

Full wwPDB X-ray Structure Validation Report (i)

Jun 17, 2024 – 04:02 PM EDT

PDB ID	:	3TW7
Title	:	Structure of Rhizobium etli pyruvate carboxylase T882A crystallized without
		acetyl coenzyme-A
Authors	:	St Maurice, M.; Kumar, S.; Lietzan, A.D.
Deposited on	:	2011-09-21
Resolution	:	3.10 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	2.37.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	1094 (3.10-3.10)
Clashscore	141614	1184 (3.10-3.10)
Ramachandran outliers	138981	1141 (3.10-3.10)
Sidechain outliers	138945	1141 (3.10-3.10)
RSRZ outliers	127900	1067 (3.10-3.10)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain					
1	А	1165	13%	28%	•	14%		
1	В	1165	58%	25%	•	14%		

$3 \mathrm{TW7}$

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 15185 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Pyruvate carboxylase protein.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace	
1	А	1004	Total 7544	C 4804	N 1275	0 1434	S 31	0	15	0
1	В	1002	Total 7623	C 4853	N 1290	0 1449	S 31	0	16	0

Chain	Residue	Modelled	Actual	Comment	Reference
А	-10	MET	-	EXPRESSION TAG	UNP Q2K340
А	-9	HIS	-	EXPRESSION TAG	UNP Q2K340
А	-8	HIS	-	EXPRESSION TAG	UNP Q2K340
А	-7	HIS	-	EXPRESSION TAG	UNP Q2K340
А	-6	HIS	-	EXPRESSION TAG	UNP Q2K340
А	-5	HIS	-	EXPRESSION TAG	UNP Q2K340
А	-4	HIS	-	EXPRESSION TAG	UNP Q2K340
А	-3	HIS	-	EXPRESSION TAG	UNP Q2K340
А	-2	HIS	-	EXPRESSION TAG	UNP Q2K340
А	-1	HIS	-	EXPRESSION TAG	UNP Q2K340
А	0	GLY	-	EXPRESSION TAG	UNP Q2K340
А	1	GLY	-	EXPRESSION TAG	UNP Q2K340
А	882	ALA	THR	ENGINEERED MUTATION	UNP Q2K340
В	-10	MET	-	EXPRESSION TAG	UNP Q2K340
В	-9	HIS	-	EXPRESSION TAG	UNP Q2K340
В	-8	HIS	-	EXPRESSION TAG	UNP Q2K340
В	-7	HIS	-	EXPRESSION TAG	UNP Q2K340
В	-6	HIS	-	EXPRESSION TAG	UNP Q2K340
В	-5	HIS	-	EXPRESSION TAG	UNP Q2K340
В	-4	HIS	-	EXPRESSION TAG	UNP Q2K340
В	-3	HIS	-	EXPRESSION TAG	UNP Q2K340
В	-2	HIS	-	EXPRESSION TAG	UNP Q2K340
В	-1	HIS	-	EXPRESSION TAG	UNP Q2K340
В	0	GLY	-	EXPRESSION TAG	UNP Q2K340
В	1	GLY	-	EXPRESSION TAG	UNP Q2K340

There are 26 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	882	ALA	THR	ENGINEERED MUTATION	UNP Q2K340

• Molecule 2 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total Mg 1 1	0	0
2	В	1	Total Mg 1 1	0	0

• Molecule 3 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total Zn 1 1	0	0
3	В	1	Total Zn 1 1	0	0

• Molecule 4 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total Cl 1 1	0	0
4	В	1	Total Cl 1 1	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	7	Total O 7 7	0	0
5	В	5	Total O 5 5	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Pyruvate carboxylase protein

D W I D E

ARG E968 ARI R818 ALM Y987 E968 R818 ALM Y987 E834 R818 ALM Y990 R89 R818 ALM Y990 R88 R838 ALM Y1001 F846 R84 ALM Y1001 F846 R838 ALM Y1001 F846 R838 ALM Y1001 F846 R853 ALM Y1001 F846 R856 ALM Y1002 R856 R856 ALM Y1003 R861 R853 ALM T1002 R861 R862 ALM T1025 R862 R885 VAL U1025 U103 R862 ALM T1033 R1036 R885 ALM T1033 R994 R993 ALM T1033 R994 R993 ALM T1033 R994 R993 <t

