE:HD11	1.48	0.92
1:H:16:LEU:HD23	1:H:19:ILE:HD11	1.52	0.92

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:P:16:LEU:HD23	1:P:19:ILE:HD11	1.50	0.92
1:Q:16:LEU:HD23	1:Q:19:ILE:HD11	1.52	0.92
1:G:16:LEU:HD23	1:G:19:ILE:HD11	1.50	0.91
1:I:16:LEU:HD23	1:I:19:ILE:HD11	1.51	0.90
1:L:16:LEU:HD23	1:L:19:ILE:HD11	1.53	0.90
1:D:16:LEU:HD23	1:D:19:ILE:HD11	1.52	0.90
1:B:16:LEU:HD23	1:B:19:ILE:HD11	1.52	0.90
1:C:85:HIS:NE2	3:C:500:GOL:H31	1.87	0.89
1:I:30:VAL:HG21	1:I:54:VAL:HG11	1.53	0.88
1:C:16:LEU:HD23	1:C:19:ILE:HD11	1.52	0.88
1:R:217:GLU:HA	4:R:502:HOH:O	1.70	0.88
1:K:16:LEU:HD23	1:K:19:ILE:HD11	1.52	0.88
1:E:251:ARG:HG3	1:E:271:ARG:HH12	1.39	0.88
1:P:8:LYS:HE3	1:P:8:LYS:H	1.38	0.88
1:P:74:ARG:HD3	1:P:76:TYR:O	1.73	0.88
1:A:16:LEU:HD23	1:A:19:ILE:HD11	1.53	0.87
1:M:28:VAL:HG12	4:M:510:HOH:O	1.74	0.87
1:I:9:ASN:C	1:I:9:ASN:HD22	1.77	0.87
1:N:266:ALA:O	1:N:269:GLU:HB2	1.74	0.86
1:J:9:ASN:ND2	1:J:12:LYS:H	1.73	0.86
1:T:263:VAL:HG23	1:T:264:GLU:H	1.40	0.86
1:J:10:LEU:HD11	1:T:69:VAL:HG12	1.55	0.86
1:K:255:LYS:HD3	1:K:269:GLU:OE2	1.76	0.86
1:T:9:ASN:HD22	1:T:12:LYS:H	1.24	0.85
1:H:54:VAL:HG13	1:H:250:THR:HG21	1.58	0.85
1:J:70:ARG:HH11	1:J:70:ARG:HB3	1.41	0.85
1:J:53:ASP:OD2	1:J:246:VAL:HB	1.76	0.85
1:K:36:VAL:HG21	4:K:504:HOH:O	1.76	0.85
1:A:142:GLU:HG2	1:E:70:ARG:NH2	1.92	0.84
1:M:30:VAL:HG23	4:M:510:HOH:O	1.76	0.84
1:A:30:VAL:HG21	1:A:54:VAL:CG1	2.08	0.83
4:F:505:HOH:O	1:J:40:PRO:HB3	1.78	0.83
1:G:51:VAL:CG1	1:G:74:ARG:HD3	2.09	0.83
1:N:78:LYS:HD3	1:N:79:ASP:H	1.44	0.83
1:E:251:ARG:NH1	1:E:271:ARG:HH22	1.76	0.82
1:S:30:VAL:HG21	1:S:54:VAL:HG11	1.59	0.82
1:D:212:LYS:HA	1:D:239:ASN:OD1	1.81	0.81
1:O:9:ASN:HD22	1:0:12:LYS:H	1.28	0.81
1:B:9:ASN:HD22	1:B:12:LYS:H	1.24	0.81
1:C:9:ASN:HD21	1:C:145:GLY:HA2	1.44	0.80
1:I:30:VAL:HG21	1:I:54:VAL:CG1	2.12	0.80

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:E:74:ARG:HH11	1:E:74:ARG:CG	1.94	0.80
1:T:177:GLU:HB2	4:T:503:HOH:O	1.81	0.80
1:O:9:ASN:HD21	1:O:145:GLY:HA2	1.47	0.80
1:E:251:ARG:NH1	1:E:271:ARG:NH2	2.30	0.79
1:I:215:THR:OG1	1:I:218:GLU:HG3	1.82	0.79
1:S:208:ALA:HB2	4:S:504:HOH:O	1.83	0.79
1:O:30:VAL:HG21	1:O:54:VAL:HG11	1.62	0.79
1:H:69:VAL:HG12	1:P:10:LEU:HD11	1.64	0.78
1:N:78:LYS:HE2	1:N:78:LYS:HA	1.64	0.78
1:G:263:VAL:O	1:G:267:LEU:HB2	1.83	0.77
1:E:74:ARG:HG3	1:E:74:ARG:NH1	1.92	0.77
1:F:212:LYS:HA	1:F:239:ASN:OD1	1.84	0.77
1:G:28:VAL:O	1:G:60:ASN:HB2	1.84	0.77
1:H:109:ILE:HD11	1:P:144:TRP:CZ3	2.20	0.77
1:K:30:VAL:HG21	1:K:54:VAL:CG1	2.15	0.77
1:T:212:LYS:HA	1:T:239:ASN:OD1	1.84	0.77
1:D:69:VAL:HG12	1:N:10:LEU:HD11	1.68	0.76
1:E:248:GLY:HA2	1:E:271:ARG:NH1	2.00	0.76
1:D:212:LYS:CD	1:D:239:ASN:HA	2.15	0.76
1:S:30:VAL:HG21	1:S:54:VAL:CG1	2.15	0.76
1:C:10:LEU:HD11	1:O:69:VAL:HG12	1.69	0.75
1:G:266:ALA:C	1:G:268:LYS:H	1.90	0.75
1:H:50:THR:O	1:H:54:VAL:HG23	1.87	0.75
1:E:251:ARG:HH11	1:E:271:ARG:HH22	1.35	0.74
1:F:70:ARG:NH2	1:G:8:LYS:H	1.86	0.74
1:R:71:HIS:HA	1:S:6:ASP:OD1	1.88	0.74
1:A:70:ARG:NH2	1:B:142:GLU:HG2	2.03	0.74
1:A:99:LYS:HD2	3:A:500:GOL:O1	1.88	0.73
1:F:139:GLU:HG3	1:J:66:LYS:NZ	2.02	0.73
1:F:32:MET:HB2	1:F:64:LEU:CD2	2.19	0.73
1:G:52:ASN:ND2	1:G:74:ARG:HE	1.86	0.73
1:B:50:THR:O	1:B:54:VAL:HG23	1.87	0.73
1:G:2:GLU:HB2	1:G:25:GLU:OE2	1.88	0.73
1:B:30:VAL:HG21	1:B:54:VAL:HG11	1.71	0.73
1:Q:3:LEU:HD13	1:Q:4:PHE:CE1	2.23	0.73
1:I:69:VAL:HG12	1:Q:10:LEU:HD11	1.70	0.73
1:T:3:LEU:HD22	1:T:204:PRO:HG3	1.70	0.73
1:M:9:ASN:ND2	1:M:12:LYS:H	1.86	0.73
1:F:100:VAL:HG11	1:G:132:ARG:HB2	1.70	0.72
1:C:9:ASN:ND2	1:C:12:LYS:HG3	2.03	0.72
1:C:54:VAL:HG12	1:C:250:THR:HG21	1.70	0.72

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:65:HIS:HE1	3:F:500:GOL:O3	1.71	0.72
1:N:78:LYS:HZ3	1:N:79:ASP:HB3	1.54	0.72
1:P:177:GLU:CD	1:Q:68:ILE:HD11	2.10	0.72
1:A:92:ILE:HD12	1:B:167:LEU:HD22	1.72	0.72
1:L:92:ILE:HD12	1:M:167:LEU:HD22	1.72	0.72
1:E:245:ASP:OD2	1:E:271:ARG:HD2	1.90	0.71
1:A:31:PRO:CB	2:A:501:13P:H31	2.21	0.71
1:F:200:GLY:HA2	4:F:505:HOH:O	1.90	0.71
1:F:51:VAL:HG12	1:F:74:ARG:HD3	1.73	0.71
1:N:31:PRO:CB	2:N:501:13P:H31	2.21	0.71
1:B:68:ILE:HD11	1:C:202:PRO:HG2	1.72	0.71
1:D:2:GLU:HG3	1:D:3:LEU:H	1.56	0.70
1:J:265:GLU:HA	1:J:268:LYS:HD3	1.72	0.70
1:C:9:ASN:HD22	1:C:12:LYS:H	1.39	0.70
1:C:52:ASN:O	1:C:56:GLU:HB2	1.90	0.70
1:I:47:ILE:H	1:I:47:ILE:CD1	2.02	0.70
1:B:92:ILE:HD12	1:C:167:LEU:HD22	1.73	0.70
1:J:31:PRO:CB	2:J:501:13P:H31	2.21	0.70
1:P:8:LYS:HZ1	1:Q:70:ARG:HD3	1.55	0.70
1:C:7:ILE:HD13	1:C:13:LEU:HD23	1.74	0.70
1:D:47:ILE:H	1:D:47:ILE:CD1	2.03	0.70
1:G:265:GLU:HA	1:G:268:LYS:HD3	1.74	0.70
1:J:85:HIS:CD2	3:J:500:GOL:H32	2.27	0.70
1:L:31:PRO:CB	2:L:501:13P:H31	2.22	0.69
1:M:74:ARG:HG3	1:M:75:GLY:H	1.57	0.69
1:N:47:ILE:O	1:N:51:VAL:HG23	1.92	0.69
1:C:99:LYS:HE3	3:C:500:GOL:H12	1.73	0.69
1:C:99:LYS:NZ	3:C:500:GOL:H12	2.07	0.69
1:N:78:LYS:CD	1:N:79:ASP:H	2.06	0.69
1:Q:215:THR:OG1	1:Q:218:GLU:HG3	1.92	0.69
1:C:6:ASP:O	1:C:8:LYS:HG3	1.92	0.69
1:E:74:ARG:NH2	1:E:78:LYS:O	2.25	0.69
1:M:31:PRO:CB	2:M:501:13P:H31	2.23	0.69
1:A:4:PHE:CE2	1:A:204:PRO:HG2	2.27	0.69
1:D:52:ASN:ND2	1:D:74:ARG:HD2	2.08	0.69
1:E:63:LEU:HD11	1:E:151:MET:HE3	1.75	0.69
1:L:4:PHE:HB3	1:L:7:ILE:HD12	1.74	0.69
1:O:85:HIS:NE2	3:O:500:GOL:H12	2.08	0.69
1:T:31:PRO:CB	2:T:501:13P:H31	2.23	0.69
1:B:66:LYS:NZ	1:C:139:GLU:HG3	2.07	0.69
1:F:167:LEU:HD22	1:J:92:ILE:HD12	1.75	0.69

	A A A	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:K:31:PRO:CB	2:K:501:13P:H31	2.23	0.69
1:D:31:PRO:CB	2:D:501:13P:H31	2.23	0.69
1:M:48:ARG:O	1:M:52:ASN:HB2	1.93	0.68
1:R:31:PRO:CB	2:R:501:13P:H31	2.23	0.68
1:C:27:THR:HG23	4:C:506:HOH:O	1.93	0.68
1:P:8:LYS:H	1:P:8:LYS:CE	2.07	0.68
1:S:212:LYS:HA	1:S:239:ASN:OD1	1.92	0.68
1:C:119:HIS:ND1	3:C:500:GOL:H2	2.09	0.68
1:J:64:LEU:HD22	1:J:68:ILE:HG21	1.75	0.68
1:F:3:LEU:HD23	1:F:4:PHE:CE1	2.28	0.68
1:J:31:PRO:HB3	2:J:501:13P:H31	1.76	0.68
1:T:263:VAL:HG23	1:T:264:GLU:N	2.09	0.68
1:A:47:ILE:H	1:A:47:ILE:CD1	2.02	0.68
1:G:271:ARG:HE	1:G:271:ARG:HA	1.59	0.68
1:N:31:PRO:HB3	2:N:501:13P:H31	1.76	0.68
1:R:214:ASN:OD1	1:R:215:THR:HG23	1.94	0.68
1:R:65:HIS:HE1	3:R:500:GOL:C3	2.07	0.68
1:D:221:GLN:OE1	1:D:263:VAL:HG21	1.94	0.68
1:C:31:PRO:CB	2:C:501:13P:H31	2.24	0.67
1:G:31:PRO:CB	2:G:501:13P:H31	2.24	0.67
1:C:99:LYS:CE	3:C:500:GOL:H12	2.25	0.67
1:F:71:HIS:HA	1:G:6:ASP:OD1	1.93	0.67
1:O:212:LYS:HG3	1:O:213:THR:O	1.93	0.67
1:Q:31:PRO:CB	2:Q:501:13P:H31	2.23	0.67
1:E:2:GLU:HB2	1:E:25:GLU:OE2	1.93	0.67
1:L:31:PRO:HB3	2:L:501:13P:H31	1.76	0.67
1:C:52:ASN:HA	1:C:55:ALA:HB3	1.76	0.67
1:T:85:HIS:NE2	3:T:500:GOL:H12	2.10	0.67
1:J:9:ASN:HD22	1:J:12:LYS:N	1.82	0.67
1:B:69:VAL:HG12	1:K:10:LEU:HD11	1.76	0.67
1:L:47:ILE:O	1:L:51:VAL:HG23	1.93	0.67
1:H:220:LEU:HD12	1:H:267:LEU:HD23	1.76	0.67
1:P:65:HIS:HE1	3:P:500:GOL:O3	1.77	0.67
1:R:58:GLY:HA2	1:R:78:LYS:NZ	2.10	0.67
1:S:31:PRO:CB	2:S:501:13P:H31	2.25	0.66
1:T:31:PRO:HB3	2:T:501:13P:H31	1.77	0.66
1:P:100:VAL:HG11	1:R:132:ARG:HB2	1.77	0.66
1:B:78:LYS:HD2	1:B:79:ASP:N	2.10	0.66
1:D:100:VAL:HG11	1:E:132:ARG:HB2	1.77	0.66
1:F:32:MET:HB2	1:F:64:LEU:HD23	1.77	0.66
1:I:31:PRO:CB	2:I:501:13P:H31	2.25	0.66

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:R:92:ILE:HD12	1:S:167:LEU:HD22	1.75	0.66
1:M:31:PRO:HB3	2:M:501:13P:H31	1.76	0.66
1:N:78:LYS:HD3	1:N:79:ASP:N	2.09	0.66
1:O:31:PRO:CB	2:O:501:13P:H31	2.25	0.66
1:G:74:ARG:HH21	1:G:78:LYS:H	1.42	0.66
1:F:266:ALA:O	1:F:269:GLU:HB3	1.95	0.66
1:I:66:LYS:HG2	1:I:67:GLY:N	2.11	0.66
1:I:144:TRP:CZ3	1:Q:109:ILE:HD11	2.30	0.66
1:H:47:ILE:H	1:H:47:ILE:CD1	2.03	0.66
1:N:6:ASP:O	1:N:8:LYS:HG2	1.95	0.66
1:R:271:ARG:HA	4:R:504:HOH:O	1.96	0.66
1:A:63:LEU:C	1:A:64:LEU:HD23	2.17	0.66
1:C:217:GLU:HG2	4:C:505:HOH:O	1.96	0.66
1:A:31:PRO:HB3	2:A:501:13P:H31	1.77	0.65
1:C:109:ILE:HG22	1:C:146:MET:CE	2.26	0.65
1:D:109:ILE:HD11	1:N:144:TRP:CZ3	2.31	0.65
1:E:251:ARG:NH1	1:E:271:ARG:NH1	2.44	0.65
1:I:92:ILE:HD12	1:J:167:LEU:HD22	1.77	0.65
1:J:60:ASN:O	1:J:61:ALA:HB2	1.95	0.65
1:K:31:PRO:HB3	2:K:501:13P:H31	1.78	0.65
1:F:47:ILE:H	1:F:47:ILE:CD1	2.04	0.65
1:H:31:PRO:CB	2:H:501:13P:H31	2.26	0.65
1:T:262:ASP:OD1	1:T:265:GLU:HG3	1.94	0.65
1:A:4:PHE:CD1	1:A:16:LEU:HD13	2.32	0.65
1:A:109:ILE:HG22	1:A:146:MET:CE	2.26	0.65
1:B:70:ARG:HG3	1:B:70:ARG:HH11	1.60	0.65
1:E:31:PRO:CB	2:E:501:13P:H31	2.26	0.65
1:E:88:GLY:HA2	3:E:500:GOL:O2	1.96	0.65
1:B:58:GLY:HA3	1:B:254:CYS:SG	2.36	0.65
1:G:48:ARG:HH21	1:G:73:HIS:N	1.94	0.65
1:N:63:LEU:C	1:N:63:LEU:HD23	2.17	0.65
1:Q:31:PRO:HB3	2:Q:501:13P:H31	1.79	0.65
1:C:7:ILE:HD13	1:C:13:LEU:CD2	2.27	0.65
1:E:251:ARG:NH1	1:E:271:ARG:HH12	1.93	0.65
1:S:54:VAL:HG12	1:S:59:ALA:CB	2.26	0.65
1:S:100:VAL:HG11	1:T:132:ARG:HB2	1.79	0.65
1:E:271:ARG:HD2	1:E:271:ARG:H	1.62	0.65
1:J:68:ILE:O	1:J:71:HIS:N	2.30	0.65
1:Q:57:GLY:HA3	1:Q:250:THR:OG1	1.97	0.65
1:T:178:LEU:HG	4:T:503:HOH:O	1.95	0.65
1:F:139:GLU:HG3	1:J:66:LYS:HZ2	1.60	0.65

	• • • • • • •	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:Q:9:ASN:ND2	1:Q:12:LYS:H	1.95	0.65
1:A:66:LYS:HE3	1:B:139:GLU:HG3	1.77	0.65
1:H:109:ILE:HG22	1:H:146:MET:CE	2.26	0.65
1:R:30:VAL:HG21	1:R:54:VAL:HG11	1.79	0.64
1:B:31:PRO:CB	2:B:501:13P:H31	2.27	0.64
1:E:248:GLY:HA2	1:E:271:ARG:HH11	1.60	0.64
1:K:3:LEU:HD13	1:K:4:PHE:CE1	2.32	0.64
1:P:31:PRO:CB	2:P:501:13P:H31	2.27	0.64
1:R:82:LEU:HB3	4:R:507:HOH:O	1.96	0.64
1:S:74:ARG:HG3	1:S:74:ARG:HH11	1.61	0.64
1:E:85:HIS:NE2	3:E:500:GOL:H11	2.12	0.64
1:G:74:ARG:HH22	1:G:78:LYS:H	1.46	0.64
1:S:53:ASP:HB3	1:S:247:VAL:HG22	1.79	0.64
1:B:7:ILE:HG13	1:B:7:ILE:O	1.96	0.64
1:F:55:ALA:O	1:F:78:LYS:HD3	1.97	0.64
1:L:74:ARG:NH2	1:L:78:LYS:O	2.31	0.64
1:R:214:ASN:HB3	1:R:218:GLU:OE2	1.98	0.64
1:L:54:VAL:HG12	1:L:59:ALA:HB2	1.79	0.64
1:M:207:VAL:HG13	1:M:234:VAL:HG23	1.79	0.64
1:I:31:PRO:HB3	2:I:501:13P:H31	1.80	0.64
1:P:47:ILE:H	1:P:47:ILE:CD1	2.03	0.64
1:R:54:VAL:CG1	1:R:59:ALA:HB2	2.26	0.64
1:C:66:LYS:HE2	1:D:139:GLU:HG3	1.80	0.64
1:K:246:VAL:O	1:K:250:THR:HG23	1.97	0.64
1:A:167:LEU:HD22	1:E:92:ILE:HD12	1.80	0.64
1:G:100:VAL:HG11	1:H:132:ARG:HB2	1.79	0.64
1:N:109:ILE:HG22	1:N:146:MET:CE	2.28	0.64
1:T:207:VAL:HG13	1:T:234:VAL:HG23	1.80	0.64
1:B:47:ILE:H	1:B:47:ILE:CD1	2.04	0.64
1:E:207:VAL:HG13	1:E:234:VAL:HG23	1.81	0.63
1:J:207:VAL:HG13	1:J:234:VAL:HG23	1.81	0.63
1:P:66:LYS:HE2	1:P:103:THR:OG1	1.98	0.63
1:D:57:GLY:HA3	1:D:250:THR:OG1	1.98	0.63
1:L:109:ILE:HG22	1:L:146:MET:CE	2.28	0.63
1:R:207:VAL:HG13	1:R:234:VAL:HG23	1.79	0.63
1:C:246:VAL:O	1:C:250:THR:HG23	1.99	0.63
1:N:63:LEU:HD23	1:N:64:LEU:N	2.13	0.63
1:P:74:ARG:HG3	1:P:74:ARG:HH11	1.63	0.63
1:S:63:LEU:HD12	1:S:83:ILE:HB	1.80	0.63
1:A:4:PHE:HE2	1:A:204:PRO:HG2	1.63	0.63
1:B:207:VAL:HG13	1:B:234:VAL:HG23	1.81	0.63

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:31:PRO:CB	2:F:501:13P:H31	2.28	0.63
1:M:74:ARG:HG3	1:M:75:GLY:N	2.14	0.63
1:O:31:PRO:HB3	2:O:501:13P:H31	1.80	0.63
1:C:31:PRO:HB3	2:C:501:13P:H31	1.79	0.63
1:D:31:PRO:HB3	2:D:501:13P:H31	1.81	0.63
1:E:246:VAL:O	1:E:250:THR:HG23	1.98	0.63
1:I:51:VAL:HG13	1:I:62:VAL:HG11	1.80	0.63
1:M:92:ILE:HD12	1:N:167:LEU:HD22	1.81	0.63
1:N:214:ASN:HB3	1:N:218:GLU:OE2	1.98	0.63
1:P:105:VAL:O	1:P:109:ILE:HG23	1.98	0.63
1:S:264:GLU:HA	1:S:267:LEU:CD1	2.26	0.63
1:B:9:ASN:ND2	1:B:12:LYS:N	2.39	0.63
1:C:9:ASN:ND2	1:C:12:LYS:H	1.95	0.63
1:C:47:ILE:H	1:C:47:ILE:CD1	2.04	0.63
1:F:109:ILE:HD11	1:S:144:TRP:CZ3	2.33	0.63
1:R:4:PHE:HB2	1:R:7:ILE:HG13	1.81	0.63
1:F:246:VAL:O	1:F:250:THR:HG23	1.98	0.63
1:Q:207:VAL:HG13	1:Q:234:VAL:HG23	1.80	0.63
1:S:31:PRO:HB3	2:S:501:13P:H31	1.79	0.63
1:L:100:VAL:HG11	1:M:132:ARG:HB2	1.81	0.63
1:P:31:PRO:HB3	2:P:501:13P:H31	1.81	0.63
1:P:246:VAL:O	1:P:250:THR:HG23	1.98	0.63
1:S:74:ARG:NH2	1:S:78:LYS:O	2.32	0.63
1:B:64:LEU:HD22	1:B:68:ILE:HG21	1.81	0.62
1:A:9:ASN:C	1:A:9:ASN:HD22	2.02	0.62
1:B:31:PRO:HB3	2:B:501:13P:H31	1.81	0.62
1:G:246:VAL:O	1:G:250:THR:HG23	1.98	0.62
1:H:55:ALA:O	1:H:78:LYS:HD2	1.99	0.62
1:O:47:ILE:H	1:O:47:ILE:CD1	2.04	0.62
1:C:70:ARG:HG3	1:C:70:ARG:HH11	1.63	0.62
1:K:105:VAL:O	1:K:109:ILE:HG23	1.99	0.62
1:L:3:LEU:HD22	1:L:204:PRO:HG3	1.81	0.62
1:N:92:ILE:HD12	1:O:167:LEU:HD22	1.82	0.62
1:P:195:ARG:HG2	1:P:199:LYS:HE2	1.81	0.62
1:R:109:ILE:HG22	1:R:146:MET:CE	2.28	0.62
1:G:52:ASN:HD21	1:G:74:ARG:HE	1.45	0.62
1:M:246:VAL:O	1:M:250:THR:HG23	1.98	0.62
1:D:47:ILE:O	1:D:51:VAL:HG23	2.00	0.62
1:I:246:VAL:O	1:I:250:THR:HG23	2.00	0.62
1:J:109:ILE:HG22	1:J:146:MET:CE	2.30	0.62
1:Q:139:GLU:HG3	1:T:66:LYS:NZ	2.14	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:36:VAL:HG21	1:E:65:HIS:CE1	2.35	0.62
1:H:30:VAL:HG21	1:H:54:VAL:CG1	2.20	0.62
1:R:4:PHE:CD1	1:R:4:PHE:N	2.68	0.62
1:B:66:LYS:HZ2	1:C:139:GLU:HG3	1.65	0.62
1:L:207:VAL:HG13	1:L:234:VAL:HG23	1.82	0.62
1:S:65:HIS:HE1	3:S:500:GOL:O3	1.82	0.62
1:S:109:ILE:HG22	1:S:146:MET:CE	2.30	0.62
1:G:144:TRP:CZ3	1:R:109:ILE:HD11	2.34	0.62
1:J:70:ARG:HH11	1:J:70:ARG:CB	2.12	0.62
1:P:30:VAL:HG21	1:P:54:VAL:CG1	2.30	0.62
1:Q:9:ASN:HD22	1:Q:12:LYS:H	1.48	0.62
1:Q:167:LEU:HD22	1:T:92:ILE:HD12	1.82	0.62
1:A:202:PRO:HG2	1:E:68:ILE:HD11	1.82	0.62
1:C:109:ILE:HG22	1:C:146:MET:HE2	1.82	0.62
1:F:109:ILE:HG22	1:F:146:MET:CE	2.30	0.62
1:H:207:VAL:HG13	1:H:234:VAL:HG23	1.82	0.62
1:M:161:ASN:ND2	1:M:163:ARG:H	1.97	0.62
1:O:207:VAL:HG13	1:O:234:VAL:HG23	1.81	0.62
1:P:85:HIS:NE2	3:P:500:GOL:H12	2.15	0.62
1:I:100:VAL:HG11	1:J:132:ARG:HB2	1.80	0.61
1:K:47:ILE:H	1:K:47:ILE:CD1	2.04	0.61
1:L:246:VAL:O	1:L:250:THR:HG23	2.00	0.61
1:M:221:GLN:OE1	1:M:263:VAL:HG21	2.00	0.61
1:R:85:HIS:NE2	3:R:500:GOL:H12	2.14	0.61
1:S:246:VAL:O	1:S:250:THR:HG23	2.00	0.61
1:J:85:HIS:NE2	3:J:500:GOL:H32	2.15	0.61
1:D:10:LEU:HD11	1:N:69:VAL:HG12	1.82	0.61
1:B:109:ILE:HG22	1:B:146:MET:CE	2.31	0.61
1:N:207:VAL:HG13	1:N:234:VAL:HG23	1.82	0.61
1:T:55:ALA:O	1:T:78:LYS:HD3	1.99	0.61
1:E:109:ILE:HG22	1:E:146:MET:CE	2.30	0.61
1:R:105:VAL:O	1:R:109:ILE:HG23	2.01	0.61
1:B:246:VAL:O	1:B:250:THR:HG23	2.00	0.61
1:E:105:VAL:O	1:E:109:ILE:HG23	2.00	0.61
1:F:65:HIS:CE1	3:F:500:GOL:O3	2.53	0.61
1:J:105:VAL:O	1:J:109:ILE:HG23	2.01	0.61
1:Q:246:VAL:O	1:Q:250:THR:HG23	2.01	0.61
1:G:266:ALA:O	1:G:268:LYS:N	2.34	0.61
1:J:246:VAL:O	1:J:250:THR:HG23	2.01	0.61
1:O:105:VAL:O	1:O:109:ILE:HG23	1.99	0.61
1:P:8:LYS:NZ	1:Q:70:ARG:HD3	2.15	0.61

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:R:246:VAL:O	1:R:250:THR:HG23	2.00	0.61
1:D:105:VAL:O	1:D:109:ILE:HG23	2.00	0.61
1:K:109:ILE:HG22	1:K:146:MET:CE	2.29	0.61
1:L:63:LEU:HD11	1:L:151:MET:HE3	1.82	0.61
1:F:207:VAL:HG13	1:F:234:VAL:HG23	1.82	0.61
1:K:69:VAL:C	1:K:71:HIS:H	2.03	0.61
1:R:74:ARG:HG3	1:R:74:ARG:HH11	1.66	0.61
1:O:246:VAL:O	1:O:250:THR:HG23	2.01	0.60
1:B:268:LYS:HB2	1:B:268:LYS:NZ	2.16	0.60
1:I:47:ILE:O	1:I:51:VAL:HG23	2.02	0.60
1:T:95:ASN:HD22	1:T:95:ASN:C	2.05	0.60
1:A:109:ILE:HG22	1:A:146:MET:HE3	1.82	0.60
1:C:105:VAL:O	1:C:109:ILE:HG23	2.01	0.60
1:N:195:ARG:HH22	1:T:160:GLN:HB3	1.66	0.60
1:O:161:ASN:ND2	1:O:163:ARG:H	1.98	0.60
1:S:213:THR:OG1	1:S:219:PHE:HB2	2.01	0.60
1:D:207:VAL:HG13	1:D:234:VAL:HG23	1.83	0.60
1:G:77:GLY:O	1:G:78:LYS:HB2	2.01	0.60
1:K:2:GLU:HB2	1:K:25:GLU:OE2	2.02	0.60
1:K:30:VAL:CG2	1:K:54:VAL:HG11	2.28	0.60
1:M:56:GLU:HG3	1:M:247:VAL:HG13	1.83	0.60
1:P:30:VAL:HG21	1:P:54:VAL:HG11	1.81	0.60
1:K:55:ALA:C	1:K:57:GLY:H	2.05	0.60
1:K:195:ARG:HG2	1:K:199:LYS:HE2	1.84	0.60
1:A:207:VAL:HG13	1:A:234:VAL:HG23	1.82	0.60
1:F:195:ARG:HG2	1:F:199:LYS:HE2	1.84	0.60
1:H:31:PRO:HB3	2:H:501:13P:H31	1.82	0.60
1:J:61:ALA:HA	1:J:80:VAL:HB	1.82	0.60
1:M:27:THR:HA	1:M:60:ASN:OD1	2.01	0.60
1:N:36:VAL:HG21	1:N:65:HIS:CE1	2.36	0.60
1:S:36:VAL:HG22	4:T:503:HOH:O	2.01	0.60
1:A:105:VAL:O	1:A:109:ILE:HG23	2.01	0.60
1:T:195:ARG:HG2	1:T:199:LYS:HE2	1.82	0.60
1:H:105:VAL:O	1:H:109:ILE:HG23	2.01	0.60
1:M:9:ASN:HD22	1:M:12:LYS:H	1.47	0.60
1:N:246:VAL:O	1:N:250:THR:HG23	2.01	0.60
1:O:109:ILE:HG22	1:O:146:MET:CE	2.32	0.60
1:Q:109:ILE:HG22	1:Q:146:MET:CE	2.32	0.60
1:S:109:ILE:HG22	1:S:146:MET:HE3	1.84	0.60
1:A:48:ARG:O	1:A:52:ASN:ND2	2.35	0.60
1:A:89:GLY:N	3:A:500:GOL:O2	2.35	0.60

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:195:ARG:HG2	1:C:199:LYS:HE2	1.84	0.60
1:F:270:ILE:O	1:F:272:LYS:N	2.35	0.60
1:R:134:LEU:HD23	1:R:178:LEU:HD12	1.83	0.60
1:C:3:LEU:HD23	1:C:25:GLU:HB3	1.83	0.59
1:C:207:VAL:HG13	1:C:234:VAL:HG23	1.83	0.59
1:E:31:PRO:HB3	2:E:501:13P:H31	1.82	0.59
1:E:161:ASN:ND2	1:E:163:ARG:H	2.00	0.59
1:J:234:VAL:HG22	4:J:508:HOH:O	2.01	0.59
1:L:161:ASN:ND2	1:L:163:ARG:H	2.00	0.59
1:N:161:ASN:ND2	1:N:163:ARG:H	1.99	0.59
1:P:9:ASN:HD22	1:P:12:LYS:H	1.48	0.59
1:R:31:PRO:HB3	2:R:501:13P:H31	1.82	0.59
1:S:161:ASN:ND2	1:S:163:ARG:H	1.99	0.59
1:C:100:VAL:HG11	1:D:132:ARG:HB2	1.83	0.59
1:D:161:ASN:ND2	1:D:163:ARG:H	2.00	0.59
1:G:207:VAL:HG13	1:G:234:VAL:HG23	1.84	0.59
1:M:109:ILE:HG22	1:M:146:MET:CE	2.33	0.59
1:R:109:ILE:HG22	1:R:146:MET:HE3	1.84	0.59
1:A:195:ARG:HG2	1:A:199:LYS:HE2	1.84	0.59
1:J:74:ARG:C	1:J:76:TYR:H	2.05	0.59
1:P:207:VAL:HG13	1:P:234:VAL:HG23	1.83	0.59
1:P:267:LEU:HA	1:P:270:ILE:HD12	1.85	0.59
1:A:139:GLU:HG3	1:E:66:LYS:HE3	1.83	0.59
1:D:2:GLU:HG3	1:D:3:LEU:N	2.16	0.59
1:D:246:VAL:O	1:D:250:THR:HG23	2.02	0.59
1:G:63:LEU:HD11	1:G:151:MET:HE3	1.84	0.59
1:G:264:GLU:O	1:G:268:LYS:HG3	2.01	0.59
1:H:33:ASP:OD2	3:H:500:GOL:H11	2.02	0.59
1:Q:95:ASN:C	1:Q:95:ASN:HD22	2.05	0.59
1:R:49:LYS:HG3	1:R:53:ASP:OD2	2.02	0.59
1:C:161:ASN:ND2	1:C:163:ARG:H	2.00	0.59
1:E:267:LEU:O	1:E:269:GLU:N	2.36	0.59
1:F:31:PRO:HB3	2:F:501:13P:H31	1.82	0.59
1:K:109:ILE:HG22	1:K:146:MET:HE3	1.84	0.59
1:M:31:PRO:HA	1:M:63:LEU:HB3	1.84	0.59
1:N:30:VAL:HG21	1:N:54:VAL:HG11	1.84	0.59
1:P:109:ILE:HG22	1:P:146:MET:CE	2.32	0.59
1:A:161:ASN:ND2	1:A:163:ARG:H	1.99	0.59
1:E:109:ILE:HG22	1:E:146:MET:HE3	1.84	0.59
1:N:195:ARG:HG2	1:N:199:LYS:HE2	1.85	0.59
1:P:57:GLY:HA3	1:P:250:THR:OG1	2.02	0.59

	AL O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:M:47:ILE:O	1:M:51:VAL:HG23	2.03	0.59
1:D:103:THR:HA	1:E:139:GLU:OE2	2.02	0.59
1:I:57:GLY:HA3	1:I:250:THR:OG1	2.03	0.59
1:I:207:VAL:HG13	1:I:234:VAL:HG23	1.85	0.59
1:J:195:ARG:HG2	1:J:199:LYS:HE2	1.83	0.59
1:J:212:LYS:HA	1:J:239:ASN:OD1	2.02	0.59
1:K:207:VAL:HG13	1:K:234:VAL:HG23	1.85	0.59
1:L:105:VAL:O	1:L:109:ILE:HG23	2.03	0.59
1:L:212:LYS:HA	1:L:239:ASN:OD1	2.03	0.59
1:M:195:ARG:HG2	1:M:199:LYS:HE2	1.84	0.59
1:G:31:PRO:HB3	2:G:501:13P:H31	1.84	0.59
1:G:266:ALA:C	1:G:268:LYS:N	2.52	0.59
1:H:161:ASN:ND2	1:H:163:ARG:H	2.00	0.59
1:K:134:LEU:HD23	1:K:178:LEU:HD12	1.83	0.59
1:R:65:HIS:HE1	3:R:500:GOL:H32	1.68	0.59
1:B:195:ARG:HG2	1:B:199:LYS:HE2	1.85	0.58
1:D:134:LEU:HD23	1:D:178:LEU:HD12	1.85	0.58
1:G:22:ARG:NH1	1:R:75:GLY:O	2.36	0.58
1:N:220:LEU:HB2	1:N:263:VAL:HG13	1.83	0.58
1:O:9:ASN:ND2	1:O:12:LYS:HG3	2.18	0.58
1:S:105:VAL:O	1:S:109:ILE:HG23	2.02	0.58
1:A:74:ARG:HH11	1:A:74:ARG:HG2	1.68	0.58
1:A:142:GLU:HG2	1:E:70:ARG:HH21	1.69	0.58
1:E:187:TYR:HB2	1:E:207:VAL:HG21	1.85	0.58
1:M:63:LEU:HD11	1:M:151:MET:HE3	1.84	0.58
1:N:70:ARG:O	1:O:6:ASP:HB3	2.02	0.58
1:T:161:ASN:ND2	1:T:163:ARG:H	2.00	0.58
1:D:9:ASN:HD22	1:D:12:LYS:H	1.51	0.58
1:D:195:ARG:HG2	1:D:199:LYS:HE2	1.84	0.58
1:E:251:ARG:NH1	1:E:271:ARG:CZ	2.66	0.58
1:T:246:VAL:O	1:T:250:THR:HG23	2.02	0.58
1:D:109:ILE:HG22	1:D:146:MET:CE	2.34	0.58
1:H:214:ASN:HB3	1:H:218:GLU:OE2	2.04	0.58
1:A:109:ILE:HD11	1:L:144:TRP:CZ3	2.39	0.58
1:G:51:VAL:CG1	1:G:51:VAL:O	2.51	0.58
1:H:246:VAL:O	1:H:250:THR:HG23	2.03	0.58
1:I:9:ASN:C	1:I:9:ASN:ND2	2.51	0.58
1:O:134:LEU:HD23	1:O:178:LEU:HD12	1.85	0.58
1:Q:161:ASN:ND2	1:Q:163:ARG:H	2.01	0.58
1:G:161:ASN:ND2	1:G:163:ARG:H	2.02	0.58
1:I:109:ILE:HG22	1:I:146:MET:CE	2.33	0.58

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:I:161:ASN:ND2	1:I:163:ARG:H	2.01	0.58
1:N:267:LEU:C	1:N:269:GLU:H	2.06	0.58
1:Q:195:ARG:HG2	1:Q:199:LYS:HE2	1.86	0.58
1:G:51:VAL:HG12	1:G:74:ARG:CD	2.26	0.58
1:K:167:LEU:HD22	1:O:92:ILE:HD12	1.85	0.58
1:L:85:HIS:NE2	3:L:500:GOL:H11	2.17	0.58
1:S:63:LEU:HD11	1:S:117:SER:OG	2.03	0.58
1:I:78:LYS:HD3	1:I:79:ASP:N	2.18	0.58
1:C:263:VAL:HG12	1:C:267:LEU:HD11	1.86	0.58
1:F:105:VAL:O	1:F:109:ILE:HG23	2.03	0.58
1:H:63:LEU:HD21	1:H:85:HIS:HB2	1.86	0.58
1:H:187:TYR:HB2	1:H:207:VAL:HG21	1.86	0.58
1:I:195:ARG:HG2	1:I:199:LYS:HE2	1.85	0.58
1:K:132:ARG:HB2	1:O:100:VAL:HG11	1.84	0.58
1:Q:63:LEU:HD11	1:Q:151:MET:HE3	1.84	0.58
1:R:161:ASN:ND2	1:R:163:ARG:H	2.01	0.58
1:S:195:ARG:HG2	1:S:199:LYS:HE2	1.85	0.58
1:C:99:LYS:HD2	3:C:500:GOL:O3	2.04	0.57
1:F:161:ASN:ND2	1:F:163:ARG:H	2.02	0.57
1:G:95:ASN:C	1:G:95:ASN:HD22	2.07	0.57
1:S:95:ASN:C	1:S:95:ASN:HD22	2.07	0.57
1:E:109:ILE:HD11	1:M:144:TRP:CZ3	2.39	0.57
1:G:187:TYR:HB2	1:G:207:VAL:HG21	1.85	0.57
1:S:47:ILE:H	1:S:47:ILE:CD1	2.04	0.57
1:E:52:ASN:ND2	1:E:74:ARG:CD	2.68	0.57
1:E:195:ARG:HG2	1:E:199:LYS:HE2	1.86	0.57
1:E:251:ARG:HH11	1:E:271:ARG:HH12	1.51	0.57
1:F:103:THR:HA	1:G:139:GLU:OE2	2.05	0.57
1:I:105:VAL:O	1:I:109:ILE:HG23	2.04	0.57
1:I:217:GLU:HG3	1:I:263:VAL:HG11	1.87	0.57
1:L:30:VAL:HG21	1:L:54:VAL:HG11	1.86	0.57
1:N:105:VAL:O	1:N:109:ILE:HG23	2.03	0.57
1:P:8:LYS:HE3	1:P:8:LYS:N	2.15	0.57
1:Q:47:ILE:H	1:Q:47:ILE:CD1	2.03	0.57
1:I:99:LYS:NZ	3:I:500:GOL:H2	2.20	0.57
1:O:195:ARG:HG2	1:O:199:LYS:HE2	1.85	0.57
1:P:251:ARG:HG3	1:P:251:ARG:HH11	1.69	0.57
1:Q:105:VAL:O	1:Q:109:ILE:HG23	2.04	0.57
1:G:105:VAL:O	1:G:109:ILE:HG23	2.05	0.57
1:I:74:ARG:HG3	1:I:74:ARG:HH11	1.69	0.57
1:K:55:ALA:O	1:K:78:LYS:HE2	2.04	0.57

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:N:41:ILE:HB	4:N:507:HOH:O	2.04	0.57
1:H:213:THR:OG1	1:H:219:PHE:HB2	2.05	0.57
1:L:187:TYR:HB2	1:L:207:VAL:HG21	1.87	0.57
1:N:78:LYS:NZ	1:N:79:ASP:HB3	2.19	0.57
1:N:109:ILE:HG22	1:N:146:MET:HE3	1.86	0.57
1:S:187:TYR:HB2	1:S:207:VAL:HG21	1.86	0.57
1:F:9:ASN:C	1:F:9:ASN:HD22	2.07	0.57
1:I:69:VAL:HB	1:I:111:MET:HE2	1.87	0.57
1:K:161:ASN:ND2	1:K:163:ARG:H	2.02	0.57
1:S:207:VAL:HG13	1:S:234:VAL:HG23	1.85	0.57
1:A:246:VAL:O	1:A:250:THR:HG23	2.05	0.57
1:C:64:LEU:HD22	1:C:68:ILE:CG2	2.35	0.57
1:K:215:THR:OG1	1:K:218:GLU:HG3	2.05	0.57
1:N:78:LYS:CE	1:N:79:ASP:H	2.17	0.57
1:R:47:ILE:H	1:R:47:ILE:CD1	2.04	0.57
1:I:63:LEU:O	1:I:64:LEU:HD23	2.05	0.57
1:L:195:ARG:HG2	1:L:199:LYS:HE2	1.85	0.57
1:M:187:TYR:HB2	1:M:207:VAL:HG21	1.87	0.57
1:R:195:ARG:HG2	1:R:199:LYS:HE2	1.87	0.57
1:H:95:ASN:HD22	1:H:95:ASN:C	2.09	0.57
3:I:500:GOL:H12	4:I:510:HOH:O	2.04	0.57
1:J:95:ASN:C	1:J:95:ASN:HD22	2.08	0.57
1:T:9:ASN:HD21	1:T:145:GLY:HA2	1.69	0.57
1:M:105:VAL:O	1:M:109:ILE:HG23	2.05	0.56
1:B:7:ILE:HD11	1:B:13:LEU:HD23	1.85	0.56
1:B:105:VAL:O	1:B:109:ILE:HG23	2.04	0.56
1:G:128:TRP:HA	1:G:131:TYR:CD1	2.40	0.56
1:I:95:ASN:C	1:I:95:ASN:HD22	2.07	0.56
1:I:134:LEU:HD23	1:I:178:LEU:HD12	1.87	0.56
1:P:95:ASN:C	1:P:95:ASN:HD22	2.09	0.56
1:S:251:ARG:HG3	1:S:251:ARG:HH11	1.70	0.56
1:B:109:ILE:HG22	1:B:146:MET:HE3	1.86	0.56
1:E:245:ASP:OD2	1:E:271:ARG:CD	2.53	0.56
1:F:51:VAL:HG11	1:F:74:ARG:HH11	1.71	0.56
1:F:215:THR:HB	1:F:218:GLU:HG3	1.86	0.56
1:I:263:VAL:HG12	1:I:267:LEU:HG	1.87	0.56
1:J:161:ASN:ND2	1:J:163:ARG:H	2.03	0.56
1:J:187:TYR:HB2	1:J:207:VAL:HG21	1.88	0.56
1:K:69:VAL:HG11	1:K:82:LEU:HD21	1.87	0.56
4:K:504:HOH:O	1:L:178:LEU:HD23	2.05	0.56
1:M:30:VAL:HG21	1:M:54:VAL:CG1	2.35	0.56