VAL LYS GLY GLY ASP GLN TLE ASP ASP LYS ASP LEU LEU LEU ALA ALA CLY GLY GLY

4 Data and refinement statistics (i)

Property	Value	Source
Space group	I 41	Depositor
Cell constants	264.16Å 264.16 Å 91.79 Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{oscolution}}(\hat{\mathbf{A}})$	50.00 - 3.10	Depositor
Resolution (A)	45.30 - 3.10	EDS
% Data completeness	99.9 (50.00-3.10)	Depositor
(in resolution range)	$100.0 \ (45.30-3.10)$	EDS
R_{merge}	0.10	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	8.13 (at 3.12Å)	Xtriage
Refinement program	REFMAC 5.6.0117	Depositor
D D	0.250 , 0.292	Depositor
n, n_{free}	0.248 , 0.291	DCC
R_{free} test set	2964 reflections $(5.14%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	54.7	Xtriage
Anisotropy	0.039	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.29 , 65.9	EDS
L-test for twinning ²	$< L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	0.023 for -k,-h,-l	Xtriage
F_o, F_c correlation	0.86	EDS
Total number of atoms	15185	wwPDB-VP
Average B, all atoms $(Å^2)$	73.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.61% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: KCX, ZN, MG, CL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
INIOI	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.69	8/7719~(0.1%)	0.79	7/10500~(0.1%)
1	В	0.70	2/7799~(0.0%)	0.84	6/10603~(0.1%)
All	All	0.70	10/15518~(0.1%)	0.82	13/21103~(0.1%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	В	0	1
All	All	0	2

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	А	98[A]	GLU	CD-OE1	7.78	1.34	1.25
1	А	98[B]	GLU	CD-OE1	7.78	1.34	1.25
1	А	269	LYS	CE-NZ	7.16	1.67	1.49
1	А	1045	GLN	CD-NE2	6.86	1.50	1.32
1	А	1045	GLN	CG-CD	6.82	1.66	1.51
1	А	814	TRP	CD2-CE2	6.09	1.48	1.41
1	А	408	TRP	CD2-CE2	6.01	1.48	1.41
1	А	659	TRP	CD2-CE2	5.40	1.47	1.41
1	В	814	TRP	CD2-CE2	5.18	1.47	1.41
1	В	933	TRP	CD2-CE2	5.01	1.47	1.41

All (10) bond length outliers are listed below:

All (13) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	В	145	LEU	CA-CB-CG	7.13	131.69	115.30
1	А	548	ARG	NE-CZ-NH2	6.72	123.66	120.30
1	А	542	LEU	CA-CB-CG	-6.47	100.42	115.30
1	А	798	ARG	NE-CZ-NH2	-6.16	117.22	120.30
1	В	542	LEU	CA-CB-CG	-6.16	101.13	115.30
1	А	383	LEU	CA-CB-CG	5.80	128.64	115.30
1	В	423	LEU	CA-CB-CG	5.51	127.97	115.30
1	А	145	LEU	CA-CB-CG	5.47	127.89	115.30
1	В	737	ARG	NE-CZ-NH1	5.40	123.00	120.30
1	А	590	ASP	CB-CG-OD1	-5.23	113.59	118.30
1	В	535	ARG	NE-CZ-NH1	5.21	122.91	120.30
1	В	737	ARG	NE-CZ-NH2	-5.12	117.74	120.30
1	А	627	GLY	N-CA-C	5.08	125.80	113.10

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	1046	GLY	Peptide
1	В	1065	ASP	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	7544	0	7260	247	0
1	В	7623	0	7392	249	0
2	А	1	0	0	0	0
2	В	1	0	0	0	0
3	А	1	0	0	0	0
3	В	1	0	0	0	0
4	А	1	0	0	0	0
4	В	1	0	0	0	0
5	А	7	0	0	0	0
5	В	5	0	0	0	0
All	All	15185	0	14652	492	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including

hydrogen atoms). The all-atom clashscore for this structure is 16.

All (492) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom_2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:4:SER:O	1:B:28:LYS:HG3	1.53	1.08
1:A:359:PRO:HD3	1:A:433:THR:O	1.55	1.06
1:A:90:TYR:HB2	1:A:301:ARG:HH11	1.21	1.05
1:A:1029:GLY:HA3	1:A:1030:LYS:HB2	1.39	1.04
1:B:1029:GLY:CA	1:B:1030:LYS:HB2	1.88	1.04
1:B:1029:GLY:HA3	1:B:1030:LYS:HB2	1.06	1.03
1:A:90:TYR:HB2	1:A:301:ARG:NH1	1.75	1.00
1:B:361:HIS:CD2	1:B:364:ILE:HD12	1.99	0.98
1:A:221:ILE:HG21	1:A:267:SER:HB3	1.46	0.97
1:B:239:VAL:HG13	1:B:457:ILE:HD11	1.47	0.96
1:A:1042:THR:HB	1:A:1048:VAL:HG22	1.47	0.94
1:A:1029:GLY:HA3	1:A:1030:LYS:CB	1.98	0.93
1:B:1029:GLY:HA3	1:B:1030:LYS:CB	1.99	0.92
1:B:677:CYS:H	1:B:713:HIS:HD2	1.07	0.92
1:B:357:GLU:HG2	1:B:363:PHE:O	1.71	0.90
1:A:356:THR:O	1:A:365:PRO:HA	1.72	0.89
1:B:320:ALA:O	1:B:324:ILE:HB	1.74	0.88
1:A:384:ASP:HB2	1:A:404[B]:LYS:HE2	1.55	0.88
1:B:117:THR:HG21	1:B:276:TYR:CD1	2.10	0.87
1:A:677:CYS:H	1:A:713:HIS:HD2	1.19	0.86
1:B:117:THR:HG21	1:B:276:TYR:HD1	1.38	0.86
1:B:376:ALA:HB2	1:B:425:GLU:HB3	1.55	0.85
1:B:299:ASN:HD22	1:B:303:GLN:NE2	1.74	0.84
1:B:318:VAL:O	1:B:322:ILE:HG13	1.77	0.84
1:B:73:GLU:O	1:B:77:VAL:HG23	1.78	0.84
1:B:16:ILE:HD13	1:B:386:GLY:HA3	1.60	0.83
1:A:1029:GLY:CA	1:A:1030:LYS:HB2	2.08	0.82
1:B:41:LEU:HB3	1:B:386:GLY:O	1.79	0.81
1:B:677:CYS:H	1:B:713:HIS:CD2	1.97	0.79
1:A:35:GLU:HG3	1:A:54:ARG:HD2	1.64	0.79
1:B:860:ARG:C	1:B:862:HIS:H	1.84	0.79
1:B:52:VAL:HG12	1:B:77:VAL:HG21	1.64	0.78
1:A:13:GLU:O	1:A:16:ILE:N	2.18	0.77
1:A:71:ILE:HA	1:A:74:VAL:HG23	1.64	0.77
1:A:420:ASP:O	1:A:424:ARG:HG3	1.83	0.77
1:A:969:GLU:HG2	1:A:975:GLU:HA	1.65	0.77
1:A:51:GLN:HE22	1:A:54:ARG:CB	1.97	0.77
1:A:1003:PRO:O	1:A:1006:VAL:HG22	1.85	0.77