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:251:ARG:HG3	1:A:251:ARG:HH11	1.69	0.56
1:C:251:ARG:HG3	1:C:251:ARG:HH11	1.70	0.56
1:D:251:ARG:HG3	1:D:251:ARG:HH11	1.70	0.56
1:G:109:ILE:HG22	1:G:146:MET:CE	2.35	0.56
1:P:177:GLU:OE2	1:Q:68:ILE:HD11	2.05	0.56
1:E:95:ASN:C	1:E:95:ASN:HD22	2.07	0.56
1:G:195:ARG:HG2	1:G:199:LYS:HE2	1.86	0.56
1:E:78:LYS:HG3	1:E:79:ASP:N	2.20	0.56
1:G:271:ARG:HA	1:G:271:ARG:NE	2.18	0.56
1:H:251:ARG:HG3	1:H:251:ARG:HH11	1.70	0.56
1:I:67:GLY:O	1:I:68:ILE:HD13	2.05	0.56
1:N:187:TYR:HB2	1:N:207:VAL:HG21	1.88	0.56
1:B:95:ASN:C	1:B:95:ASN:HD22	2.07	0.56
1:E:250:THR:HB	4:E:508:HOH:O	2.06	0.56
1:B:99:LYS:HE3	3:B:500:GOL:O1	2.06	0.56
1:C:187:TYR:HB2	1:C:207:VAL:HG21	1.87	0.56
1:J:134:LEU:HD23	1:J:178:LEU:HD12	1.87	0.56
1:T:69:VAL:C	1:T:71:HIS:H	2.08	0.56
1:B:161:ASN:ND2	1:B:163:ARG:H	2.02	0.56
1:C:95:ASN:HD22	1:C:95:ASN:C	2.09	0.56
1:F:95:ASN:C	1:F:95:ASN:HD22	2.08	0.56
1:N:251:ARG:HG3	1:N:251:ARG:HH11	1.71	0.56
1:R:95:ASN:C	1:R:95:ASN:HD22	2.08	0.56
1:K:3:LEU:CD2	1:K:204:PRO:HG3	2.36	0.56
1:F:70:ARG:HH22	1:G:8:LYS:H	1.54	0.55
1:I:265:GLU:HA	1:I:268:LYS:HE2	1.88	0.55
1:N:134:LEU:HD23	1:N:178:LEU:HD12	1.87	0.55
1:Q:251:ARG:HG3	1:Q:251:ARG:HH11	1.71	0.55
1:T:105:VAL:O	1:T:109:ILE:HG23	2.05	0.55
1:H:109:ILE:HG22	1:H:146:MET:HE2	1.87	0.55
1:J:4:PHE:C	1:J:6:ASP:H	2.08	0.55
1:K:220:LEU:HD12	1:K:267:LEU:HD23	1.88	0.55
1:Q:28:VAL:HB	1:Q:60:ASN:OD1	2.06	0.55
1:C:68:ILE:HD11	1:D:202:PRO:HG2	1.87	0.55
1:E:2:GLU:HG3	1:E:3:LEU:H	1.72	0.55
1:G:58:GLY:O	1:G:59:ALA:C	2.44	0.55
1:H:134:LEU:HD23	1:H:178:LEU:HD12	1.88	0.55
1:K:54:VAL:HG12	1:K:59:ALA:CB	2.36	0.55
1:M:57:GLY:HA3	1:M:250:THR:OG1	2.07	0.55
1:O:85:HIS:CD2	3:O:500:GOL:O3	2.60	0.55
1:Q:187:TYR:HB2	1:Q:207:VAL:HG21	1.89	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:52:ASN:ND2	1:G:74:ARG:NE	2.52	0.55
1:H:54:VAL:HG13	1:H:250:THR:CG2	2.35	0.55
1:L:109:ILE:HG22	1:L:146:MET:HE3	1.88	0.55
1:T:109:ILE:HG22	1:T:146:MET:CE	2.36	0.55
1:E:79:ASP:OD1	1:M:22:ARG:NH2	2.39	0.55
1:J:47:ILE:H	1:J:47:ILE:CD1	2.05	0.55
1:K:187:TYR:HB2	1:K:207:VAL:HG21	1.88	0.55
1:Q:52:ASN:O	1:Q:55:ALA:HB3	2.05	0.55
1:I:109:ILE:HG22	1:I:146:MET:HE3	1.88	0.55
1:M:251:ARG:HG3	1:M:251:ARG:HH11	1.72	0.55
1:N:220:LEU:CB	1:N:263:VAL:HG13	2.36	0.55
1:O:54:VAL:HG12	1:O:59:ALA:HB3	1.89	0.55
1:O:57:GLY:HA3	1:O:250:THR:OG1	2.06	0.55
1:Q:6:ASP:O	1:Q:8:LYS:HG3	2.07	0.55
1:R:251:ARG:HG3	1:R:251:ARG:HH11	1.71	0.55
1:S:3:LEU:HD13	1:S:4:PHE:CE1	2.42	0.55
1:A:187:TYR:HB2	1:A:207:VAL:HG21	1.89	0.55
1:C:66:LYS:HE3	1:C:103:THR:OG1	2.07	0.55
1:C:217:GLU:HG3	1:C:263:VAL:HG11	1.89	0.55
1:D:64:LEU:HD12	1:D:69:VAL:HG22	1.88	0.55
1:E:267:LEU:HA	1:E:270:ILE:HD12	1.89	0.55
1:L:251:ARG:HG3	1:L:251:ARG:HH11	1.72	0.55
1:A:30:VAL:CG2	1:A:54:VAL:HG11	2.30	0.55
1:A:216:ASP:HB3	1:A:267:LEU:HD21	1.89	0.55
1:B:187:TYR:HB2	1:B:207:VAL:HG21	1.89	0.55
1:N:128:TRP:HA	1:N:131:TYR:CD1	2.42	0.55
1:Q:128:TRP:HA	1:Q:131:TYR:CD1	2.42	0.55
1:R:65:HIS:CE1	3:R:500:GOL:H32	2.41	0.55
1:S:184:LYS:HG2	4:S:504:HOH:O	2.06	0.55
1:A:95:ASN:C	1:A:95:ASN:HD22	2.09	0.55
1:D:71:HIS:CD2	1:E:202:PRO:HB3	2.42	0.55
1:E:57:GLY:HA3	1:E:250:THR:OG1	2.07	0.55
1:K:139:GLU:HG3	1:O:66:LYS:NZ	2.22	0.55
1:B:100:VAL:HG11	1:C:132:ARG:HB2	1.88	0.55
1:I:9:ASN:ND2	1:I:12:LYS:H	2.05	0.55
1:L:265:GLU:HA	1:L:268:LYS:HD3	1.89	0.55
1:P:132:ARG:HB2	1:Q:100:VAL:HG11	1.88	0.55
1:Q:48:ARG:HH21	1:Q:73:HIS:H	1.55	0.55
1:H:100:VAL:HG11	1:I:132:ARG:HB2	1.88	0.54
1:L:47:ILE:H	1:L:47:ILE:CD1	2.04	0.54
1:M:95:ASN:HD22	1:M:95:ASN:C	2.10	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:Q:48:ARG:NH2	1:Q:73:HIS:O	2.40	0.54
1:D:4:PHE:HB3	1:D:7:ILE:HG21	1.88	0.54
1:M:74:ARG:CG	1:M:75:GLY:H	2.19	0.54
1:S:134:LEU:HD23	1:S:178:LEU:HD12	1.88	0.54
1:D:69:VAL:C	1:D:71:HIS:H	2.10	0.54
1:G:134:LEU:HD23	1:G:178:LEU:HD12	1.88	0.54
1:H:269:GLU:OE2	1:H:269:GLU:HA	2.08	0.54
1:H:270:ILE:HG22	1:H:272:LYS:H	1.71	0.54
1:M:21:ASN:HA	4:M:502:HOH:O	2.08	0.54
1:M:128:TRP:HA	1:M:131:TYR:CD1	2.42	0.54
1:N:6:ASP:O	1:N:7:ILE:C	2.46	0.54
1:P:161:ASN:ND2	1:P:163:ARG:H	2.05	0.54
1:A:50:THR:O	1:A:54:VAL:HG23	2.07	0.54
1:F:251:ARG:HG3	1:F:251:ARG:HH11	1.72	0.54
1:G:251:ARG:HG3	1:G:251:ARG:HH11	1.72	0.54
1:H:195:ARG:HG2	1:H:199:LYS:HE2	1.89	0.54
1:Q:248:GLY:O	1:Q:251:ARG:HB2	2.07	0.54
1:A:134:LEU:HD23	1:A:178:LEU:HD12	1.88	0.54
1:D:187:TYR:HB2	1:D:207:VAL:HG21	1.89	0.54
1:J:109:ILE:HG22	1:J:146:MET:HE2	1.89	0.54
1:S:2:GLU:HB2	1:S:25:GLU:OE2	2.06	0.54
1:S:92:ILE:HD12	1:T:167:LEU:HD22	1.90	0.54
1:T:187:TYR:HB2	1:T:207:VAL:HG21	1.88	0.54
1:C:9:ASN:HD21	1:C:145:GLY:CA	2.16	0.54
1:E:9:ASN:HD22	1:E:9:ASN:C	2.10	0.54
1:K:95:ASN:C	1:K:95:ASN:HD22	2.09	0.54
1:A:48:ARG:O	1:A:52:ASN:CG	2.45	0.54
1:A:71:HIS:HA	1:B:6:ASP:OD2	2.08	0.54
1:B:134:LEU:HD23	1:B:178:LEU:HD12	1.89	0.54
1:C:109:ILE:HD11	1:O:144:TRP:CZ3	2.42	0.54
1:E:254:CYS:HB2	4:E:511:HOH:O	2.07	0.54
1:N:95:ASN:C	1:N:95:ASN:HD22	2.11	0.54
1:T:47:ILE:H	1:T:47:ILE:CD1	2.05	0.54
1:A:128:TRP:HA	1:A:131:TYR:CD1	2.43	0.54
1:E:153:TYR:OH	1:E:184:LYS:HE2	2.08	0.54
1:J:128:TRP:HA	1:J:131:TYR:CD1	2.43	0.54
1:O:95:ASN:C	1:O:95:ASN:HD22	2.10	0.54
1:P:65:HIS:CE1	3:P:500:GOL:O3	2.57	0.54
1:F:134:LEU:HD23	1:F:178:LEU:HD12	1.89	0.54
1:H:92:ILE:HD12	1:I:167:LEU:HD22	1.88	0.54
1:L:74:ARG:HG3	1:L:74:ARG:HH11	1.73	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (\AA)
1:O:9:ASN:ND2	1:O:145:GLY:HA2	2.21	0.54
1:Q:109:ILE:HG22	1:Q:146:MET:HE2	1.90	0.54
1:B:153:TYR:OH	1:B:184:LYS:HE2	2.08	0.54
1:D:58:GLY:HA3	1:D:254:CYS:SG	2.48	0.54
1:E:10:LEU:HD11	1:M:69:VAL:HG12	1.89	0.54
1:L:30:VAL:HG21	1:L:54:VAL:CG1	2.38	0.54
1:M:56:GLU:HG3	1:M:247:VAL:CG1	2.37	0.54
1:B:144:TRP:CZ3	1:K:109:ILE:HD11	2.43	0.53
1:E:218:GLU:HB2	4:E:505:HOH:O	2.08	0.53
1:H:15:ARG:NH2	1:P:109:ILE:O	2.36	0.53
1:I:30:VAL:CG2	1:I:54:VAL:HG11	2.32	0.53
1:K:153:TYR:OH	1:K:184:LYS:HE2	2.07	0.53
1:T:134:LEU:HD23	1:T:178:LEU:HD12	1.90	0.53
1:A:248:GLY:O	1:A:251:ARG:HB2	2.08	0.53
1:F:187:TYR:HB2	1:F:207:VAL:HG21	1.90	0.53
1:L:95:ASN:C	1:L:95:ASN:HD22	2.11	0.53
1:L:264:GLU:C	1:L:266:ALA:H	2.12	0.53
1:E:251:ARG:HG3	1:E:251:ARG:HH11	1.73	0.53
1:H:248:GLY:O	1:H:251:ARG:HB2	2.09	0.53
1:J:144:TRP:CZ3	1:T:109:ILE:HD11	2.43	0.53
1:0:187:TYR:HB2	1:O:207:VAL:HG21	1.90	0.53
1:P:63:LEU:C	1:P:63:LEU:HD23	2.28	0.53
1:Q:134:LEU:HD23	1:Q:178:LEU:HD12	1.89	0.53
1:A:48:ARG:HG2	1:A:52:ASN:HD21	1.73	0.53
1:L:248:GLY:O	1:L:251:ARG:HB2	2.08	0.53
1:N:3:LEU:HG	1:N:4:PHE:CD1	2.44	0.53
1:P:134:LEU:HD23	1:P:178:LEU:HD12	1.90	0.53
1:S:65:HIS:CE1	3:S:500:GOL:O3	2.61	0.53
1:B:70:ARG:NH2	1:B:107:GLU:OE1	2.41	0.53
1:E:31:PRO:HA	1:E:63:LEU:HB3	1.89	0.53
1:F:128:TRP:HA	1:F:131:TYR:CD1	2.43	0.53
1:J:251:ARG:HG3	1:J:251:ARG:HH11	1.73	0.53
1:K:100:VAL:HG11	1:L:132:ARG:HB2	1.90	0.53
1:D:215:THR:HB	1:D:218:GLU:HG3	1.90	0.53
1:G:48:ARG:NH2	1:G:73:HIS:O	2.42	0.53
1:L:54:VAL:HG12	1:L:59:ALA:CB	2.38	0.53
1:M:134:LEU:HD23	1:M:178:LEU:HD12	1.90	0.53
1:O:109:ILE:HG22	1:O:146:MET:HE3	1.89	0.53
1:Q:32:MET:HB2	1:Q:64:LEU:CD2	2.38	0.53
1:B:56:GLU:OE2	1:B:56:GLU:HA	2.09	0.53
1:F:49:LYS:O	1:F:52:ASN:HB2	2.08	0.53

	A	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:215:THR:HG22	1:F:217:GLU:H	1.74	0.53
1:I:128:TRP:HA	1:I:131:TYR:CD1	2.44	0.53
1:K:160:GLN:HE21	1:K:160:GLN:HA	1.74	0.53
1:R:58:GLY:HA2	1:R:78:LYS:HZ2	1.72	0.53
1:C:69:VAL:HG12	1:O:10:LEU:HD11	1.91	0.53
1:F:109:ILE:HG22	1:F:146:MET:HE2	1.91	0.53
1:N:192:ASP:OD1	1:T:161:ASN:ND2	2.42	0.53
1:T:63:LEU:HG	1:T:83:ILE:HB	1.89	0.53
1:A:132:ARG:HB2	1:E:100:VAL:HG11	1.90	0.53
1:C:7:ILE:CG2	1:C:13:LEU:HD21	2.39	0.53
1:E:248:GLY:CA	1:E:271:ARG:HH11	2.21	0.53
1:H:54:VAL:CG1	1:H:250:THR:HG21	2.37	0.53
1:I:251:ARG:HG3	1:I:251:ARG:HH11	1.74	0.53
1:K:70:ARG:NH2	1:L:142:GLU:HG2	2.23	0.53
1:I:187:TYR:HB2	1:I:207:VAL:HG21	1.90	0.53
1:M:160:GLN:HE21	1:M:160:GLN:HA	1.74	0.53
1:H:109:ILE:HG22	1:H:146:MET:HE3	1.91	0.52
4:K:504:HOH:O	1:L:178:LEU:CD2	2.56	0.52
1:R:99:LYS:HD2	3:R:500:GOL:O1	2.09	0.52
1:B:48:ARG:NH2	1:B:73:HIS:O	2.42	0.52
1:E:248:GLY:O	1:E:251:ARG:HB2	2.09	0.52
1:J:3:LEU:HB3	1:J:4:PHE:CD1	2.44	0.52
1:N:3:LEU:HG	1:N:4:PHE:CE1	2.43	0.52
1:R:89:GLY:N	3:R:500:GOL:O2	2.42	0.52
1:E:251:ARG:HH12	1:E:271:ARG:NH2	2.08	0.52
1:J:9:ASN:HD21	1:J:145:GLY:HA2	1.74	0.52
1:K:32:MET:HB2	1:K:64:LEU:CD1	2.39	0.52
1:T:266:ALA:C	1:T:268:LYS:H	2.13	0.52
1:E:151:MET:HA	1:E:184:LYS:HB3	1.92	0.52
1:P:187:TYR:HB2	1:P:207:VAL:HG21	1.91	0.52
1:Q:64:LEU:HD13	1:Q:68:ILE:HB	1.92	0.52
1:T:251:ARG:HG3	1:T:251:ARG:HH11	1.75	0.52
1:F:4:PHE:HD2	1:F:7:ILE:HD11	1.75	0.52
1:F:160:GLN:HE21	1:F:160:GLN:HA	1.74	0.52
1:F:215:THR:HG22	1:F:217:GLU:HB3	1.91	0.52
1:K:128:TRP:HA	1:K:131:TYR:CD1	2.45	0.52
1:S:128:TRP:HA	1:S:131:TYR:CD1	2.44	0.52
1:H:63:LEU:HD23	1:H:63:LEU:C	2.30	0.52
1:N:151:MET:HE2	1:N:184:LYS:HD2	1.92	0.52
1:N:248:GLY:O	1:N:251:ARG:HB2	2.10	0.52
1:Q:212:LYS:HD2	1:Q:239:ASN:HA	1.90	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:R:57:GLY:HA3	1:R:250:THR:OG1	2.09	0.52
1:R:187:TYR:HB2	1:R:207:VAL:HG21	1.92	0.52
1:D:248:GLY:O	1:D:251:ARG:HB2	2.09	0.52
1:E:128:TRP:HA	1:E:131:TYR:CD1	2.45	0.52
1:G:51:VAL:HG12	1:G:51:VAL:O	2.09	0.52
1:P:109:ILE:HG22	1:P:146:MET:HE2	1.92	0.52
1:C:9:ASN:ND2	1:C:145:GLY:HA2	2.20	0.52
1:C:59:ALA:O	1:C:80:VAL:HG12	2.09	0.52
1:F:51:VAL:HG13	1:F:62:VAL:HG11	1.92	0.52
1:F:230:GLY:HA2	4:F:506:HOH:O	2.09	0.52
1:M:9:ASN:HD22	1:M:9:ASN:C	2.13	0.52
1:O:99:LYS:HD2	3:O:500:GOL:O1	2.10	0.52
1:P:167:LEU:HD22	1:Q:92:ILE:HD12	1.91	0.52
1:R:52:ASN:HB2	1:R:74:ARG:HD3	1.92	0.52
1:B:19:ILE:HG13	1:B:20:PHE:HD1	1.75	0.52
1:C:6:ASP:O	1:C:7:ILE:C	2.47	0.52
1:D:128:TRP:HA	1:D:131:TYR:CD1	2.45	0.52
1:G:63:LEU:CD1	1:G:151:MET:HE3	2.39	0.52
1:M:85:HIS:CD2	3:M:500:GOL:H2	2.44	0.52
1:R:71:HIS:HE1	1:S:7:ILE:HD11	1.73	0.52
1:R:128:TRP:HA	1:R:131:TYR:CD1	2.45	0.52
1:B:9:ASN:HD22	1:B:9:ASN:C	2.14	0.52
1:B:160:GLN:HE21	1:B:160:GLN:HA	1.75	0.52
1:J:160:GLN:HA	1:J:160:GLN:HE21	1.74	0.52
1:T:160:GLN:HE21	1:T:160:GLN:HA	1.74	0.52
1:D:153:TYR:OH	1:D:184:LYS:HE2	2.10	0.51
1:J:74:ARG:C	1:J:76:TYR:N	2.62	0.51
1:L:109:ILE:HG22	1:L:146:MET:HE2	1.92	0.51
1:L:134:LEU:HD23	1:L:178:LEU:HD12	1.90	0.51
1:B:71:HIS:O	1:B:73:HIS:N	2.39	0.51
1:E:160:GLN:HA	1:E:160:GLN:HE21	1.75	0.51
1:L:74:ARG:HH21	1:L:78:LYS:C	2.14	0.51
1:O:251:ARG:HG3	1:O:251:ARG:HH11	1.74	0.51
1:Q:63:LEU:HD11	1:Q:151:MET:CE	2.40	0.51
1:C:7:ILE:HG21	1:C:13:LEU:HD21	1.91	0.51
1:G:264:GLU:C	1:G:266:ALA:N	2.64	0.51
1:L:7:ILE:HG22	1:L:7:ILE:O	2.10	0.51
1:L:153:TYR:OH	1:L:184:LYS:HE2	2.11	0.51
1:M:100:VAL:HG11	1:N:132:ARG:HB2	1.92	0.51
1:S:160:GLN:HE21	1:S:160:GLN:HA	1.75	0.51
1:T:63:LEU:HD23	1:T:83:ILE:O	2.09	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:68:ILE:CD1	1:B:202:PRO:HG2	2.40	0.51
1:D:95:ASN:C	1:D:95:ASN:HD22	2.12	0.51
1:F:54:VAL:HG13	1:F:59:ALA:CB	2.40	0.51
1:G:92:ILE:HG12	1:G:92:ILE:O	2.11	0.51
1:H:69:VAL:HG12	1:P:10:LEU:CD1	2.37	0.51
1:L:4:PHE:CD2	1:L:7:ILE:HD12	2.46	0.51
1:O:160:GLN:HE21	1:O:160:GLN:HA	1.74	0.51
1:Q:31:PRO:HA	1:Q:63:LEU:HB3	1.93	0.51
1:S:55:ALA:O	1:S:78:LYS:HD3	2.10	0.51
1:B:7:ILE:HD11	1:B:13:LEU:CD2	2.40	0.51
1:K:48:ARG:HH21	1:K:73:HIS:H	1.59	0.51
1:N:160:GLN:HE21	1:N:160:GLN:HA	1.74	0.51
1:R:160:GLN:HE21	1:R:160:GLN:HA	1.76	0.51
1:T:32:MET:HB2	1:T:64:LEU:HD23	1.93	0.51
1:T:109:ILE:HG22	1:T:146:MET:HE2	1.91	0.51
1:T:263:VAL:CG2	1:T:264:GLU:H	2.18	0.51
1:C:153:TYR:OH	1:C:184:LYS:HE2	2.09	0.51
1:E:243:HIS:HA	4:E:504:HOH:O	2.10	0.51
1:D:60:ASN:O	1:D:61:ALA:HB2	2.10	0.51
1:H:7:ILE:HG23	1:H:8:LYS:N	2.25	0.51
1:H:128:TRP:HA	1:H:131:TYR:CD1	2.46	0.51
1:I:151:MET:HA	1:I:184:LYS:HB3	1.93	0.51
1:O:19:ILE:HG13	1:O:20:PHE:HD1	1.76	0.51
1:P:234:VAL:HG22	1:P:236:VAL:HG23	1.93	0.51
1:Q:139:GLU:HG3	1:T:66:LYS:HZ2	1.75	0.51
1:A:4:PHE:CE1	1:A:16:LEU:HD13	2.46	0.51
1:A:45:ILE:N	1:A:45:ILE:HD12	2.25	0.51
1:D:160:GLN:HE21	1:D:160:GLN:HA	1.75	0.51
1:G:66:LYS:HG2	1:G:103:THR:OG1	2.10	0.51
1:N:85:HIS:NE2	3:N:500:GOL:C1	2.74	0.51
1:N:99:LYS:HD2	3:N:500:GOL:O2	2.11	0.51
1:P:66:LYS:NZ	1:R:139:GLU:HG3	2.25	0.51
1:Q:160:GLN:HA	1:Q:160:GLN:HE21	1.76	0.51
1:T:128:TRP:HA	1:T:131:TYR:CD1	2.46	0.51
1:A:151:MET:HA	1:A:184:LYS:HB3	1.93	0.51
1:G:160:GLN:HE21	1:G:160:GLN:HA	1.74	0.51
1:B:30:VAL:HG21	1:B:54:VAL:CG1	2.40	0.51
1:K:255:LYS:CD	1:K:269:GLU:OE2	2.56	0.51
1:R:248:GLY:O	1:R:251:ARG:HB2	2.11	0.51
1:B:3:LEU:HD13	1:B:4:PHE:CE1	2.46	0.50
1:C:134:LEU:HD23	1:C:178:LEU:HD12	1.93	0.50

	• • • • • • •	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:E:251:ARG:HH11	1:E:271:ARG:NH2	1.99	0.50
1:M:85:HIS:NE2	3:M:500:GOL:H2	2.26	0.50
1:N:30:VAL:HG21	1:N:54:VAL:CG1	2.41	0.50
1:C:160:GLN:HE21	1:C:160:GLN:HA	1.75	0.50
1:C:215:THR:OG1	1:C:218:GLU:HG3	2.11	0.50
1:E:69:VAL:CG2	1:M:10:LEU:HD11	2.40	0.50
1:G:264:GLU:O	1:G:266:ALA:N	2.44	0.50
1:L:3:LEU:HD22	1:L:204:PRO:CG	2.40	0.50
1:P:128:TRP:HA	1:P:131:TYR:CD1	2.46	0.50
1:A:251:ARG:HG3	1:A:251:ARG:NH1	2.27	0.50
1:E:52:ASN:O	1:E:55:ALA:HB3	2.12	0.50
1:E:134:LEU:HD23	1:E:178:LEU:HD12	1.94	0.50
1:H:71:HIS:HA	1:I:6:ASP:OD1	2.11	0.50
1:I:48:ARG:HG3	1:I:74:ARG:HG2	1.94	0.50
1:J:265:GLU:HA	1:J:268:LYS:CD	2.38	0.50
1:K:92:ILE:HD12	1:L:167:LEU:HD22	1.94	0.50
1:N:69:VAL:HB	1:N:111:MET:HE2	1.93	0.50
1:N:153:TYR:OH	1:N:184:LYS:HE2	2.11	0.50
1:Q:153:TYR:OH	1:Q:184:LYS:HE2	2.11	0.50
1:R:19:ILE:HG13	1:R:20:PHE:HD1	1.77	0.50
1:R:153:TYR:OH	1:R:184:LYS:HE2	2.12	0.50
1:S:71:HIS:HD2	1:T:6:ASP:OD2	1.94	0.50
1:T:248:GLY:O	1:T:251:ARG:HB2	2.10	0.50
1:B:213:THR:HB	4:B:508:HOH:O	2.10	0.50
1:B:251:ARG:HG3	1:B:251:ARG:HH11	1.75	0.50
1:C:144:TRP:CZ3	1:O:109:ILE:HD11	2.46	0.50
1:F:248:GLY:O	1:F:251:ARG:HB2	2.12	0.50
1:G:54:VAL:HG13	1:G:59:ALA:HB2	1.93	0.50
1:G:92:ILE:HD12	1:H:167:LEU:HD22	1.93	0.50
1:K:19:ILE:HG13	1:K:20:PHE:HD1	1.77	0.50
1:K:32:MET:CE	1:K:51:VAL:HG23	2.42	0.50
1:K:251:ARG:HH11	1:K:251:ARG:HG3	1.77	0.50
1:T:153:TYR:OH	1:T:184:LYS:HE2	2.11	0.50
1:C:64:LEU:HD22	1:C:68:ILE:HG21	1.94	0.50
1:O:270:ILE:C	1:O:272:LYS:H	2.14	0.50
1:C:7:ILE:O	1:C:7:ILE:HG23	2.12	0.50
1:J:64:LEU:HD22	1:J:68:ILE:CG2	2.40	0.50
1:N:109:ILE:HG22	1:N:146:MET:HE2	1.94	0.50
1:Q:264:GLU:O	1:Q:265:GLU:C	2.48	0.50
1:B:2:GLU:HB3	1:B:5:LYS:CB	2.41	0.50
1:E:45:ILE:N	1:E:45:ILE:HD12	2.27	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:H:57:GLY:HA3	1:H:250:THR:OG1	2.11	0.50
1:M:109:ILE:HG22	1:M:146:MET:HE3	1.92	0.50
1:M:248:GLY:O	1:M:251:ARG:HB2	2.12	0.50
1:0:128:TRP:HA	1:0:131:TYR:CD1	2.47	0.50
1:Q:267:LEU:HD23	1:Q:270:ILE:HD12	1.93	0.50
1:A:160:GLN:HE21	1:A:160:GLN:HA	1.76	0.50
1:C:151:MET:HA	1:C:184:LYS:HB3	1.94	0.50
1:F:92:ILE:HD12	1:G:167:LEU:HD22	1.94	0.50
1:M:65:HIS:HE1	3:M:500:GOL:O3	1.94	0.50
1:N:100:VAL:HG11	1:O:132:ARG:HB2	1.94	0.50
1:P:9:ASN:ND2	1:P:12:LYS:H	2.10	0.50
1:R:3:LEU:HB3	1:R:4:PHE:CD1	2.46	0.50
1:B:128:TRP:HA	1:B:131:TYR:CD1	2.47	0.50
1:C:128:TRP:HA	1:C:131:TYR:CD1	2.46	0.50
1:D:9:ASN:HB3	1:D:12:LYS:HB2	1.94	0.50
1:E:70:ARG:HD2	1:E:111:MET:CE	2.42	0.50
1:G:85:HIS:NE2	3:G:500:GOL:H11	2.26	0.50
1:G:153:TYR:OH	1:G:184:LYS:HE2	2.11	0.50
1:K:66:LYS:HG2	1:K:103:THR:OG1	2.12	0.50
1:L:66:LYS:NZ	1:M:139:GLU:HG3	2.27	0.50
1:M:271:ARG:O	1:M:272:LYS:C	2.50	0.50
1:P:153:TYR:OH	1:P:184:LYS:HE2	2.11	0.50
1:I:160:GLN:HA	1:I:160:GLN:HE21	1.77	0.49
1:J:61:ALA:HB1	1:J:81:GLY:O	2.11	0.49
1:M:56:GLU:OE2	1:M:251:ARG:NH2	2.44	0.49
1:N:47:ILE:H	1:N:47:ILE:CD1	2.04	0.49
1:T:271:ARG:O	1:T:272:LYS:C	2.50	0.49
1:C:19:ILE:HG13	1:C:20:PHE:HD1	1.78	0.49
1:F:19:ILE:HG13	1:F:20:PHE:HD1	1.76	0.49
1:H:160:GLN:HA	1:H:160:GLN:HE21	1.77	0.49
1:N:252:ALA:HA	1:N:266:ALA:HB1	1.93	0.49
1:P:251:ARG:HG3	1:P:251:ARG:NH1	2.27	0.49
1:D:85:HIS:CD2	3:D:500:GOL:H11	2.48	0.49
1:K:45:ILE:HD12	1:K:45:ILE:N	2.27	0.49
1:L:19:ILE:HG13	1:L:20:PHE:HD1	1.77	0.49
1:R:234:VAL:HG22	1:R:236:VAL:HG23	1.95	0.49
1:T:63:LEU:O	1:T:64:LEU:HD23	2.12	0.49
1:G:74:ARG:HG3	1:G:74:ARG:HH11	1.77	0.49
1:M:153:TYR:OH	1:M:184:LYS:HE2	2.13	0.49
1:S:151:MET:HA	1:S:184:LYS:HB3	1.94	0.49
1:F:153:TYR:OH	1:F:184:LYS:HE2	2.12	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:J:45:ILE:N	1:J:45:ILE:HD12	2.27	0.49
1:M:3:LEU:HD13	1:M:4:PHE:CE1	2.48	0.49
1:P:160:GLN:HA	1:P:160:GLN:HE21	1.77	0.49
1:R:45:ILE:N	1:R:45:ILE:HD12	2.27	0.49
1:B:265:GLU:HA	1:B:268:LYS:NZ	2.28	0.49
1:C:251:ARG:HG3	1:C:251:ARG:NH1	2.28	0.49
1:O:220:LEU:HD12	1:O:267:LEU:HD21	1.94	0.49
1:S:4:PHE:C	1:S:6:ASP:H	2.16	0.49
1:S:54:VAL:HG12	1:S:59:ALA:HB3	1.94	0.49
1:S:251:ARG:HG3	1:S:251:ARG:NH1	2.28	0.49
1:A:63:LEU:HD11	1:A:151:MET:HE3	1.94	0.49
1:H:251:ARG:HG3	1:H:251:ARG:NH1	2.28	0.49
1:J:9:ASN:HB3	1:J:12:LYS:HB2	1.94	0.49
1:J:85:HIS:HE2	3:J:500:GOL:H32	1.77	0.49
1:L:128:TRP:HA	1:L:131:TYR:CD1	2.48	0.49
1:N:214:ASN:C	1:N:214:ASN:ND2	2.65	0.49
1:R:32:MET:HB2	1:R:64:LEU:HD23	1.94	0.49
1:D:19:ILE:HG13	1:D:20:PHE:HD1	1.78	0.49
1:F:109:ILE:HG22	1:F:146:MET:HE3	1.93	0.49
1:F:263:VAL:O	1:F:267:LEU:HG	2.13	0.49
1:O:151:MET:HA	1:O:184:LYS:HB3	1.94	0.49
1:S:9:ASN:C	1:S:9:ASN:HD22	2.16	0.49
1:S:50:THR:O	1:S:54:VAL:HG23	2.12	0.49
1:A:153:TYR:OH	1:A:184:LYS:HE2	2.13	0.49
1:J:248:GLY:O	1:J:251:ARG:HB2	2.12	0.49
1:L:151:MET:HA	1:L:184:LYS:HB3	1.94	0.49
1:M:74:ARG:CG	1:M:75:GLY:N	2.76	0.49
1:O:3:LEU:CD2	1:O:204:PRO:HG3	2.43	0.49
1:P:177:GLU:CG	1:Q:68:ILE:HD11	2.43	0.49
1:Q:45:ILE:N	1:Q:45:ILE:HD12	2.28	0.49
1:R:58:GLY:HA2	1:R:78:LYS:HZ3	1.76	0.49
1:R:100:VAL:HG11	1:S:132:ARG:HB2	1.95	0.49
1:C:68:ILE:CD1	1:D:202:PRO:HG2	2.43	0.49
1:D:109:ILE:HG22	1:D:146:MET:HE2	1.95	0.49
1:K:139:GLU:HG3	1:O:66:LYS:HZ3	1.77	0.49
1:N:217:GLU:OE2	1:N:267:LEU:HD11	2.12	0.49
1:O:212:LYS:HA	1:O:239:ASN:OD1	2.13	0.49
1:Q:151:MET:HA	1:Q:184:LYS:HB3	1.94	0.49
1:G:70:ARG:NH1	1:G:107:GLU:OE1	2.45	0.48
1:G:103:THR:HA	1:H:139:GLU:OE2	2.13	0.48
1:G:109:ILE:HG22	1:G:146:MET:HE2	1.94	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:0:153:TYR:OH	1:O:184:LYS:HE2	2.13	0.48
1:G:151:MET:HA	1:G:184:LYS:HB3	1.95	0.48
1:G:212:LYS:HA	1:G:239:ASN:OD1	2.13	0.48
1:H:70:ARG:NH2	1:I:7:ILE:HG12	2.28	0.48
1:I:153:TYR:OH	1:I:184:LYS:HE2	2.13	0.48
1:N:19:ILE:HG13	1:N:20:PHE:HD1	1.77	0.48
1:N:251:ARG:HG3	1:N:251:ARG:NH1	2.28	0.48
1:Q:19:ILE:HG13	1:Q:20:PHE:HD1	1.78	0.48
1:R:65:HIS:HE1	3:R:500:GOL:O3	1.96	0.48
1:B:151:MET:HA	1:B:184:LYS:HB3	1.95	0.48
1:C:109:ILE:HG22	1:C:146:MET:HE3	1.95	0.48
1:D:79:ASP:N	1:D:79:ASP:OD1	2.46	0.48
1:F:69:VAL:HG12	1:S:10:LEU:HD11	1.95	0.48
1:I:19:ILE:HG13	1:I:20:PHE:HD1	1.78	0.48
1:J:4:PHE:CD2	1:J:7:ILE:HG13	2.48	0.48
1:J:70:ARG:CB	1:J:70:ARG:NH1	2.77	0.48
1:L:160:GLN:HE21	1:L:160:GLN:HA	1.78	0.48
1:R:251:ARG:HG3	1:R:251:ARG:NH1	2.29	0.48
1:S:153:TYR:OH	1:S:184:LYS:HE2	2.14	0.48
1:T:47:ILE:O	1:T:51:VAL:HG23	2.12	0.48
1:A:19:ILE:HG13	1:A:20:PHE:HD1	1.79	0.48
1:K:89:GLY:N	3:K:500:GOL:O2	2.45	0.48
1:N:3:LEU:HD21	1:N:20:PHE:CE2	2.48	0.48
1:Q:249:ILE:O	1:Q:253:VAL:HG23	2.14	0.48
1:E:19:ILE:HG13	1:E:20:PHE:HD1	1.78	0.48
1:J:153:TYR:OH	1:J:184:LYS:HE2	2.12	0.48
1:Q:251:ARG:HG3	1:Q:251:ARG:NH1	2.29	0.48
1:C:54:VAL:HG12	1:C:250:THR:CG2	2.40	0.48
1:H:9:ASN:HB3	1:H:12:LYS:HB2	1.94	0.48
1:M:36:VAL:HG21	1:M:65:HIS:CE1	2.49	0.48
1:M:215:THR:OG1	1:M:218:GLU:HG3	2.13	0.48
1:O:63:LEU:C	1:O:63:LEU:HD23	2.33	0.48
1:S:42:LYS:O	1:S:242:GLN:HG2	2.13	0.48
1:T:151:MET:HA	1:T:184:LYS:HB3	1.94	0.48
1:A:220:LEU:HD12	1:A:267:LEU:HG	1.96	0.48
1:F:4:PHE:CD2	1:F:7:ILE:CD1	2.97	0.48
1:M:52:ASN:ND2	1:M:74:ARG:HE	2.12	0.48
1:H:8:LYS:HZ2	1:R:10:LEU:HG	1.79	0.48
1:M:74:ARG:HG2	1:M:74:ARG:HH11	1.77	0.48
1:N:58:GLY:O	1:N:254:CYS:SG	2.70	0.48
1:R:74:ARG:HG3	1:R:74:ARG:NH1	2.28	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:R:220:LEU:HD22	1:R:256:ILE:HD12	1.94	0.48
1:S:53:ASP:HB3	1:S:247:VAL:CG2	2.44	0.48
1:D:18:ARG:NE	1:N:18:ARG:NE	2.62	0.48
1:D:66:LYS:HE3	1:E:139:GLU:HG3	1.95	0.48
1:O:30:VAL:HG21	1:O:54:VAL:CG1	2.38	0.48
1:S:70:ARG:NH1	1:S:111:MET:HE3	2.28	0.48
1:C:47:ILE:O	1:C:51:VAL:HG23	2.14	0.48
1:D:31:PRO:HA	1:D:63:LEU:HB3	1.96	0.48
1:G:58:GLY:HA3	1:G:254:CYS:SG	2.53	0.48
1:H:220:LEU:HD12	1:H:267:LEU:CD2	2.43	0.48
1:M:45:ILE:N	1:M:45:ILE:HD12	2.27	0.48
1:N:57:GLY:HA3	1:N:250:THR:OG1	2.13	0.48
1:S:19:ILE:HG13	1:S:20:PHE:HD1	1.78	0.48
1:T:19:ILE:HG13	1:T:20:PHE:HD1	1.78	0.48
1:C:70:ARG:HH11	1:C:70:ARG:CG	2.27	0.47
1:C:92:ILE:HG12	1:C:92:ILE:O	2.13	0.47
1:C:248:GLY:O	1:C:251:ARG:HB2	2.14	0.47
1:G:234:VAL:HG22	1:G:236:VAL:HG23	1.95	0.47
1:G:248:GLY:O	1:G:251:ARG:HB2	2.14	0.47
1:H:151:MET:HA	1:H:184:LYS:HB3	1.95	0.47
1:K:263:VAL:O	1:K:267:LEU:HG	2.14	0.47
1:L:251:ARG:HG3	1:L:251:ARG:NH1	2.29	0.47
1:N:45:ILE:HD12	1:N:45:ILE:N	2.28	0.47
1:P:40:PRO:HD3	1:R:170:HIS:HA	1.96	0.47
1:P:248:GLY:O	1:P:251:ARG:HB2	2.14	0.47
1:G:47:ILE:HG12	4:G:504:HOH:O	2.12	0.47
1:I:70:ARG:HD3	1:Q:10:LEU:HD12	1.96	0.47
1:M:19:ILE:HG13	1:M:20:PHE:HD1	1.78	0.47
1:0:248:GLY:0	1:O:251:ARG:HB2	2.12	0.47
1:P:151:MET:HA	1:P:184:LYS:HB3	1.95	0.47
1:Q:202:PRO:HB3	1:T:71:HIS:CD2	2.50	0.47
1:R:151:MET:HA	1:R:184:LYS:HB3	1.94	0.47
1:D:92:ILE:HD12	1:E:167:LEU:HD22	1.96	0.47
1:D:109:ILE:HG22	1:D:146:MET:HE3	1.96	0.47
1:F:251:ARG:HG3	1:F:251:ARG:NH1	2.30	0.47
1:J:6:ASP:O	1:J:8:LYS:HG3	2.13	0.47
1:P:74:ARG:HG3	1:P:74:ARG:NH1	2.30	0.47
1:P:221:GLN:OE1	1:P:263:VAL:HG21	2.14	0.47
1:T:9:ASN:ND2	1:T:12:LYS:HG3	2.29	0.47
1:F:151:MET:HA	1:F:184:LYS:HB3	1.97	0.47
1:J:10:LEU:HD11	1:T:69:VAL:CG1	2.35	0.47

	• 45 p ago	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:J:22:ARG:NH1	1:T:75:GLY:O	2.46	0.47
1:K:32:MET:O	1:K:64:LEU:HD12	2.15	0.47
1:K:74:ARG:C	1:K:76:TYR:H	2.18	0.47
1:N:36:VAL:CG2	1:N:65:HIS:CE1	2.97	0.47
1:C:45:ILE:N	1:C:45:ILE:HD12	2.29	0.47
1:J:18:ARG:NE	1:T:18:ARG:NE	2.63	0.47
1:M:251:ARG:HG3	1:M:251:ARG:NH1	2.30	0.47
1:S:234:VAL:HG22	1:S:236:VAL:HG23	1.96	0.47
1:K:248:GLY:O	1:K:251:ARG:HB2	2.15	0.47
1:M:74:ARG:NH2	1:M:78:LYS:O	2.47	0.47
1:M:263:VAL:HG12	1:M:263:VAL:O	2.14	0.47
1:N:151:MET:HA	1:N:184:LYS:HB3	1.96	0.47
1:A:69:VAL:HG12	1:L:10:LEU:HD11	1.96	0.47
1:B:53:ASP:O	1:B:56:GLU:N	2.48	0.47
1:E:74:ARG:CG	1:E:74:ARG:NH1	2.60	0.47
1:F:45:ILE:N	1:F:45:ILE:HD12	2.29	0.47
1:I:45:ILE:HD12	1:I:45:ILE:N	2.30	0.47
1:J:109:ILE:HG22	1:J:146:MET:HE3	1.95	0.47
1:M:265:GLU:O	1:M:268:LYS:HB2	2.14	0.47
1:N:214:ASN:C	1:N:214:ASN:HD22	2.18	0.47
1:S:248:GLY:O	1:S:251:ARG:HB2	2.15	0.47
1:T:69:VAL:C	1:T:71:HIS:N	2.68	0.47
1:T:212:LYS:HD3	1:T:239:ASN:HA	1.96	0.47
1:E:74:ARG:C	1:E:76:TYR:H	2.17	0.47
1:G:78:LYS:O	1:G:80:VAL:HG13	2.14	0.47
1:M:47:ILE:H	1:M:47:ILE:CD1	2.04	0.47
1:Q:243:HIS:ND1	1:Q:244:ASP:N	2.63	0.47
1:G:19:ILE:HG13	1:G:20:PHE:HD1	1.80	0.47
1:L:42:LYS:O	1:L:242:GLN:HG2	2.15	0.47
1:L:45:ILE:N	1:L:45:ILE:HD12	2.30	0.47
1:M:50:THR:O	1:M:54:VAL:HG23	2.14	0.47
1:M:58:GLY:O	1:M:254:CYS:SG	2.73	0.47
1:O:9:ASN:HD21	1:0:145:GLY:CA	2.24	0.47
1:0:42:LYS:0	1:O:242:GLN:HG2	2.14	0.47
1:P:245:ASP:OD2	1:P:271:ARG:HD3	2.14	0.47
1:A:3:LEU:HB3	1:A:4:PHE:H	1.51	0.47
1:A:215:THR:OG1	1:A:218:GLU:HG3	2.14	0.47
1:D:151:MET:HA	1:D:184:LYS:HB3	1.96	0.47
1:G:58:GLY:O	1:G:59:ALA:O	2.31	0.47
1:G:264:GLU:C	1:G:266:ALA:H	2.18	0.47
1:K:55:ALA:O	1:K:57:GLY:N	2.44	0.47

Continued from previous page...