37	'W	7
-		-

	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:299:ASN:ND2	1:B:303:GLN:NE2	2.34	0.76
1:A:862:HIS:CB	1:B:812:PHE:HE2	1.99	0.75
1:B:812:PHE:HD1	1:B:812:PHE:O	1.70	0.75
1:B:414:GLU:OE2	1:B:418:ARG:NH1	2.19	0.75
1:B:860:ARG:O	1:B:862:HIS:N	2.19	0.75
1:A:8:VAL:HG11	1:A:15:ALA:HA	1.67	0.74
1:A:921:MET:HG3	1:A:926:LEU:HD12	1.69	0.74
1:A:359:PRO:CD	1:A:433:THR:O	2.34	0.74
1:A:221:ILE:CG2	1:A:267:SER:HB3	2.18	0.73
1:B:218:GLU:O	1:B:234:GLU:HA	1.89	0.73
1:A:282:VAL:HG13	1:A:298:VAL:HG22	1.70	0.73
1:B:1052:PHE:CD2	1:B:1061:ILE:HD13	2.23	0.73
1:A:224:ASP:HB3	1:A:324:ILE:HG12	1.71	0.72
1:A:338:PRO:HB2	1:A:342:ASP:HB2	1.71	0.72
1:B:547:MET:HG2	1:B:564:ILE:HG23	1.70	0.72
1:B:921:MET:HG3	1:B:926:LEU:HD12	1.69	0.72
1:B:677:CYS:N	1:B:713:HIS:HD2	1.86	0.72
1:A:479:TYR:HB2	1:A:1001:TYR:CD1	2.25	0.71
1:B:429:ARG:HH22	1:B:1058:PRO:HA	1.55	0.71
1:A:74:VAL:HG11	1:A:99:PHE:HE1	1.55	0.71
1:B:922:LEU:HD13	1:B:938:GLN:HA	1.73	0.71
1:B:221:ILE:HG13	1:B:280:GLY:O	1.91	0.70
1:B:299:ASN:ND2	1:B:303:GLN:HE21	1.90	0.70
1:A:276:TYR:OH	1:A:300:PRO:HA	1.91	0.69
1:B:901:THR:O	1:B:904:ASP:HB2	1.92	0.69
1:B:283:GLU:OE2	1:B:299:ASN:ND2	2.25	0.69
1:A:677:CYS:H	1:A:713:HIS:CD2	2.09	0.68
1:A:211:VAL:CG1	1:A:214:ALA:HB2	2.23	0.68
1:A:350:LEU:HD22	1:A:415:ALA:HB1	1.76	0.68
1:A:1029:GLY:HA3	1:A:1030:LYS:CG	2.24	0.68
1:B:114:LYS:H	1:B:277:ILE:HD12	1.59	0.68
1:A:211:VAL:HG12	1:A:214:ALA:HB2	1.76	0.68
1:B:8:VAL:HG11	1:B:15:ALA:HA	1.74	0.67
1:A:90:TYR:CB	1:A:301:ARG:HH11	2.03	0.67
1:B:351[B]:GLN:OE1	1:B:404[B]:LYS:HD2	1.95	0.67
1:A:384:ASP:HB2	1:A:404[A]:LYS:HE2	1.76	0.67
1:B:239:VAL:HG13	1:B:457:ILE:CD1	2.22	0.67
1:B:7:LEU:HA	1:B:30:VAL:HB	1.77	0.66
1:A:862:HIS:CB	1:B:812:PHE:CE2	2.78	0.66
1:B:812:PHE:HD1	1:B:812:PHE:C	1.99	0.66
1:B:354:VAL:HG23	1:B:403:VAL:O	1.95	0.66