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:M:66:LYS:HE3	1:N:178:LEU:O	2.14	0.47
1:O:45:ILE:N	1:O:45:ILE:HD12	2.30	0.47
1:P:53:ASP:O	1:P:56:GLU:HB3	2.14	0.47
1:P:109:ILE:HG22	1:P:146:MET:HE3	1.96	0.47
1:A:243:HIS:ND1	1:A:244:ASP:N	2.64	0.46
1:D:144:TRP:CZ3	1:N:109:ILE:HD11	2.49	0.46
1:F:71:HIS:O	1:F:73:HIS:N	2.47	0.46
1:F:251:ARG:HB3	1:F:269:GLU:HG2	1.97	0.46
1:G:92:ILE:O	1:G:92:ILE:CG1	2.63	0.46
1:I:99:LYS:HE3	3:I:500:GOL:O1	2.15	0.46
1:J:19:ILE:HG13	1:J:20:PHE:HD1	1.79	0.46
1:J:243:HIS:ND1	1:J:244:ASP:N	2.63	0.46
1:K:151:MET:HA	1:K:184:LYS:HB3	1.96	0.46
1:P:213:THR:HG22	1:P:214:ASN:H	1.80	0.46
1:A:42:LYS:O	1:A:242:GLN:HG2	2.15	0.46
1:B:243:HIS:ND1	1:B:244:ASP:N	2.63	0.46
1:I:60:ASN:OD1	1:I:60:ASN:N	2.48	0.46
1:I:263:VAL:O	1:I:267:LEU:HG	2.15	0.46
1:N:270:ILE:O	1:N:272:LYS:N	2.47	0.46
1:F:4:PHE:CE2	1:F:204:PRO:HG2	2.50	0.46
1:J:78:LYS:HD3	1:J:79:ASP:N	2.30	0.46
1:L:4:PHE:N	1:L:4:PHE:CD1	2.84	0.46
1:P:19:ILE:HG13	1:P:20:PHE:HD1	1.80	0.46
1:D:234:VAL:HG22	1:D:236:VAL:HG23	1.97	0.46
1:D:251:ARG:HG3	1:D:251:ARG:NH1	2.28	0.46
4:F:505:HOH:O	1:J:45:ILE:HG13	2.15	0.46
1:G:251:ARG:HG3	1:G:251:ARG:NH1	2.30	0.46
1:N:63:LEU:C	1:N:63:LEU:CD2	2.84	0.46
1:N:63:LEU:HD11	1:N:151:MET:HE3	1.97	0.46
1:N:234:VAL:HG22	1:N:236:VAL:HG23	1.98	0.46
1:O:49:LYS:HG2	4:O:509:HOH:O	2.15	0.46
1:S:31:PRO:HA	1:S:63:LEU:HB3	1.97	0.46
1:A:57:GLY:HA3	1:A:250:THR:OG1	2.15	0.46
1:J:119:HIS:CE1	3:J:500:GOL:HO1	2.25	0.46
1:Q:54:VAL:CG1	1:Q:59:ALA:HB3	2.45	0.46
1:G:187:TYR:HB2	1:G:207:VAL:CG2	2.45	0.46
1:H:45:ILE:N	1:H:45:ILE:HD12	2.31	0.46
1:I:14:VAL:HG11	4:Q:517:HOH:O	2.15	0.46
1:I:66:LYS:HG2	1:I:67:GLY:H	1.80	0.46
1:J:151:MET:HA	1:J:184:LYS:HB3	1.98	0.46
1:B:234:VAL:HG22	1:B:236:VAL:HG23	1.98	0.46

	1 · · · · ·	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:G:243:HIS:ND1	1:G:244:ASP:N	2.63	0.46
1:I:248:GLY:O	1:I:251:ARG:HB2	2.16	0.46
1:M:30:VAL:HG21	1:M:54:VAL:HG11	1.96	0.46
1:D:42:LYS:O	1:D:242:GLN:HG2	2.15	0.46
1:F:85:HIS:NE2	3:F:500:GOL:H12	2.30	0.46
1:H:17:GLU:OE1	1:P:73:HIS:NE2	2.42	0.46
1:H:103:THR:HA	1:I:139:GLU:OE2	2.16	0.46
1:I:221:GLN:OE1	1:I:263:VAL:HG21	2.16	0.46
1:K:69:VAL:C	1:K:71:HIS:N	2.68	0.46
1:K:220:LEU:HD12	1:K:267:LEU:CD2	2.46	0.46
1:M:160:GLN:HA	1:M:160:GLN:NE2	2.31	0.46
1:N:70:ARG:NH1	1:N:111:MET:CE	2.79	0.46
1:R:109:ILE:HG22	1:R:146:MET:HE2	1.98	0.46
1:T:32:MET:HB2	1:T:64:LEU:CD2	2.46	0.46
1:T:45:ILE:N	1:T:45:ILE:HD12	2.31	0.46
1:B:212:LYS:HA	1:B:239:ASN:OD1	2.16	0.46
1:B:248:GLY:O	1:B:251:ARG:HB2	2.16	0.46
1:E:251:ARG:HG3	1:E:251:ARG:NH1	2.31	0.46
1:F:2:GLU:HG3	1:F:25:GLU:OE2	2.16	0.46
1:F:32:MET:HB2	1:F:64:LEU:HD21	1.97	0.46
1:G:70:ARG:NH2	1:H:142:GLU:HG2	2.31	0.46
1:J:92:ILE:HG12	1:J:92:ILE:O	2.15	0.46
1:L:220:LEU:HD22	1:L:256:ILE:HD12	1.97	0.46
1:O:109:ILE:HG22	1:O:146:MET:HE2	1.98	0.46
1:S:30:VAL:HB	1:S:62:VAL:HG12	1.98	0.46
1:C:243:HIS:ND1	1:C:244:ASP:N	2.64	0.46
1:D:45:ILE:HD12	1:D:45:ILE:N	2.31	0.46
1:E:187:TYR:HB2	1:E:207:VAL:CG2	2.45	0.46
1:E:243:HIS:ND1	1:E:244:ASP:N	2.64	0.46
1:H:75:GLY:O	1:P:22:ARG:NH1	2.49	0.46
1:H:234:VAL:HG22	1:H:236:VAL:HG23	1.97	0.46
1:N:63:LEU:HA	1:N:83:ILE:O	2.16	0.46
1:R:4:PHE:HZ	1:R:20:PHE:CE1	2.34	0.46
1:E:267:LEU:O	1:E:270:ILE:N	2.48	0.45
1:H:19:ILE:HG13	1:H:20:PHE:HD1	1.81	0.45
1:L:36:VAL:HG21	1:L:65:HIS:CE1	2.50	0.45
1:P:74:ARG:O	1:P:76:TYR:N	2.49	0.45
1:P:92:ILE:HD12	1:R:167:LEU:HD22	1.98	0.45
1:B:45:ILE:HD12	1:B:45:ILE:N	2.31	0.45
1:C:69:VAL:CG1	1:O:10:LEU:HD11	2.46	0.45
1:G:249:ILE:O	1:G:253:VAL:HG23	2.16	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:I:2:GLU:HG3	1:I:3:LEU:N	2.32	0.45
1:M:4:PHE:CE2	1:M:204:PRO:HG2	2.51	0.45
1:M:109:ILE:HG22	1:M:146:MET:HE2	1.97	0.45
1:Q:262:ASP:O	1:Q:263:VAL:C	2.55	0.45
1:C:234:VAL:HG22	1:C:236:VAL:HG23	1.98	0.45
1:E:18:ARG:NE	1:M:18:ARG:NE	2.65	0.45
1:J:264:GLU:O	1:J:268:LYS:HG3	2.16	0.45
1:K:234:VAL:HG22	1:K:236:VAL:HG23	1.97	0.45
1:M:66:LYS:NZ	1:N:135:GLY:O	2.50	0.45
1:Q:135:GLY:O	1:T:66:LYS:NZ	2.47	0.45
1:S:45:ILE:HD12	1:S:45:ILE:N	2.31	0.45
1:E:234:VAL:HG22	1:E:236:VAL:HG23	1.99	0.45
1:H:153:TYR:OH	1:H:184:LYS:HE2	2.15	0.45
1:H:187:TYR:HB2	1:H:207:VAL:CG2	2.46	0.45
1:M:30:VAL:HG21	1:M:54:VAL:HG13	1.98	0.45
1:N:4:PHE:CD2	1:N:7:ILE:HG13	2.52	0.45
1:O:251:ARG:HG3	1:O:251:ARG:NH1	2.32	0.45
1:T:212:LYS:CD	1:T:239:ASN:HA	2.46	0.45
1:A:144:TRP:CZ3	1:L:109:ILE:HD11	2.52	0.45
1:G:74:ARG:HH21	1:G:78:LYS:N	2.13	0.45
1:G:109:ILE:HG22	1:G:146:MET:HE3	1.98	0.45
1:K:55:ALA:C	1:K:57:GLY:N	2.70	0.45
1:K:63:LEU:CD1	1:K:151:MET:HE3	2.47	0.45
1:K:63:LEU:HD11	1:K:151:MET:HE3	1.99	0.45
1:K:187:TYR:HB2	1:K:207:VAL:CG2	2.47	0.45
1:L:243:HIS:ND1	1:L:244:ASP:N	2.65	0.45
1:N:42:LYS:O	1:N:242:GLN:HG2	2.16	0.45
1:Q:109:ILE:HG22	1:Q:146:MET:HE3	1.97	0.45
1:B:78:LYS:HD2	1:B:79:ASP:O	2.16	0.45
1:E:144:TRP:CZ3	1:M:109:ILE:HD11	2.52	0.45
1:F:4:PHE:CD2	1:F:7:ILE:HD11	2.52	0.45
1:J:251:ARG:HG3	1:J:251:ARG:NH1	2.31	0.45
1:K:270:ILE:C	1:K:272:LYS:H	2.19	0.45
1:B:268:LYS:HB2	1:B:268:LYS:HZ3	1.80	0.45
1:C:2:GLU:HB2	1:C:25:GLU:OE2	2.16	0.45
1:C:64:LEU:HD22	1:C:68:ILE:HG22	1.98	0.45
1:J:187:TYR:HB2	1:J:207:VAL:CG2	2.46	0.45
1:L:65:HIS:HE1	3:L:500:GOL:O3	2.00	0.45
1:M:243:HIS:ND1	1:M:244:ASP:N	2.65	0.45
1:0:212:LYS:C	1:0:213:THR:0	2.50	0.45
1:R:243:HIS:ND1	1:R:244:ASP:N	2.64	0.45

	AL O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:187:TYR:HB2	1:D:207:VAL:CG2	2.47	0.45
1:F:234:VAL:HG22	1:F:236:VAL:HG23	1.98	0.45
1:G:42:LYS:O	1:G:242:GLN:HG2	2.16	0.45
1:H:55:ALA:HA	1:H:80:VAL:HG11	1.98	0.45
1:H:79:ASP:OD1	1:P:22:ARG:NH2	2.50	0.45
1:K:243:HIS:ND1	1:K:244:ASP:N	2.65	0.45
1:K:249:ILE:O	1:K:253:VAL:HG23	2.17	0.45
1:N:64:LEU:HD11	1:N:69:VAL:HG22	1.98	0.45
1:N:69:VAL:HB	1:N:111:MET:CE	2.47	0.45
1:A:212:LYS:HA	1:A:239:ASN:OD1	2.17	0.45
1:B:70:ARG:HG3	1:B:70:ARG:NH1	2.29	0.45
1:B:153:TYR:HA	1:B:154:PRO:HD3	1.87	0.45
1:F:220:LEU:HD22	1:F:256:ILE:HD12	1.98	0.45
1:G:30:VAL:HG21	1:G:54:VAL:HG13	1.99	0.45
1:H:243:HIS:ND1	1:H:244:ASP:N	2.65	0.45
1:I:234:VAL:HG22	1:I:236:VAL:HG23	1.99	0.45
1:K:54:VAL:HG12	1:K:59:ALA:HB2	1.99	0.45
1:Q:132:ARG:HB2	1:T:100:VAL:HG11	1.97	0.45
1:C:31:PRO:HA	1:C:63:LEU:HB3	1.99	0.45
1:D:55:ALA:O	1:D:78:LYS:HD3	2.17	0.45
1:F:144:TRP:CZ3	1:S:109:ILE:HD11	2.53	0.45
1:G:74:ARG:HG3	1:G:74:ARG:NH1	2.31	0.45
1:L:187:TYR:HB2	1:L:207:VAL:CG2	2.47	0.45
1:0:243:HIS:ND1	1:O:244:ASP:N	2.65	0.45
1:Q:92:ILE:HG12	1:Q:92:ILE:O	2.16	0.45
1:S:3:LEU:HD23	1:S:3:LEU:HA	1.90	0.45
1:S:66:LYS:HE3	1:T:139:GLU:HG3	1.98	0.45
1:A:234:VAL:HG22	1:A:236:VAL:HG23	1.99	0.44
1:C:119:HIS:CG	3:C:500:GOL:H2	2.52	0.44
1:C:271:ARG:O	1:C:272:LYS:CB	2.65	0.44
1:F:2:GLU:HG2	1:F:3:LEU:N	2.32	0.44
1:G:270:ILE:C	1:G:272:LYS:H	2.19	0.44
1:L:69:VAL:C	1:L:71:HIS:H	2.21	0.44
1:O:67:GLY:O	1:0:71:HIS:ND1	2.49	0.44
1:P:74:ARG:C	1:P:76:TYR:H	2.19	0.44
1:T:63:LEU:CD1	1:T:151:MET:HE3	2.48	0.44
1:T:266:ALA:O	1:T:268:LYS:N	2.50	0.44
1:A:187:TYR:HB2	1:A:207:VAL:CG2	2.47	0.44
1:F:4:PHE:HD2	1:F:7:ILE:CD1	2.30	0.44
1:G:63:LEU:HD11	1:G:117:SER:OG	2.17	0.44
1:H:36:VAL:HG23	1:I:177:GLU:HB3	1.99	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:I:251:ARG:HG3	1:I:251:ARG:NH1	2.32	0.44
1:J:209:GLY:N	4:J:508:HOH:O	2.50	0.44
1:J:263:VAL:HA	1:J:266:ALA:HB3	2.00	0.44
1:K:69:VAL:O	1:K:71:HIS:N	2.50	0.44
1:M:262:ASP:OD2	1:M:264:GLU:HB3	2.17	0.44
1:N:267:LEU:C	1:N:269:GLU:N	2.70	0.44
1:P:178:LEU:O	1:Q:66:LYS:HD2	2.17	0.44
1:Q:212:LYS:HA	1:Q:239:ASN:OD1	2.17	0.44
1:T:4:PHE:CD2	1:T:7:ILE:HD12	2.52	0.44
1:T:234:VAL:HG22	1:T:236:VAL:HG23	1.99	0.44
1:A:74:ARG:HG2	1:A:74:ARG:NH1	2.31	0.44
1:D:79:ASP:OD2	1:N:22:ARG:NH2	2.51	0.44
1:E:70:ARG:HD2	1:E:111:MET:HE1	1.98	0.44
1:L:66:LYS:HZ2	1:M:139:GLU:HG3	1.82	0.44
1:L:214:ASN:HB3	1:L:218:GLU:OE2	2.17	0.44
1:M:36:VAL:HB	3:M:500:GOL:O3	2.17	0.44
1:M:187:TYR:HB2	1:M:207:VAL:CG2	2.47	0.44
1:M:213:THR:HG21	1:M:219:PHE:HB2	1.98	0.44
1:R:36:VAL:HB	3:R:500:GOL:H31	1.98	0.44
1:R:92:ILE:O	1:R:92:ILE:HG12	2.18	0.44
1:D:85:HIS:NE2	3:D:500:GOL:H11	2.33	0.44
1:H:7:ILE:HG23	1:H:9:ASN:H	1.83	0.44
1:I:65:HIS:HE1	3:I:500:GOL:O3	2.00	0.44
1:K:70:ARG:NH1	1:K:107:GLU:OE1	2.48	0.44
1:N:187:TYR:HB2	1:N:207:VAL:CG2	2.47	0.44
1:N:269:GLU:HG2	4:N:502:HOH:O	2.17	0.44
1:Q:42:LYS:O	1:Q:242:GLN:HG2	2.17	0.44
1:S:187:TYR:HB2	1:S:207:VAL:CG2	2.47	0.44
1:B:215:THR:OG1	1:B:218:GLU:HG3	2.17	0.44
1:C:103:THR:HA	1:D:139:GLU:OE2	2.17	0.44
1:G:45:ILE:HD12	1:G:45:ILE:N	2.32	0.44
1:I:249:ILE:O	1:I:253:VAL:HG23	2.17	0.44
1:M:151:MET:HA	1:M:184:LYS:HB3	1.99	0.44
1:Q:187:TYR:HB2	1:Q:207:VAL:CG2	2.47	0.44
1:R:195:ARG:HD2	4:R:511:HOH:O	2.18	0.44
1:T:6:ASP:O	1:T:8:LYS:HG3	2.17	0.44
1:T:187:TYR:HB2	1:T:207:VAL:CG2	2.48	0.44
1:T:251:ARG:HG3	1:T:251:ARG:NH1	2.32	0.44
1:B:2:GLU:OE1	1:B:4:PHE:N	2.47	0.44
1:B:109:ILE:HG22	1:B:146:MET:HE2	2.00	0.44
1:C:42:LYS:O	1:C:242:GLN:HG2	2.18	0.44

	h h	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:Q:54:VAL:HG13	1:Q:59:ALA:CB	2.48	0.44
1:A:10:LEU:HD11	1:L:69:VAL:HG12	2.00	0.44
1:A:109:ILE:HG22	1:A:146:MET:HE2	1.97	0.44
1:B:31:PRO:HA	1:B:63:LEU:HB3	2.00	0.44
1:B:95:ASN:C	1:B:95:ASN:ND2	2.71	0.44
1:C:249:ILE:O	1:C:253:VAL:HG23	2.18	0.44
1:D:88:GLY:CA	3:D:500:GOL:O1	2.66	0.44
1:E:66:LYS:HD3	1:E:107:GLU:HG2	2.00	0.44
1:F:2:GLU:HG2	1:F:3:LEU:H	1.83	0.44
1:H:33:ASP:OD2	3:H:500:GOL:C1	2.66	0.44
1:I:155:ARG:HG2	1:I:162:GLU:OE2	2.18	0.44
1:K:259:GLU:C	1:K:261:ALA:H	2.21	0.44
1:N:160:GLN:HA	1:N:160:GLN:NE2	2.32	0.44
1:O:30:VAL:CG2	1:O:54:VAL:HG11	2.43	0.44
1:Q:53:ASP:O	1:Q:54:VAL:C	2.56	0.44
1:Q:95:ASN:C	1:Q:95:ASN:ND2	2.70	0.44
1:T:9:ASN:ND2	1:T:12:LYS:H	2.04	0.44
1:A:139:GLU:OE2	1:E:103:THR:HA	2.18	0.44
1:B:155:ARG:HG2	1:B:162:GLU:OE2	2.18	0.44
1:B:251:ARG:HG3	1:B:251:ARG:NH1	2.32	0.44
1:H:2:GLU:HG3	1:H:3:LEU:N	2.33	0.44
1:H:63:LEU:HD11	1:H:151:MET:HE3	2.00	0.44
1:M:61:ALA:HB1	1:M:81:GLY:O	2.17	0.44
1:O:160:GLN:HA	1:O:160:GLN:NE2	2.33	0.44
1:P:42:LYS:O	1:P:242:GLN:HG2	2.17	0.44
1:D:33:ASP:OD2	3:D:500:GOL:H32	2.18	0.44
1:E:160:GLN:HA	1:E:160:GLN:NE2	2.33	0.44
1:G:10:LEU:HD11	1:R:69:VAL:HG12	1.99	0.44
1:K:54:VAL:HG12	1:K:59:ALA:HB3	1.99	0.44
1:N:63:LEU:CD1	1:N:151:MET:HE3	2.48	0.44
1:P:69:VAL:HB	1:P:111:MET:HE1	1.99	0.44
1:Q:9:ASN:HD22	1:Q:9:ASN:C	2.21	0.44
1:A:155:ARG:HG2	1:A:162:GLU:OE2	2.18	0.43
1:F:95:ASN:C	1:F:95:ASN:ND2	2.72	0.43
1:F:243:HIS:ND1	1:F:244:ASP:N	2.66	0.43
1:H:214:ASN:C	1:H:214:ASN:HD22	2.19	0.43
1:M:92:ILE:HG12	1:M:92:ILE:O	2.18	0.43
1:O:9:ASN:O	1:O:10:LEU:C	2.56	0.43
1:Q:220:LEU:HD22	1:Q:256:ILE:HD12	2.00	0.43
1:S:48:ARG:HH21	1:S:73:HIS:H	1.66	0.43
1:S:243:HIS:ND1	1:S:244:ASP:N	2.65	0.43

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:T:95:ASN:C	1:T:95:ASN:ND2	2.69	0.43
1:C:187:TYR:HB2	1:C:207:VAL:CG2	2.48	0.43
1:E:48:ARG:O	1:E:52:ASN:HB2	2.17	0.43
1:F:79:ASP:OD2	1:F:79:ASP:N	2.51	0.43
1:G:71:HIS:O	1:G:73:HIS:N	2.51	0.43
1:H:40:PRO:HG3	1:I:200:GLY:O	2.18	0.43
1:N:243:HIS:ND1	1:N:244:ASP:N	2.66	0.43
1:P:187:TYR:HB2	1:P:207:VAL:CG2	2.48	0.43
1:A:68:ILE:HD11	1:B:202:PRO:HG2	2.00	0.43
1:B:66:LYS:HZ1	1:C:139:GLU:HG3	1.79	0.43
1:B:187:TYR:HB2	1:B:207:VAL:CG2	2.48	0.43
1:C:221:GLN:OE1	1:C:263:VAL:HG21	2.18	0.43
1:E:92:ILE:HG12	1:E:92:ILE:O	2.18	0.43
1:F:60:ASN:O	1:F:61:ALA:HB2	2.18	0.43
1:F:251:ARG:HB3	1:F:269:GLU:CG	2.48	0.43
1:H:42:LYS:O	1:H:242:GLN:HG2	2.18	0.43
1:J:42:LYS:O	1:J:242:GLN:HG2	2.17	0.43
1:0:31:PRO:HA	1:O:63:LEU:HB3	2.00	0.43
1:Q:234:VAL:HG22	1:Q:236:VAL:HG23	2.00	0.43
1:R:54:VAL:HG12	1:R:59:ALA:CB	2.48	0.43
1:J:214:ASN:C	1:J:214:ASN:ND2	2.71	0.43
1:K:58:GLY:HA3	1:K:254:CYS:SG	2.58	0.43
1:K:92:ILE:HG12	1:K:92:ILE:O	2.18	0.43
1:L:2:GLU:HB2	1:L:25:GLU:OE2	2.19	0.43
1:M:234:VAL:HG22	1:M:236:VAL:HG23	1.99	0.43
1:O:65:HIS:HE1	3:O:500:GOL:O3	2.01	0.43
1:O:69:VAL:C	1:0:71:HIS:H	2.21	0.43
1:0:153:TYR:HA	1:0:154:PRO:HD3	1.88	0.43
1:P:177:GLU:OE2	1:Q:68:ILE:CD1	2.67	0.43
1:P:271:ARG:CD	1:P:271:ARG:N	2.81	0.43
1:D:70:ARG:NH1	1:D:111:MET:HE1	2.34	0.43
1:E:219:PHE:CZ	1:E:223:ILE:HD11	2.54	0.43
1:G:95:ASN:C	1:G:95:ASN:ND2	2.71	0.43
1:I:187:TYR:HB2	1:I:207:VAL:CG2	2.48	0.43
1:J:160:GLN:HA	1:J:160:GLN:NE2	2.33	0.43
1:P:160:GLN:HA	1:P:160:GLN:NE2	2.34	0.43
1:S:95:ASN:C	1:S:95:ASN:ND2	2.71	0.43
1:T:270:ILE:O	1:T:272:LYS:N	2.49	0.43
1:D:223:ILE:O	1:D:227:MET:HG2	2.18	0.43
1:G:74:ARG:NH2	1:G:78:LYS:N	2.48	0.43
1:L:163:ARG:NH1	4:L:511:HOH:O	2.50	0.43

	A 4 O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:T:42:LYS:O	1:T:242:GLN:HG2	2.17	0.43
1:T:52:ASN:HD21	1:T:74:ARG:CB	2.31	0.43
1:T:267:LEU:O	1:T:267:LEU:HG	2.18	0.43
1:A:52:ASN:HD22	1:A:74:ARG:HD3	1.83	0.43
1:A:220:LEU:HD22	1:A:256:ILE:HD12	2.01	0.43
1:D:249:ILE:O	1:D:253:VAL:HG23	2.18	0.43
1:K:4:PHE:HD2	1:K:7:ILE:HG13	1.84	0.43
1:0:155:ARG:HG2	1:O:162:GLU:OE2	2.18	0.43
1:P:243:HIS:ND1	1:P:244:ASP:N	2.67	0.43
1:S:9:ASN:ND2	1:S:12:LYS:H	2.17	0.43
1:S:109:ILE:HG22	1:S:146:MET:HE2	2.00	0.43
1:A:32:MET:CE	1:A:51:VAL:HG23	2.49	0.43
1:C:263:VAL:HG12	1:C:267:LEU:CD1	2.46	0.43
1:E:9:ASN:ND2	1:E:12:LYS:H	2.17	0.43
1:E:73:HIS:CG	1:E:74:ARG:N	2.86	0.43
1:E:251:ARG:HH11	1:E:271:ARG:NH1	2.10	0.43
1:F:3:LEU:HD23	1:F:4:PHE:CD1	2.53	0.43
1:F:36:VAL:HG23	1:G:177:GLU:OE1	2.19	0.43
1:G:3:LEU:HD22	1:G:3:LEU:HA	1.84	0.43
1:K:160:GLN:HA	1:K:160:GLN:NE2	2.33	0.43
1:K:251:ARG:HG3	1:K:251:ARG:NH1	2.33	0.43
1:Q:160:GLN:HA	1:Q:160:GLN:NE2	2.33	0.43
1:A:31:PRO:HB2	2:A:501:13P:H31	2.00	0.43
1:B:42:LYS:O	1:B:242:GLN:HG2	2.17	0.43
1:C:9:ASN:HD22	1:C:12:LYS:HG3	1.76	0.43
1:D:92:ILE:O	1:D:92:ILE:HG12	2.18	0.43
1:F:100:VAL:CG1	1:G:132:ARG:HB2	2.45	0.43
1:F:160:GLN:HA	1:F:160:GLN:NE2	2.32	0.43
1:G:270:ILE:O	1:G:270:ILE:HG22	2.19	0.43
1:K:259:GLU:C	1:K:261:ALA:N	2.71	0.43
1:M:42:LYS:O	1:M:242:GLN:HG2	2.19	0.43
1:M:151:MET:HE2	1:M:184:LYS:HD2	2.00	0.43
1:N:193:SER:O	1:N:196:ASP:HB2	2.19	0.43
1:P:99:LYS:HE3	3:P:500:GOL:O2	2.19	0.43
1:C:3:LEU:HB3	1:C:4:PHE:H	1.71	0.43
1:C:220:LEU:HD22	1:C:256:ILE:HD12	2.00	0.43
1:D:109:ILE:HD11	1:N:144:TRP:CE3	2.54	0.43
1:L:234:VAL:HG22	1:L:236:VAL:HG23	2.00	0.43
1:M:74:ARG:HG3	1:M:76:TYR:H	1.83	0.43
1:Q:85:HIS:NE2	3:Q:500:GOL:C1	2.82	0.43
1:B:160:GLN:HA	1:B:160:GLN:NE2	2.34	0.42

	A L	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:D:61:ALA:HA	1:D:81:GLY:O	2.19	0.42
1:G:160:GLN:HA	1:G:160:GLN:NE2	2.33	0.42
1:N:92:ILE:HG12	1:N:92:ILE:O	2.18	0.42
1:O:3:LEU:HD22	1:O:204:PRO:HG3	2.01	0.42
1:O:49:LYS:CG	4:O:509:HOH:O	2.67	0.42
1:O:234:VAL:HG22	1:O:236:VAL:HG23	2.00	0.42
1:A:63:LEU:HA	1:A:83:ILE:O	2.19	0.42
1:D:2:GLU:CG	1:D:3:LEU:H	2.22	0.42
1:D:63:LEU:HD11	1:D:151:MET:HE3	2.01	0.42
1:G:153:TYR:HA	1:G:154:PRO:HD3	1.86	0.42
1:R:95:ASN:C	1:R:95:ASN:ND2	2.72	0.42
1:T:249:ILE:O	1:T:253:VAL:HG23	2.19	0.42
1:A:95:ASN:C	1:A:95:ASN:ND2	2.73	0.42
1:E:240:ILE:CG2	1:E:250:THR:HG22	2.49	0.42
1:F:2:GLU:CG	1:F:25:GLU:OE2	2.67	0.42
1:J:53:ASP:O	1:J:247:VAL:HG22	2.20	0.42
1:M:88:GLY:HA2	3:M:500:GOL:H12	2.00	0.42
1:B:220:LEU:HD22	1:B:256:ILE:HD12	2.00	0.42
1:E:95:ASN:C	1:E:95:ASN:ND2	2.71	0.42
1:G:2:GLU:O	1:G:3:LEU:C	2.57	0.42
1:H:63:LEU:HD23	1:H:64:LEU:N	2.33	0.42
1:I:4:PHE:HB3	1:I:7:ILE:HD12	2.00	0.42
1:K:109:ILE:HG22	1:K:146:MET:HE2	1.98	0.42
1:N:85:HIS:NE2	3:N:500:GOL:H11	2.33	0.42
1:Q:263:VAL:O	1:Q:266:ALA:HB3	2.19	0.42
1:T:66:LYS:HE2	1:T:103:THR:OG1	2.18	0.42
1:T:160:GLN:HA	1:T:160:GLN:NE2	2.33	0.42
1:A:160:GLN:HA	1:A:160:GLN:NE2	2.34	0.42
1:B:213:THR:HG21	1:B:219:PHE:HB2	2.01	0.42
1:C:3:LEU:CD1	1:C:204:PRO:HG3	2.50	0.42
1:E:92:ILE:O	1:E:92:ILE:CG1	2.67	0.42
1:F:70:ARG:HH22	1:G:8:LYS:N	2.17	0.42
1:H:95:ASN:C	1:H:95:ASN:ND2	2.72	0.42
1:I:42:LYS:O	1:I:242:GLN:HG2	2.19	0.42
1:J:153:TYR:HA	1:J:154:PRO:HD3	1.87	0.42
1:K:139:GLU:OE2	1:O:103:THR:HA	2.20	0.42
1:L:240:ILE:CG2	1:L:250:THR:HG22	2.48	0.42
1:O:187:TYR:HB2	1:O:207:VAL:CG2	2.49	0.42
1:S:247:VAL:O	1:S:251:ARG:HG2	2.19	0.42
1:B:213:THR:OG1	1:B:219:PHE:HB2	2.18	0.42
1:C:9:ASN:HD22	1:C:12:LYS:CB	2.32	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:40:PRO:HG2	4:D:505:HOH:O	2.20	0.42
1:F:55:ALA:O	1:F:78:LYS:CD	2.68	0.42
1:K:3:LEU:HD22	1:K:204:PRO:HG3	2.01	0.42
1:K:19:ILE:HG13	1:K:20:PHE:CD1	2.54	0.42
1:K:32:MET:HE1	1:K:51:VAL:HG23	2.02	0.42
1:K:103:THR:HA	1:L:139:GLU:OE2	2.20	0.42
1:K:270:ILE:HG22	1:K:272:LYS:H	1.85	0.42
1:0:215:THR:OG1	1:O:218:GLU:HG3	2.19	0.42
1:P:45:ILE:HD12	1:P:45:ILE:N	2.33	0.42
1:T:153:TYR:HA	1:T:154:PRO:HD3	1.89	0.42
1:D:265:GLU:HA	1:D:268:LYS:HZ1	1.85	0.42
1:E:59:ALA:HB2	4:E:508:HOH:O	2.19	0.42
1:O:3:LEU:HD23	1:O:3:LEU:HA	1.83	0.42
1:A:37:SER:HB3	3:A:500:GOL:H32	2.02	0.42
1:A:66:LYS:HD3	1:A:103:THR:HG23	2.01	0.42
1:D:265:GLU:HA	1:D:268:LYS:NZ	2.35	0.42
1:E:270:ILE:C	1:E:272:LYS:H	2.20	0.42
1:F:3:LEU:O	1:F:5:LYS:N	2.52	0.42
1:G:54:VAL:HG12	1:G:59:ALA:CB	2.50	0.42
1:O:95:ASN:C	1:O:95:ASN:ND2	2.73	0.42
1:T:56:GLU:CD	1:T:56:GLU:O	2.57	0.42
1:B:64:LEU:HD22	1:B:68:ILE:CG2	2.49	0.42
1:C:95:ASN:C	1:C:95:ASN:ND2	2.72	0.42
1:C:201:CYS:HA	1:C:202:PRO:HD3	1.92	0.42
1:D:193:SER:O	1:D:196:ASP:HB2	2.20	0.42
1:I:71:HIS:O	1:I:73:HIS:N	2.49	0.42
1:I:243:HIS:ND1	1:I:244:ASP:N	2.68	0.42
1:J:4:PHE:HD2	1:J:7:ILE:HG13	1.83	0.42
1:L:92:ILE:HG12	1:L:92:ILE:O	2.19	0.42
1:M:49:LYS:HD2	1:M:53:ASP:OD1	2.20	0.42
1:N:153:TYR:HA	1:N:154:PRO:HD3	1.88	0.42
1:O:85:HIS:HD2	3:O:500:GOL:O3	2.03	0.42
1:R:31:PRO:HB2	2:R:501:13P:H31	1.99	0.42
1:S:103:THR:HA	1:T:139:GLU:OE2	2.20	0.42
1:C:92:ILE:O	1:C:92:ILE:CG1	2.67	0.42
1:H:160:GLN:HA	1:H:160:GLN:NE2	2.35	0.42
1:J:220:LEU:HD22	1:J:256:ILE:HD12	2.00	0.42
1:L:99:LYS:NZ	3:L:500:GOL:H2	2.35	0.42
1:N:166:GLU:OE1	1:N:166:GLU:HA	2.19	0.42
1:O:54:VAL:HG12	1:O:59:ALA:CB	2.49	0.42
1:O:220:LEU:HD22	1:O:256:ILE:HD12	2.02	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:P:74:ARG:C	1:P:76:TYR:N	2.73	0.42
1:R:54:VAL:CG1	1:R:59:ALA:CB	2.95	0.42
1:D:160:GLN:HA	1:D:160:GLN:NE2	2.34	0.41
1:H:7:ILE:CG2	1:H:8:LYS:N	2.83	0.41
1:H:22:ARG:NH1	1:P:75:GLY:O	2.53	0.41
1:H:48:ARG:O	1:H:52:ASN:HB2	2.20	0.41
1:J:100:VAL:HG12	1:J:101:ILE:N	2.35	0.41
1:M:70:ARG:O	1:N:6:ASP:HB3	2.19	0.41
1:O:19:ILE:HG13	1:O:20:PHE:CD1	2.56	0.41
1:P:177:GLU:O	1:Q:67:GLY:HA3	2.19	0.41
1:R:160:GLN:HA	1:R:160:GLN:NE2	2.34	0.41
1:A:92:ILE:O	1:A:92:ILE:HG12	2.20	0.41
1:B:66:LYS:HZ2	1:C:139:GLU:CG	2.33	0.41
1:G:193:SER:O	1:G:196:ASP:HB2	2.19	0.41
1:I:66:LYS:HD2	1:I:103:THR:OG1	2.20	0.41
1:N:66:LYS:NZ	1:N:103:THR:OG1	2.53	0.41
1:N:155:ARG:HG2	1:N:162:GLU:OE2	2.21	0.41
1:O:193:SER:O	1:O:196:ASP:HB2	2.20	0.41
1:S:54:VAL:HG12	1:S:59:ALA:HB2	2.00	0.41
1:S:92:ILE:O	1:S:92:ILE:HG12	2.20	0.41
1:S:160:GLN:HA	1:S:160:GLN:NE2	2.34	0.41
1:A:79:ASP:OD1	1:L:22:ARG:NH2	2.53	0.41
1:A:271:ARG:O	1:A:272:LYS:C	2.59	0.41
1:E:36:VAL:HG21	1:E:65:HIS:ND1	2.35	0.41
1:E:74:ARG:HD2	1:E:76:TYR:CE1	2.55	0.41
1:E:249:ILE:O	1:E:253:VAL:HG23	2.21	0.41
1:F:60:ASN:HD22	1:F:60:ASN:HA	1.61	0.41
1:I:212:LYS:C	1:I:213:THR:O	2.54	0.41
1:M:220:LEU:HD22	1:M:256:ILE:HD12	2.01	0.41
1:T:64:LEU:HB3	1:T:68:ILE:HG13	2.03	0.41
1:C:160:GLN:HA	1:C:160:GLN:NE2	2.33	0.41
1:D:31:PRO:HB2	2:D:501:13P:H31	2.01	0.41
1:F:47:ILE:O	1:F:51:VAL:HG23	2.20	0.41
1:H:220:LEU:HB2	1:H:263:VAL:HG13	2.01	0.41
1:I:70:ARG:HE	1:I:111:MET:HE3	1.84	0.41
1:J:78:LYS:HD3	1:J:79:ASP:O	2.20	0.41
1:K:42:LYS:O	1:K:242:GLN:HG2	2.19	0.41
1:K:63:LEU:O	1:K:64:LEU:HD13	2.20	0.41
1:K:155:ARG:HG2	1:K:162:GLU:OE2	2.21	0.41
1:N:223:ILE:O	1:N:227:MET:HG2	2.21	0.41
1:T:193:SER:O	1:T:196:ASP:HB2	2.20	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:74:ARG:HG2	1:B:74:ARG:HH11	1.84	0.41
1:E:269:GLU:O	1:E:271:ARG:N	2.53	0.41
1:L:160:GLN:HA	1:L:160:GLN:NE2	2.36	0.41
1:M:249:ILE:O	1:M:253:VAL:HG23	2.20	0.41
1:S:107:GLU:O	1:S:110:ARG:HG2	2.21	0.41
1:T:85:HIS:NE2	3:T:500:GOL:C1	2.80	0.41
1:C:9:ASN:HD22	1:C:12:LYS:N	2.12	0.41
1:G:48:ARG:HH21	1:G:73:HIS:H	1.67	0.41
1:K:95:ASN:C	1:K:95:ASN:ND2	2.73	0.41
1:M:9:ASN:ND2	1:M:9:ASN:C	2.73	0.41
1:R:32:MET:HB2	1:R:64:LEU:CD2	2.50	0.41
1:R:67:GLY:HA3	1:S:177:GLU:O	2.20	0.41
1:S:240:ILE:CG2	1:S:250:THR:HG22	2.51	0.41
1:B:19:ILE:HG13	1:B:20:PHE:CD1	2.55	0.41
1:D:10:LEU:HD11	1:N:69:VAL:CG1	2.49	0.41
1:E:2:GLU:HG3	1:E:3:LEU:N	2.34	0.41
1:J:234:VAL:HG22	1:J:236:VAL:HG23	2.03	0.41
1:J:235:ALA:C	4:J:508:HOH:O	2.59	0.41
1:R:19:ILE:HG13	1:R:20:PHE:CD1	2.54	0.41
1:R:36:VAL:HG23	1:S:177:GLU:OE1	2.20	0.41
1:R:71:HIS:ND1	1:S:6:ASP:OD1	2.54	0.41
1:S:3:LEU:HD13	1:S:4:PHE:CD1	2.56	0.41
1:S:70:ARG:O	1:T:6:ASP:HB3	2.21	0.41
1:E:52:ASN:ND2	1:E:74:ARG:HD2	2.35	0.41
1:G:54:VAL:CG1	1:G:59:ALA:CB	2.99	0.41
1:H:40:PRO:HG3	1:I:173:ARG:HB2	2.02	0.41
1:I:19:ILE:HG13	1:I:20:PHE:CD1	2.55	0.41
1:J:52:ASN:O	1:J:53:ASP:C	2.59	0.41
1:K:220:LEU:HD22	1:K:256:ILE:HD12	2.01	0.41
1:L:95:ASN:C	1:L:95:ASN:ND2	2.74	0.41
1:P:153:TYR:HA	1:P:154:PRO:HD3	1.89	0.41
1:T:243:HIS:ND1	1:T:244:ASP:N	2.69	0.41
1:A:18:ARG:NE	1:L:18:ARG:NE	2.69	0.41
1:A:52:ASN:HB3	1:A:74:ARG:CZ	2.51	0.41
1:E:251:ARG:HG3	1:E:271:ARG:NH1	2.20	0.41
1:G:55:ALA:O	1:G:78:LYS:HB3	2.21	0.41
1:H:63:LEU:CD1	1:H:151:MET:HE3	2.50	0.41
1:I:109:ILE:HG22	1:I:146:MET:HE2	2.01	0.41
1:I:215:THR:OG1	1:I:218:GLU:CG	2.63	0.41
1:I:219:PHE:CZ	1:I:223:ILE:HD11	2.56	0.41
1:I:220:LEU:HD22	1:I:256:ILE:HD12	2.03	0.41

	h h	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:J:92:ILE:O	1:J:92:ILE:CG1	2.67	0.41
1:J:207:VAL:CG1	1:J:234:VAL:HG23	2.48	0.41
1:M:240:ILE:CG2	1:M:250:THR:HG22	2.51	0.41
1:O:220:LEU:HD12	1:O:267:LEU:CD2	2.51	0.41
1:Q:207:VAL:CG1	1:Q:234:VAL:HG23	2.49	0.41
1:R:247:VAL:O	1:R:251:ARG:HG2	2.20	0.41
1:T:92:ILE:O	1:T:92:ILE:HG12	2.19	0.41
1:A:60:ASN:O	1:A:81:GLY:N	2.44	0.41
1:E:47:ILE:H	1:E:47:ILE:CD1	2.06	0.41
1:E:263:VAL:O	1:E:267:LEU:HG	2.21	0.41
1:F:4:PHE:CD2	1:F:7:ILE:HD12	2.56	0.41
1:I:30:VAL:HG21	1:I:54:VAL:HG13	1.98	0.41
1:I:78:LYS:HD3	1:I:79:ASP:O	2.20	0.41
1:R:42:LYS:O	1:R:242:GLN:HG2	2.21	0.41
1:R:92:ILE:O	1:R:92:ILE:CG1	2.69	0.41
1:R:211:PRO:O	1:R:212:LYS:C	2.57	0.41
1:S:65:HIS:O	1:S:69:VAL:HG23	2.21	0.41
1:S:220:LEU:HD22	1:S:256:ILE:HD12	2.03	0.41
1:S:265:GLU:HA	1:S:268:LYS:HE3	2.02	0.41
1:T:63:LEU:HD11	1:T:151:MET:HE3	2.03	0.41
1:A:92:ILE:O	1:A:92:ILE:CG1	2.70	0.40
1:B:240:ILE:CG2	1:B:250:THR:HG22	2.51	0.40
1:E:220:LEU:HD12	1:E:267:LEU:HD23	2.03	0.40
1:F:19:ILE:HG13	1:F:20:PHE:CD1	2.56	0.40
1:F:33:ASP:HB2	1:F:65:HIS:CE1	2.56	0.40
1:F:100:VAL:HG12	1:F:101:ILE:N	2.36	0.40
1:N:95:ASN:C	1:N:95:ASN:ND2	2.74	0.40
1:O:92:ILE:O	1:O:92:ILE:HG12	2.21	0.40
1:P:95:ASN:C	1:P:95:ASN:ND2	2.73	0.40
1:S:249:ILE:O	1:S:253:VAL:HG23	2.21	0.40
1:A:249:ILE:O	1:A:253:VAL:HG23	2.21	0.40
1:G:31:PRO:HB2	2:G:501:13P:H31	1.99	0.40
1:G:54:VAL:CG1	1:G:59:ALA:HB2	2.52	0.40
1:G:109:ILE:HD11	1:R:144:TRP:CZ3	2.56	0.40
1:G:264:GLU:O	1:G:265:GLU:C	2.60	0.40
1:O:65:HIS:CE1	3:O:500:GOL:O3	2.75	0.40
1:Q:54:VAL:HG12	1:Q:59:ALA:HB3	2.02	0.40
1:S:245:ASP:OD2	1:S:248:GLY:HA3	2.22	0.40
1:B:74:ARG:HG3	1:B:75:GLY:N	2.37	0.40
1:D:70:ARG:NH1	1:D:111:MET:CE	2.84	0.40
1:F:42:LYS:O	1:F:242:GLN:HG2	2.22	0.40