27	TΤ	17
0	L V V	1

Atom-1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:52:VAL:CG1	1:B:77:VAL:HG21	2.25	0.65
1:B:427:ARG:HH12	1:B:1037:GLN:HE21	1.44	0.65
1:B:452:TYR:H	1:B:452:TYR:HD2	1.42	0.65
1:B:1048:VAL:N	1:B:1063:VAL:O	2.23	0.65
1:B:136:VAL:HG22	1:B:266:TYR:HB3	1.79	0.65
1:A:667:MET:HG2	1:A:677:CYS:SG	2.37	0.65
1:B:240:GLN:HA	1:B:244:GLN:O	1.97	0.65
1:B:1052:PHE:HD2	1:B:1061:ILE:HD13	1.61	0.64
1:A:569:GLY:O	1:A:573:HIS:HD2	1.81	0.64
1:A:624:ASN:HB2	1:A:627:GLY:HA3	1.79	0.63
1:B:838:HIS:O	1:B:839:GLU:HB2	1.97	0.63
1:A:134:VAL:HG11	1:A:273:ALA:HB2	1.81	0.63
1:B:479:TYR:HB2	1:B:1001:TYR:HB3	1.79	0.63
1:B:234:GLU:OE2	1:B:252:ALA:N	2.31	0.63
1:B:838:HIS:ND1	1:B:840:MET:HG3	2.14	0.63
1:A:411[B]:ASN:HB2	1:A:412:PRO:HD2	1.81	0.63
1:A:972:LEU:O	1:A:973:GLU:HB2	1.98	0.62
1:A:74:VAL:HG11	1:A:99:PHE:CE1	2.34	0.62
1:A:223:GLY:HA2	1:A:228:ASN:O	1.99	0.62
1:B:1044:SER:O	1:B:1045:GLN:HB2	1.98	0.62
1:A:350:LEU:HD23	1:A:407:ALA:O	1.99	0.62
1:A:359:PRO:HG2	1:A:436:THR:OG1	1.99	0.62
1:A:1021:GLU:HB2	1:A:1035:VAL:HG22	1.81	0.62
1:B:312:VAL:CG1	1:B:349:ALA:HB2	2.30	0.62
1:B:892:ALA:O	1:B:896:VAL:HG23	1.99	0.62
1:B:860:ARG:CB	1:B:863:GLN:HE22	2.13	0.61
1:B:53:GLY:N	1:B:73:GLU:OE2	2.33	0.61
1:B:476:LEU:HD13	1:B:1003:PRO:HD2	1.82	0.61
1:A:283:GLU:OE2	1:A:299:ASN:ND2	2.33	0.61
1:A:381:ILE:HD11	1:A:418:ARG:HG2	1.83	0.60
1:A:96:SER:O	1:A:100:VAL:HG23	2.01	0.60
1:A:661:GLU:HA	1:A:661:GLU:OE2	2.01	0.60
1:B:235:ARG:HG2	1:B:250:ALA:HB2	1.84	0.60
1:A:444:HIS:HD2	1:A:446:LYS:H	1.49	0.60
1:B:1029:GLY:CA	1:B:1030:LYS:CB	2.65	0.59
1:B:408:TRP:O	1:B:418:ARG:HD2	2.02	0.59
1:A:582:GLU:HA	1:A:617:GLN:HB3	1.84	0.59
1:A:494:ARG:HB3	1:A:495:PRO:HD2	1.84	0.59
1:A:530:PHE:O	1:A:533:TRP:HB3	2.01	0.59
1:B:5:LYS:HE2	1:B:28:LYS:HB2	1.83	0.59
1:A:51:GLN:HE22	1:A:54:ARG:HB3	1.68	0.59

27	TΤ	17
0	L V V	1

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:359:PRO:HG3	1:A:434:ASN:HA	1.84	0.59
1:B:33:TRP:HA	1:B:68:TYR:OH	2.02	0.59
1:A:485:VAL:HG12	1:A:486:ASN:ND2	2.18	0.58
1:A:312:VAL:O	1:A:346:ASN:HB3	2.03	0.58
1:B:346:ASN:ND2	1:B:408:TRP:HZ2	2.01	0.58
1:A:231:HIS:CD2	1:A:264:ALA:HB1	2.39	0.58
1:B:427:ARG:NH1	1:B:429:ARG:HH21	2.02	0.58
1:A:1039:VAL:HG13	1:A:1050:VAL:HG22	1.87	0.57
1:B:376:ALA:CB	1:B:425:GLU:HB3	2.30	0.57
1:B:95:GLU:HA	1:B:118:MET:HE1	1.87	0.57
1:B:361:HIS:O	1:B:363:PHE:N	2.37	0.57
1:B:33:TRP:CD1	1:B:49:SER:HB2	2.40	0.56
1:A:416:ILE:CG2	1:A:442:ILE:HB	2.35	0.56
1:B:121:LEU:HD13	1:B:298:VAL:HG11	1.87	0.56
1:B:427:ARG:HH12	1:B:1037:GLN:NE2	2.03	0.56
1:A:41:LEU:O	1:A:44:PHE:N	2.38	0.56
1:A:403:VAL:HG22	1:A:404[A]:LYS:H	1.71	0.56
1:B:887:VAL:HG22	1:B:917:SER:HB2	1.88	0.56
1:A:416:ILE:HG22	1:A:442:ILE:HB	1.88	0.55
1:B:263[A]:LEU:HG	1:B:293:PHE:CE2	2.42	0.55
1:B:857:LEU:O	1:B:860:ARG:N	2.40	0.55
1:A:847:ASN:O	1:A:851:GLN:HG2	2.06	0.55
1:A:921:MET:CG	1:A:926:LEU:HD12	2.35	0.55
1:B:31:ALA:O	1:B:49:SER:HA	2.07	0.55
1:A:51:GLN:HE22	1:A:54:ARG:HB2	1.71	0.55
1:B:236:ASP:HB3	1:B:249:ARG:HB2	1.88	0.55
1:B:299:ASN:HD22	1:B:303:GLN:HE22	1.52	0.55
1:B:560:ARG:NH1	1:B:1009:THR:HA	2.20	0.55
1:B:25:LEU:HD11	1:B:319:LYS:HG2	1.87	0.55
1:A:546:THR:HG21	1:A:814:TRP:NE1	2.22	0.54
1:B:229:VAL:HG11	1:B:271:ALA:HB3	1.88	0.54
1:B:555:LEU:HD11	1:B:818:ARG:HG3	1.89	0.54
1:A:50:TYR:N	1:A:50:TYR:CD2	2.75	0.54
1:A:560:ARG:NH1	1:A:1009:THR:HA	2.22	0.54
1:A:211:VAL:HG21	1:A:285:LEU:HD13	1.90	0.54
1:B:423:LEU:HD22	1:B:435:LEU:HD23	1.90	0.54
1:B:427:ARG:NH1	1:B:1037:GLN:HE21	2.06	0.54
1:B:860:ARG:CB	1:B:863:GLN:NE2	2.71	0.54
1:A:629:THR:HG23	1:A:630:ASN:N	2.23	0.54
1:A:723:LEU:HD11	1:A:839:GLU:HG2	1.89	0.54
1:A:488:HIS:CE1	1:A:490:GLU:HB2	2.43	0.53