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:70:ARG:HH22	1:G:8:LYS:C	2.25	0.40
1:F:247:VAL:O	1:F:251:ARG:HG2	2.22	0.40
1:H:36:VAL:CG2	1:I:177:GLU:HB3	2.51	0.40
1:I:153:TYR:HA	1:I:154:PRO:HD3	1.89	0.40
1:N:92:ILE:O	1:N:92:ILE:CG1	2.69	0.40
1:P:30:VAL:HG21	1:P:54:VAL:HG13	2.01	0.40
1:R:3:LEU:HD23	1:R:3:LEU:HA	1.82	0.40
1:S:221:GLN:HA	1:S:263:VAL:HG21	2.04	0.40
1:T:49:LYS:HE3	1:T:53:ASP:OD2	2.22	0.40
1:A:177:GLU:O	1:E:67:GLY:HA3	2.21	0.40
1:D:32:MET:HB2	1:D:64:LEU:HD23	2.03	0.40
1:E:63:LEU:CD1	1:E:151:MET:HE3	2.47	0.40
1:E:155:ARG:HG2	1:E:162:GLU:OE2	2.22	0.40
1:F:66:LYS:HE3	1:G:139:GLU:HG3	2.03	0.40
1:I:66:LYS:CG	1:I:67:GLY:N	2.84	0.40
1:I:160:GLN:HA	1:I:160:GLN:NE2	2.35	0.40
1:J:4:PHE:C	1:J:6:ASP:N	2.75	0.40
1:Q:69:VAL:CG2	1:Q:82:LEU:HD11	2.50	0.40
1:Q:92:ILE:O	1:Q:92:ILE:CG1	2.70	0.40
1:C:100:VAL:HG12	1:C:101:ILE:N	2.36	0.40
1:D:95:ASN:C	1:D:95:ASN:ND2	2.75	0.40
1:F:187:TYR:HB2	1:F:207:VAL:CG2	2.50	0.40
1:G:57:GLY:HA3	1:G:250:THR:OG1	2.22	0.40
1:K:92:ILE:O	1:K:92:ILE:CG1	2.70	0.40
1:S:99:LYS:NZ	3:S:500:GOL:O2	2.40	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	269/273~(98%)	253~(94%)	12 (4%)	4 (2%)	10 33

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	В	269/273~(98%)	248~(92%)	18 (7%)	3~(1%)	14	41
1	С	269/273~(98%)	251~(93%)	13~(5%)	5(2%)	8	26
1	D	269/273~(98%)	251~(93%)	14~(5%)	4(2%)	10	33
1	Ε	269/273~(98%)	251~(93%)	14~(5%)	4(2%)	10	33
1	F	269/273~(98%)	251~(93%)	13~(5%)	5(2%)	8	26
1	G	269/273~(98%)	246~(91%)	15 (6%)	8(3%)	4	15
1	Н	269/273~(98%)	258~(96%)	11 (4%)	0	100	100
1	Ι	269/273~(98%)	254~(94%)	14 (5%)	1 (0%)	34	66
1	J	269/273~(98%)	251~(93%)	15~(6%)	3~(1%)	14	41
1	Κ	269/273~(98%)	248~(92%)	18 (7%)	3~(1%)	14	41
1	L	269/273~(98%)	248~(92%)	17 (6%)	4(2%)	10	33
1	М	269/273~(98%)	246~(91%)	21 (8%)	2(1%)	22	53
1	Ν	269/273~(98%)	251~(93%)	12~(4%)	6(2%)	6	22
1	Ο	269/273~(98%)	250~(93%)	17~(6%)	2(1%)	22	53
1	Р	269/273~(98%)	255~(95%)	13~(5%)	1 (0%)	34	66
1	Q	269/273~(98%)	249~(93%)	17 (6%)	3~(1%)	14	41
1	R	269/273~(98%)	251 (93%)	16 (6%)	2(1%)	22	53
1	S	269/273~(98%)	259~(96%)	9 (3%)	1 (0%)	34	66
1	Т	265/273~(97%)	248 (94%)	10 (4%)	7 (3%)	5	18
All	All	$537\overline{6}/5460~(98\%)$	5019 (93%)	289 (5%)	68 (1%)	12	36

Continued from previous page...

All (68) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	3	LEU
1	С	74	ARG
1	Ε	268	LYS
1	F	3	LEU
1	F	77	GLY
1	G	72	GLY
1	G	263	VAL
1	М	76	TYR
1	0	3	LEU
1	Т	74	ARG
1	А	72	GLY

Mol	Chain	Res	Type
1	В	5	LYS
1	В	72	GLY
1	С	7	ILE
1	С	72	GLY
1	D	59	ALA
1	F	4	PHE
1	F	72	GLY
1	F	271	ARG
1	G	59	ALA
1	G	66	LYS
1	G	78	LYS
1	G	267	LEU
1	Ι	72	GLY
1	М	261	ALA
1	Ν	7	ILE
1	Q	77	GLY
1	R	267	LEU
1	Т	267	LEU
1	Т	271	ARG
1	А	4	PHE
1	В	59	ALA
1	D	261	ALA
1	G	261	ALA
1	J	77	GLY
1	Κ	70	ARG
1	Κ	271	ARG
1	L	66	LYS
1	L	265	GLU
1	Ν	264	GLU
1	С	267	LEU
1	D	61	ALA
1	K	56	GLU
1	L	9	ASN
1	N	212	LYS
1	N	271	ARG
1	0	267	LEU
1	Q	263	VAL
1	С	51	VAL
1	E	214	ASN
1	Е	263	VAL
1	G	79	ASP
1	J	61	ALA

Mol	Chain	Res	Type
1	Q	264	GLU
1	R	3	LEU
1	Т	70	ARG
1	Т	263	VAL
1	Е	270	ILE
1	N	72	GLY
1	Р	75	GLY
1	J	7	ILE
1	L	72	GLY
1	S	77	GLY
1	А	77	GLY
1	N	263	VAL
1	D	263	VAL
1	Т	7	ILE
1	Т	270	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	214/220~(97%)	199~(93%)	15 (7%)	15	40
1	В	212/220~(96%)	198 (93%)	14 (7%)	16	44
1	С	211/220~(96%)	202 (96%)	9 (4%)	29	62
1	D	213/220~(97%)	201 (94%)	12 (6%)	21	51
1	Е	215/220~(98%)	198 (92%)	17 (8%)	12	34
1	F	214/220~(97%)	202 (94%)	12 (6%)	21	51
1	G	214/220~(97%)	200 (94%)	14 (6%)	17	44
1	Н	213/220~(97%)	196 (92%)	17 (8%)	12	34
1	Ι	213/220~(97%)	200 (94%)	13 (6%)	18	48
1	J	212/220~(96%)	203~(96%)	9~(4%)	30	63
1	K	212/220~(96%)	202 (95%)	10 (5%)	26	59
1	L	212/220~(96%)	200 (94%)	12~(6%)	20	50

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	М	213/220~(97%)	201~(94%)	12~(6%)	21	51
1	Ν	212/220~(96%)	199 (94%)	13 (6%)	18	48
1	Ο	211/220~(96%)	202~(96%)	9~(4%)	29	62
1	Р	214/220~(97%)	202~(94%)	12 (6%)	21	51
1	Q	212/220~(96%)	198~(93%)	14 (7%)	16	44
1	R	213/220~(97%)	201 (94%)	12 (6%)	21	51
1	S	213/220~(97%)	204 (96%)	9~(4%)	30	63
1	Т	211/220~(96%)	200~(95%)	11 (5%)	23	55
All	All	4254/4400 (97%)	4008 (94%)	246 (6%)	20	50

All (246) residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	3	LEU
1	А	9	ASN
1	А	47	ILE
1	А	52	ASN
1	А	62	VAL
1	А	64	LEU
1	А	73	HIS
1	А	79	ASP
1	А	95	ASN
1	А	98	LYS
1	А	109	ILE
1	А	161	ASN
1	А	174	LEU
1	А	214	ASN
1	А	265	GLU
1	В	3	LEU
1	В	9	ASN
1	В	47	ILE
1	В	52	ASN
1	В	63	LEU
1	В	95	ASN
1	В	98	LYS
1	В	109	ILE
1	В	161	ASN
1	В	174	LEU
1	В	214	ASN

Mol	Chain	Res	Type
1	В	262	ASP
1	В	267	LEU
1	В	268	LYS
1	С	3	LEU
1	С	47	ILE
1	С	63	LEU
1	С	65	HIS
1	С	95	ASN
1	С	98	LYS
1	С	109	ILE
1	С	161	ASN
1	С	174	LEU
1	D	3	LEU
1	D	9	ASN
1	D	47	ILE
1	D	54	VAL
1	D	64	LEU
1	D	79	ASP
1	D	95	ASN
1	D	98	LYS
1	D	109	ILE
1	D	161	ASN
1	D	174	LEU
1	D	215	THR
1	Е	3	LEU
1	Е	6	ASP
1	Е	9	ASN
1	Е	22	ARG
1	Е	47	ILE
1	Е	52	ASN
1	Е	69	VAL
1	Ε	70	ARG
1	Е	74	ARG
1	Е	78	LYS
1	Е	95	ASN
1	Е	98	LYS
1	Е	109	ILE
1	Е	161	ASN
1	Е	174	LEU
1	Е	214	ASN
1	Е	271	ARG
1	F	9	ASN

Mol	Chain	Res	Type
1	F	47	ILE
1	F	52	ASN
1	F	60	ASN
1	F	74	ARG
1	F	76	TYR
1	F	95	ASN
1	F	98	LYS
1	F	109	ILE
1	F	161	ASN
1	F	174	LEU
1	F	264	GLU
1	G	3	LEU
1	G	6	ASP
1	G	47	ILE
1	G	66	LYS
1	G	70	ARG
1	G	73	HIS
1	G	79	ASP
1	G	95	ASN
1	G	98	LYS
1	G	109	ILE
1	G	161	ASN
1	G	174	LEU
1	G	214	ASN
1	G	267	LEU
1	Н	3	LEU
1	Н	7	ILE
1	Н	9	ASN
1	Н	47	ILE
1	Н	52	ASN
1	Н	54	VAL
1	H	66	LYS
1	Н	78	LYS
1	Н	95	ASN
1	Н	98	LYS
1	Н	109	ILE
1	Н	161	ASN
1	Н	174	LEU
1	Н	214	ASN
1	Н	264	GLU
1	Н	267	LEU
1	Н	268	LYS

Mol	Chain	Res	Type
1	Ι	3	LEU
1	Ι	6	ASP
1	Ι	9	ASN
1	Ι	47	ILE
1	Ι	52	ASN
1	Ι	60	ASN
1	Ι	63	LEU
1	Ι	65	HIS
1	Ι	95	ASN
1	Ι	98	LYS
1	Ι	109	ILE
1	Ι	161	ASN
1	Ι	174	LEU
1	J	47	ILE
1	J	52	ASN
1	J	70	ARG
1	J	78	LYS
1	J	95	ASN
1	J	98	LYS
1	J	109	ILE
1	J	161	ASN
1	J	174	LEU
1	K	3	LEU
1	К	47	ILE
1	K	64	LEU
1	K	66	LYS
1	K	69	VAL
1	K	95	ASN
1	K	98	LYS
1	K	109	ILE
1	K	161	ASN
1	K	174	LEU
1	L	3	LEU
1	L	4	PHE
1	L	9	ASN
1	L	47	ILE
1	L	52	ASN
1	L	63	LEU
1	L	64	LEU
1	L	95	ASN
1	L	98	LYS
1	L	109	ILE

Mol	Chain	Res	Type
1	L	161	ASN
1	L	174	LEU
1	М	2	GLU
1	М	3	LEU
1	М	9	ASN
1	М	47	ILE
1	М	52	ASN
1	М	65	HIS
1	М	95	ASN
1	М	98	LYS
1	М	109	ILE
1	М	161	ASN
1	М	174	LEU
1	М	214	ASN
1	Ν	9	ASN
1	N	47	ILE
1	Ν	52	ASN
1	N	62	VAL
1	N	63	LEU
1	N	64	LEU
1	N	78	LYS
1	N	95	ASN
1	N	98	LYS
1	N	109	ILE
1	N	161	ASN
1	N	174	LEU
1	N	214	ASN
1	0	3	LEU
1	0	47	ILE
1	0	52	ASN
1	0	62	VAL
1	0	95	ASN
1	0	98	LYS
1	0	109	ILE
1	0	161	ASN
1	0	174	LEU
1	P	8	LYS
1	Р	9	ASN
1	Р	47	ILE
1	P	64	LEU
1	Р	74	ARG
1	Р	95	ASN

Mol	Chain	Res	Type
1	Р	98	LYS
1	Р	109	ILE
1	Р	161	ASN
1	Р	174	LEU
1	Р	262	ASP
1	Р	271	ARG
1	Q	3	LEU
1	Q	9	ASN
1	Q	47	ILE
1	Q	52	ASN
1	Q	60	ASN
1	Q	63	LEU
1	Q	65	HIS
1	Q	95	ASN
1	Q	98	LYS
1	Q	109	ILE
1	Q	161	ASN
1	Q	174	LEU
1	Q	214	ASN
1	Q	262	ASP
1	R	4	PHE
1	R	9	ASN
1	R	47	ILE
1	R	63	LEU
1	R	70	ARG
1	R	79	ASP
1	R	95	ASN
1	R	98	LYS
1	R	109	ILE
1	R	161	ASN
1	R	174	LEU
1	R	262	ASP
1	S	2	GLU
1	S	3	LEU
1	S	9	ASN
1	S	47	ILE
1	S	95	ASN
1	S	98	LYS
1	S	109	ILE
1	S	161	ASN
1	S	174	LEU
1	Т	3	LEU

Mol	Chain	Res	Type
1	Т	7	ILE
1	Т	47	ILE
1	Т	56	GLU
1	Т	63	LEU
1	Т	95	ASN
1	Т	98	LYS
1	Т	109	ILE
1	Т	161	ASN
1	Т	174	LEU
1	Т	262	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (117) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	9	ASN
1	А	52	ASN
1	А	65	HIS
1	А	95	ASN
1	А	160	GLN
1	А	161	ASN
1	А	214	ASN
1	В	9	ASN
1	В	52	ASN
1	В	95	ASN
1	В	160	GLN
1	В	161	ASN
1	В	214	ASN
1	С	9	ASN
1	С	95	ASN
1	С	160	GLN
1	С	161	ASN
1	D	9	ASN
1	D	52	ASN
1	D	95	ASN
1	D	160	GLN
1	D	161	ASN
1	D	214	ASN
1	Е	9	ASN
1	Е	52	ASN
1	Е	95	ASN
1	Е	160	GLN
1	Е	161	ASN

Mol	Chain	Res	Type
1	Е	214	ASN
1	F	9	ASN
1	F	52	ASN
1	F	60	ASN
1	F	65	HIS
1	F	95	ASN
1	F	160	GLN
1	F	161	ASN
1	G	52	ASN
1	G	73	HIS
1	G	95	ASN
1	G	158	HIS
1	G	160	GLN
1	G	161	ASN
1	G	214	ASN
1	Н	9	ASN
1	Н	52	ASN
1	Н	95	ASN
1	Н	160	GLN
1	Н	161	ASN
1	Н	214	ASN
1	Ι	9	ASN
1	Ι	52	ASN
1	Ι	65	HIS
1	Ι	95	ASN
1	Ι	160	GLN
1	Ι	161	ASN
1	J	9	ASN
1	J	95	ASN
1	J	160	GLN
1	J	161	ASN
1	J	214	ASN
1	K	52	ASN
1	Κ	60	ASN
1	K	95	ASN
1	K	160	GLN
1	Κ	161	ASN
1	K	214	ASN
1	L	9	ASN
1	L	52	ASN
1	L	65	HIS
1	L	95	ASN

Mol	Chain	Res	Type
1	L	161	ASN
1	L	214	ASN
1	М	9	ASN
1	М	52	ASN
1	М	65	HIS
1	М	95	ASN
1	М	160	GLN
1	М	161	ASN
1	М	214	ASN
1	Ν	52	ASN
1	N	95	ASN
1	N	160	GLN
1	N	161	ASN
1	0	9	ASN
1	0	52	ASN
1	0	65	HIS
1	0	95	ASN
1	0	160	GLN
1	0	161	ASN
1	Р	9	ASN
1	Р	52	ASN
1	Р	65	HIS
1	Р	95	ASN
1	Р	160	GLN
1	Р	161	ASN
1	Q	9	ASN
1	Q	65	HIS
1	Q	95	ASN
1	Q	160	GLN
1	Q	161	ASN
1	R	9	ASN
1	R	65	HIS
1	R	95	ASN
1	R	160	GLN
1	R	161	ASN
1	S	9	ASN
1	S	52	ASN
1	S	65	HIS
1	S	71	HIS
1	S	95	ASN
1	S	160	GLN
1	S	161	ASN

Continued from previous page...

Continued from previous page...

Mol	Chain	Res	Type
1	Т	9	ASN
1	Т	52	ASN
1	Т	95	ASN
1	Т	160	GLN
1	Т	161	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

40 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Type Chain		Dec	Link	B	Bond lengths			Bond angles		
	Type	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
3	GOL	N	500	-	5,5,5	0.21	0	$5,\!5,\!5$	0.49	0	
3	GOL	S	500	-	5,5,5	0.30	0	$5,\!5,\!5$	0.46	0	
2	13P	K	501	1	8,8,9	1.56	1 (12%)	10,10,12	1.36	2 (20%)	
2	13P	Ι	501	1	8,8,9	1.55	1 (12%)	10,10,12	1.36	2 (20%)	
2	13P	N	501	1	8,8,9	1.57	1 (12%)	10,10,12	1.38	2 (20%)	
3	GOL	F	500	-	5,5,5	0.21	0	$5,\!5,\!5$	0.53	0	
3	GOL	В	500	-	5,5,5	0.27	0	$5,\!5,\!5$	0.44	0	
3	GOL	М	500	-	5,5,5	0.21	0	$5,\!5,\!5$	0.53	0	

2QJI

Mal	Turne	Chain	Dec	Tink	Bond lengths		Bond angles			
IVIOI	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	13P	Q	501	1	8,8,9	1.58	1 (12%)	10,10,12	1.36	2 (20%)
2	13P	L	501	1	8,8,9	1.55	1 (12%)	10,10,12	1.35	2 (20%)
2	13P	J	501	1	8,8,9	1.57	1 (12%)	10,10,12	1.40	2 (20%)
2	13P	F	501	1	8,8,9	1.53	1 (12%)	10,10,12	1.38	2 (20%)
2	13P	М	501	1	8,8,9	1.54	1 (12%)	10,10,12	1.38	2 (20%)
2	13P	Н	501	1	8,8,9	1.56	1 (12%)	10,10,12	1.38	2 (20%)
2	13P	S	501	1	8,8,9	1.54	1 (12%)	10,10,12	1.37	2 (20%)
3	GOL	Е	500	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.72	0
3	GOL	Т	500	-	$5,\!5,\!5$	0.26	0	$5,\!5,\!5$	0.71	0
3	GOL	С	500	-	$5,\!5,\!5$	0.27	0	$5,\!5,\!5$	0.50	0
3	GOL	L	500	-	$5,\!5,\!5$	0.22	0	$5,\!5,\!5$	0.92	0
2	13P	Р	501	1	8,8,9	1.55	1 (12%)	10,10,12	1.37	2 (20%)
2	13P	Е	501	1	8,8,9	1.57	1 (12%)	10,10,12	1.36	2 (20%)
3	GOL	D	500	-	$5,\!5,\!5$	0.28	0	$5,\!5,\!5$	0.53	0
3	GOL	Р	500	_	$5,\!5,\!5$	0.20	0	$5,\!5,\!5$	0.48	0
2	13P	0	501	1	8,8,9	1.55	1 (12%)	10,10,12	1.37	2 (20%)
2	13P	Т	501	1	8,8,9	1.54	1 (12%)	10,10,12	1.36	2 (20%)
2	13P	G	501	1	8,8,9	1.56	1 (12%)	10,10,12	1.38	2 (20%)
3	GOL	А	500	-	$5,\!5,\!5$	0.38	0	$5,\!5,\!5$	0.30	0
3	GOL	R	500	-	$5,\!5,\!5$	0.30	0	$5,\!5,\!5$	0.44	0
2	13P	С	501	1	8,8,9	1.56	1 (12%)	10,10,12	1.38	2 (20%)
2	13P	D	501	1	8,8,9	1.54	1 (12%)	10,10,12	1.38	2 (20%)
3	GOL	J	500	-	$5,\!5,\!5$	0.31	0	$5,\!5,\!5$	0.44	0
3	GOL	Н	500	-	$5,\!5,\!5$	0.30	0	$5,\!5,\!5$	0.80	0
2	13P	А	501	1	8,8,9	1.58	1 (12%)	10,10,12	1.35	2 (20%)
3	GOL	K	500	-	$5,\!5,\!5$	0.25	0	$5,\!5,\!5$	0.48	0
3	GOL	0	500	-	$5,\!5,\!5$	0.21	0	$5,\!5,\!5$	0.39	0
2	13P	R	501	1	8,8,9	1.61	1 (12%)	10,10,12	1.36	2 (20%)
2	13P	В	501	1	8,8,9	1.56	1 (12%)	10,10,12	1.35	2 (20%)
3	GOL	Ι	500	-	5,5,5	0.27	0	5, 5, 5	0.71	0
3	GOL	Q	500	-	5,5,5	0.25	0	5, 5, 5	0.79	0
3	GOL	G	500	_	$5,\!5,\!5$	0.29	0	$5,\!5,\!5$	0.82	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

2QJI

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	GOL	N	500	-	-	0/4/4/4	-
3	GOL	S	500	-	-	0/4/4/4	-
2	13P	Κ	501	1	-	3/6/6/8	-
2	13P	Ι	501	1	-	3/6/6/8	-
2	13P	N	501	1	-	3/6/6/8	-
3	GOL	F	500	-	-	0/4/4/4	-
3	GOL	В	500	-	-	0/4/4/4	-
3	GOL	М	500	-	-	0/4/4/4	-
2	13P	Q	501	1	-	3/6/6/8	-
2	13P	L	501	1	-	3/6/6/8	-
2	13P	J	501	1	-	3/6/6/8	-
2	13P	F	501	1	-	3/6/6/8	-
2	13P	М	501	1	-	3/6/6/8	-
2	13P	Н	501	1	-	2/6/6/8	-
2	13P	S	501	1	-	2/6/6/8	_
3	GOL	Е	500	-	-	0/4/4/4	-
3	GOL	Т	500	-	-	0/4/4/4	-
3	GOL	С	500	-	-	0/4/4/4	-
3	GOL	L	500	-	-	0/4/4/4	-
2	13P	Р	501	1	-	3/6/6/8	-
2	13P	Е	501	1	-	3/6/6/8	-
3	GOL	D	500	-	-	0/4/4/4	-
3	GOL	Р	500	-	-	0/4/4/4	-
2	13P	0	501	1	-	3/6/6/8	-
2	13P	Т	501	1	-	3/6/6/8	-
2	13P	G	501	1	-	3/6/6/8	-
3	GOL	А	500	-	-	0/4/4/4	-
3	GOL	R	500	-	-	0/4/4/4	-
2	13P	С	501	1	-	3/6/6/8	-
2	13P	D	501	1	-	2/6/6/8	-
3	GOL	J	500	-	-	0/4/4/4	_
3	GOL	Н	500	-	-	0/4/4/4	-
2	13P	А	501	1	-	3/6/6/8	-
3	GOL	K	500	-	-	0/4/4/4	-
3	GOL	0	500	-	-	0/4/4/4	-
2	13P	R	501	1	-	3/6/6/8	-
2	13P	В	501	1	-	2/6/6/8	-
3	GOL	Ι	500	-	-	0/4/4/4	-
3	GOL	Q	500		_	0/4/4/4	_

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	GOL	G	500	-	-	0/4/4/4	-

All (20) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(\text{\AA})$	Ideal(Å)
2	R	501	13P	P-O1P	3.56	1.61	1.50
2	В	501	13P	P-O1P	3.53	1.61	1.50
2	Q	501	13P	P-O1P	3.50	1.61	1.50
2	L	501	13P	P-O1P	3.50	1.61	1.50
2	G	501	13P	P-01P	3.49	1.61	1.50
2	J	501	13P	P-01P	3.49	1.61	1.50
2	Κ	501	13P	P-01P	3.49	1.61	1.50
2	А	501	13P	P-01P	3.49	1.61	1.50
2	Ν	501	13P	P-01P	3.49	1.61	1.50
2	Е	501	13P	P-01P	3.47	1.61	1.50
2	0	501	13P	P-O1P	3.47	1.61	1.50
2	С	501	13P	P-01P	3.46	1.61	1.50
2	S	501	13P	P-01P	3.46	1.61	1.50
2	D	501	13P	P-O1P	3.46	1.61	1.50
2	Н	501	13P	P-01P	3.45	1.61	1.50
2	Ι	501	13P	P-O1P	3.44	1.61	1.50
2	Т	501	13P	P-01P	3.44	1.61	1.50
2	F	501	13P	P-O1P	3.44	1.61	1.50
2	Р	501	13P	P-O1P	3.44	1.61	1.50
2	М	501	13P	P-O1P	3.44	1.61	1.50

All (40) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	J	501	13P	C1-C2-C3	3.29	120.04	113.55
2	D	501	13P	C1-C2-C3	3.22	119.91	113.55
2	F	501	13P	C1-C2-C3	3.22	119.90	113.55
2	Κ	501	13P	C1-C2-C3	3.21	119.88	113.55
2	С	501	13P	C1-C2-C3	3.20	119.86	113.55
2	М	501	13P	C1-C2-C3	3.19	119.84	113.55
2	Н	501	13P	C1-C2-C3	3.18	119.82	113.55
2	G	501	13P	C1-C2-C3	3.18	119.82	113.55
2	Ν	501	13P	C1-C2-C3	3.17	119.81	113.55
2	0	501	13P	C1-C2-C3	3.17	119.81	113.55
2	S	501	13P	C1-C2-C3	3.16	119.79	113.55
2	L	501	13P	C1-C2-C3	3.15	119.77	113.55
2	Т	501	13P	C1-C2-C3	3.14	119.75	113.55

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	Р	501	13P	C1-C2-C3	3.13	119.73	113.55
2	Е	501	13P	C1-C2-C3	3.12	119.71	113.55
2	Ι	501	13P	C1-C2-C3	3.12	119.70	113.55
2	Q	501	13P	C1-C2-C3	3.12	119.70	113.55
2	R	501	13P	C1-C2-C3	3.12	119.70	113.55
2	В	501	13P	C1-C2-C3	3.11	119.69	113.55
2	А	501	13P	C1-C2-C3	3.08	119.63	113.55
2	R	501	13P	O3P-P-O1	2.26	112.55	106.67
2	Ν	501	13P	O3P-P-O1	2.26	112.55	106.67
2	Q	501	13P	O3P-P-O1	2.24	112.52	106.67
2	G	501	13P	O3P-P-O1	2.24	112.51	106.67
2	А	501	13P	O3P-P-O1	2.24	112.50	106.67
2	М	501	13P	O3P-P-O1	2.23	112.50	106.67
2	Н	501	13P	O3P-P-O1	2.23	112.48	106.67
2	J	501	13P	O3P-P-O1	2.23	112.48	106.67
2	Р	501	13P	O3P-P-O1	2.23	112.48	106.67
2	Ι	501	13P	O3P-P-O1	2.23	112.47	106.67
2	В	501	13P	O3P-P-O1	2.22	112.47	106.67
2	Е	501	13P	O3P-P-O1	2.22	112.46	106.67
2	С	501	13P	O3P-P-O1	2.21	112.44	106.67
2	S	501	13P	O3P-P-O1	2.21	112.42	106.67
2	0	501	13P	O3P-P-O1	2.20	112.40	106.67
2	D	501	13P	O3P-P-O1	2.20	112.40	106.67
2	Т	501	13P	O3P-P-O1	2.20	112.40	106.67
2	Κ	501	13P	O3P-P-O1	2.19	112.37	106.67
2	L	501	13P	O3P-P-O1	2.17	112.33	106.67
2	F	501	13P	O3P-P-O1	2.17	112.32	106.67

 $Continued \ from \ previous \ page...$

There are no chirality outliers.

All ((56)) torsion	outliers	are	listed	below:
1		,	0.0101010	002.0	110000	0010111

Mol	Chain	Res	Type	Atoms
2	А	501	13P	C1-C2-C3-O3
2	В	501	13P	C1-C2-C3-O3
2	С	501	13P	C1-C2-C3-O3
2	D	501	13P	C1-C2-C3-O3
2	Ε	501	13P	C1-C2-C3-O3
2	F	501	13P	C1-C2-C3-O3
2	G	501	13P	C1-C2-C3-O3
2	Н	501	13P	C1-C2-C3-O3
2	Ι	501	13P	C1-C2-C3-O3
2	J	501	13P	C1-C2-C3-O3

Mol	Chain	Res	Type	Atoms	
2	K	501	13P	C1-C2-C3-O3	
2	L	501	13P	C1-C2-C3-O3	
2	М	501	13P	C1-C2-C3-O3	
2	Ν	501	13P	C1-C2-C3-O3	
2	0	501	13P	C1-C2-C3-O3	
2	Р	501	13P	C1-C2-C3-O3	
2	Q	501	13P	C1-C2-C3-O3	
2	R	501	13P	C1-C2-C3-O3	
2	S	501	13P	C1-C2-C3-O3	
2	Т	501	13P	C1-C2-C3-O3	
2	А	501	13P	C1-O1-P-O1P	
2	С	501	13P	C1-O1-P-O1P	
2	Е	501	13P	C1-O1-P-O1P	
2	F	501	13P	C1-O1-P-O1P	
2	G	501	13P	C1-O1-P-O1P	
2	Ι	501	13P	C1-O1-P-O1P	
2	J	501	13P	C1-O1-P-O1P	
2	К	501	13P	C1-O1-P-O1P	
2	L	501	13P	C1-O1-P-O1P	
2	М	501	13P	C1-O1-P-O1P	
2	Ν	501	13P	C1-O1-P-O1P	
2	0	501	13P	C1-O1-P-O1P	
2	Q	501	13P	C1-O1-P-O1P	
2	R	501	13P	C1-O1-P-O1P	
2	Т	501	13P	C1-O1-P-O1P	
2	В	501	13P	O1-C1-C2-C3	
2	D	501	13P	O1-C1-C2-C3	
2	Κ	501	13P	O1-C1-C2-C3	
2	А	501	13P	O1-C1-C2-C3	
2	С	501	13P	O1-C1-C2-C3	
2	Е	501	13P	O1-C1-C2-C3	
2	F	501	13P	O1-C1-C2-C3	
2	G	501	13P	O1-C1-C2-C3	
2	Н	501	13P	O1-C1-C2-C3	
2	Ι	501	13P	O1-C1-C2-C3	
2	J	501	13P	O1-C1-C2-C3	
2	L	501	13P	O1-C1-C2-C3	
2	М	501	13P	01-C1-C2-C3	
2	N	501	13P	O1-C1-C2-C3	
2	0	501	13P	O1-C1-C2-C3	
2	Р	501	13P	O1-C1-C2-C3	
2	Q	501	13P	O1-C1-C2-C3	

Continued from previous page...

e e mara j. e m p. e co de pagem									
Mol	Chain	\mathbf{Res}	Type	Atoms					
2	R	501	13P	O1-C1-C2-C3					
2	S	501	13P	O1-C1-C2-C3					
2	Т	501	13P	O1-C1-C2-C3					
2	Р	501	13P	C1-O1-P-O1P					

Continued from previous page...

There are no ring outliers.

40 monomers are involved in 111 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	N	500	GOL	3	0
3	S	500	GOL	3	0
2	K	501	13P	2	0
2	Ι	501	13P	2	0
2	N	501	13P	2	0
3	F	500	GOL	3	0
3	В	500	GOL	1	0
3	М	500	GOL	5	0
2	Q	501	13P	2	0
2	L	501	13P	2	0
2	J	501	13P	2	0
2	F	501	13P	2	0
2	М	501	13P	2	0
2	Н	501	13P	2	0
2	S	501	13P	2	0
3	Е	500	GOL	2	0
3	Т	500	GOL	2	0
3	С	500	GOL	7	0
3	L	500	GOL	3	0
2	Р	501	13P	2	0
2	Е	501	13P	2	0
3	D	500	GOL	4	0
3	Р	500	GOL	4	0
2	0	501	13P	2	0
2	Т	501	13P	2	0
2	G	501	13P	3	0
3	А	500	GOL	3	0
3	R	500	GOL	8	0
2	С	501	13P	2	0
2	D	501	13P	3	0
3	J	500	GOL	4	0
3	Н	500	GOL	2	0
2	A	501	13P	3	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	K	500	GOL	1	0
3	0	500	GOL	6	0
2	R	501	13P	3	0
2	В	501	13P	2	0
3	Ι	500	GOL	4	0
3	Q	500	GOL	1	0
3	G	500	GOL	1	0

Continued from previous page...

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	\rightarrow #RSRZ>2 OW		$\mathbf{OWAB}(\mathbf{\mathring{A}}^2)$	Q<0.9
1	А	271/273~(99%)	-0.47	0 100	100	9, 47, 97, 170	0
1	В	271/273~(99%)	-0.44	4 (1%) 73	68	15, 52, 113, 178	0
1	С	271/273~(99%)	-0.37	2 (0%) 87	84	17, 55, 115, 167	0
1	D	271/273~(99%)	-0.44	2 (0%) 87	84	17, 53, 112, 166	0
1	Ε	271/273~(99%)	-0.46	3 (1%) 80	75	17, 48, 104, 181	0
1	F	271/273~(99%)	-0.42	1 (0%) 92	91	19, 52, 107, 158	0
1	G	271/273~(99%)	-0.48	0 100	100	12, 46, 106, 137	0
1	Н	271/273~(99%)	-0.50	1 (0%) 92	91	15, 44, 103, 157	0
1	Ι	271/273~(99%)	-0.45	0 100	100	16, 50, 110, 149	0
1	J	271/273~(99%)	-0.33	5 (1%) 68	61	16, 54, 115, 196	0
1	Κ	271/273~(99%)	-0.42	2 (0%) 87	84	17, 50, 111, 200	0
1	L	271/273~(99%)	-0.49	0 100	100	16, 50, 106, 163	0
1	М	271/273~(99%)	-0.29	5 (1%) 68	61	7, 55, 120, 160	0
1	Ν	271/273~(99%)	-0.18	12 (4%) 34	24	23, 65, 130, 201	0
1	Ο	271/273~(99%)	-0.35	3 (1%) 80	75	8, 59, 113, 173	0
1	Р	271/273~(99%)	-0.50	1 (0%) 92	91	16, 45, 91, 162	0
1	Q	271/273~(99%)	-0.40	2 (0%) 87	84	17, 49, 107, 202	0
1	R	271/273~(99%)	-0.38	3 (1%) 80	75	8, 49, 109, 202	0
1	S	271/273~(99%)	-0.35	6 (2%) 62	52	19, 51, 109, 202	0
1	Т	269/273~(98%)	-0.32	4 (1%) 73	68	18, 57, 122, 160	0
All	All	$541\overline{8/5460}\ (99\%)$	-0.40	56 (1%) 82	77	7, 52, 113, 202	0

All (56) RSRZ outliers are listed below:

\mathbf{Mol}	Chain	Res	Type	RSRZ
1	J	211	PRO	11.8
1	М	79	ASP	10.4
1	S	210	GLY	10.0
1	R	76	TYR	9.7
1	Κ	158	HIS	8.6
1	S	209	GLY	7.7
1	S	213	THR	7.5
1	S	211	PRO	6.6
1	R	77	GLY	6.4
1	N	210	GLY	6.3
1	М	76	TYR	6.3
1	Р	79	ASP	4.9
1	R	78	LYS	4.9
1	Q	213	THR	4.8
1	М	78	LYS	4.8
1	Ν	209	GLY	4.5
1	Е	74	ARG	3.9
1	Ν	263	VAL	3.6
1	0	212	LYS	3.6
1	Е	78	LYS	3.5
1	0	213	THR	3.5
1	Е	73	HIS	3.3
1	Ν	47	ILE	3.2
1	0	214	ASN	3.2
1	S	212	LYS	3.2
1	В	210	GLY	3.0
1	Т	76	TYR	3.0
1	Ν	3	LEU	2.9
1	D	272	LYS	2.9
1	С	73	HIS	2.9
1	В	271	ARG	2.9
1	N	212	LYS	2.8
1	В	211	PRO	2.7
1	D	7	ILE	2.7
1	С	79	ASP	2.7
1	В	213	THR	2.7
1	Т	75	GLY	2.6
1	Н	76	TYR	2.6
1	N	253	VAL	2.5
1	J	258	HIS	2.5
1	J	22	ARG	2.5
1	N	240	ILE	2.4
1	N	75	GLY	2.3
1 1 1 <td>M N E N O E O E N O S B T N D C B D C B T H N J N N N</td> <td>78 209 74 263 212 78 213 73 47 214 212 73 47 214 210 76 3 272 73 271 212 211 7 79 213 75 76 253 258 22 240 75</td> <td>LYSGLYARGVALLYSLYSTHRHISGLYTYRLEULYSGLYTYRLEULYSGLYTYRGLYTYRLEULYSGLYTYRLEULYSHISARGILEASPTHRGLYYALHISARGILEGLY</td> <td>$\begin{array}{r} 4.8 \\ 4.5 \\ 3.9 \\ 3.6 \\ 3.6 \\ 3.5 \\ 3.5 \\ 3.3 \\ 3.2 \\$</td>	M N E N O E O E N O S B T N D C B D C B T H N J N N N	78 209 74 263 212 78 213 73 47 214 212 73 47 214 210 76 3 272 73 271 212 211 7 79 213 75 76 253 258 22 240 75	LYSGLYARGVALLYSLYSTHRHISGLYTYRLEULYSGLYTYRLEULYSGLYTYRGLYTYRLEULYSGLYTYRLEULYSHISARGILEASPTHRGLYYALHISARGILEGLY	$\begin{array}{r} 4.8 \\ 4.5 \\ 3.9 \\ 3.6 \\ 3.6 \\ 3.5 \\ 3.5 \\ 3.3 \\ 3.2 \\$

Mol	Chain	Res	Type	RSRZ
1	J	212	LYS	2.3
1	S	75	GLY	2.2
1	Ν	73	HIS	2.2
1	F	6	ASP	2.2
1	Т	211	PRO	2.1
1	М	50	THR	2.1
1	Q	8	LYS	2.1
1	Т	185	THR	2.1
1	J	42	LYS	2.1
1	Ν	213	THR	2.1
1	М	77	GLY	2.0
1	Ν	211	PRO	2.0
1	Κ	73	HIS	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
3	GOL	J	500	6/6	0.55	0.56	$57,\!58,\!58,\!61$	0
3	GOL	D	500	6/6	0.70	0.68	$57,\!58,\!58,\!61$	0
3	GOL	С	500	6/6	0.75	0.61	$57,\!58,\!58,\!61$	0
2	13P	Т	501	9/10	0.81	0.24	57,59,63,64	0
2	13P	F	501	9/10	0.83	0.33	57,59,63,64	0
2	13P	R	501	9/10	0.83	0.37	57,59,63,64	0
3	GOL	Ν	500	6/6	0.83	0.41	$57,\!58,\!58,\!61$	0
2	13P	S	501	9/10	0.85	0.33	57,59,63,64	0
3	GOL	Н	500	6/6	0.85	0.19	57,58,58,61	0
3	GOL	Р	500	6/6	0.85	0.22	57,58,58,61	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
3	GOL	F	500	6/6	0.86	0.37	57,58,58,61	0
3	GOL	В	500	6/6	0.86	0.33	57,58,58,61	0
3	GOL	Ι	500	6/6	0.86	0.66	57,58,58,61	0
2	13P	0	501	9/10	0.86	0.21	57,59,63,64	0
3	GOL	М	500	6/6	0.86	0.49	57,58,58,61	0
2	13P	N	501	9/10	0.86	0.26	57,59,63,64	0
3	GOL	0	500	6/6	0.86	0.35	57,58,58,61	0
3	GOL	Е	500	6/6	0.86	0.45	57,58,58,61	0
2	13P	Ι	501	9/10	0.87	0.23	57,59,63,64	0
3	GOL	Q	500	6/6	0.87	0.72	57,58,58,61	0
3	GOL	Т	500	6/6	0.87	0.47	$57,\!58,\!58,\!61$	0
3	GOL	R	500	6/6	0.88	0.41	$57,\!58,\!58,\!61$	0
3	GOL	G	500	6/6	0.89	0.37	57,58,58,61	0
2	13P	K	501	9/10	0.90	0.27	57,59,63,64	0
3	GOL	S	500	6/6	0.90	0.41	57, 58, 58, 61	0
2	13P	Е	501	9/10	0.90	0.30	57,59,63,64	0
2	13P	D	501	9/10	0.91	0.34	$57,\!59,\!63,\!64$	0
2	13P	С	501	9/10	0.91	0.23	57,59,63,64	0
2	13P	J	501	9/10	0.91	0.25	57,59,63,64	0
3	GOL	K	500	6/6	0.91	0.23	$57,\!58,\!58,\!61$	0
2	13P	L	501	9/10	0.92	0.23	57,59,63,64	0
3	GOL	L	500	6/6	0.92	0.35	$57,\!58,\!58,\!61$	0
2	13P	Q	501	9/10	0.92	0.18	$57,\!59,\!63,\!64$	0
3	GOL	А	500	6/6	0.92	0.41	$57,\!58,\!58,\!61$	0
2	13P	В	501	9/10	0.92	0.30	$57,\!59,\!63,\!64$	0
2	13P	М	501	9/10	0.93	0.16	57,59,63,64	0
2	13P	А	501	9/10	0.93	0.32	57,59,63,64	0
2	13P	Н	501	9/10	0.93	0.20	$57,\!59,\!63,\!64$	0
2	13P	Р	501	9/10	0.93	0.16	57,59,63,64	0
2	13P	G	501	9/10	0.94	0.18	$57,\!59,\!63,\!64$	0

Continued from previous page...

6.5 Other polymers (i)

There are no such residues in this entry.