27	TΤ	17
0	L V V	1

Atom-1	Atom-2	Interatomic	Clash
		distance (A)	overlap (A)
1:A:1048:VAL:N	1:A:1063:VAL:O	2.31	0.53
1:B:812:PHE:C	1:B:812:PHE:CD1	2.72	0.53
1:B:296[B]:ILE:HG13	1:B:297:GLU:H	1.73	0.53
1:A:224:ASP:OD1	1:A:224:ASP:N	2.42	0.53
1:A:131:ALA:HA	1:A:270:ILE:HD11	1.90	0.53
1:A:263[B]:LEU:HD11	1:A:284:TYR:CG	2.43	0.53
1:B:667:MET:HG2	1:B:677:CYS:SG	2.48	0.53
1:B:255:LEU:HD11	1:B:293:PHE:HZ	1.74	0.53
1:B:385:GLY:HA2	1:B:403:VAL:HG23	1.91	0.53
1:A:403:VAL:HG22	1:A:404[B]:LYS:H	1.71	0.53
1:B:71:ILE:HG13	1:B:93:LEU:HD11	1.90	0.53
1:A:396:ARG:O	1:A:397:TYR:CD1	2.62	0.53
1:B:319:LYS:HA	1:B:322:ILE:HD12	1.91	0.53
1:A:423:LEU:HD12	1:A:442:ILE:HD11	1.91	0.52
1:A:282:VAL:HG13	1:A:298:VAL:CG2	2.37	0.52
1:B:12:SER:O	1:B:16:ILE:HD12	2.10	0.52
1:B:279:ALA:HB3	1:B:321:GLN:NE2	2.24	0.52
1:A:340:GLN:HA	1:A:343:ILE:HD12	1.92	0.52
1:A:621:ARG:O	1:A:622:GLY:C	2.46	0.52
1:B:559:MET:CG	1:B:564:ILE:HD11	2.39	0.52
1:B:62:LEU:O	1:B:63:GLY:O	2.28	0.52
1:B:900:LEU:HD22	1:B:904:ASP:HB3	1.90	0.52
1:A:229:VAL:HG11	1:A:271:ALA:HB3	1.91	0.52
1:A:206:TYR:HE1	1:A:208:GLU:HB2	1.74	0.52
1:A:236:ASP:OD1	1:A:254:TYR:OH	2.28	0.52
1:A:412:PRO:O	1:A:415:ALA:HB3	2.10	0.52
1:A:542:LEU:HD22	1:A:786:LEU:CD1	2.40	0.51
1:B:229:VAL:HG11	1:B:271:ALA:CB	2.40	0.51
1:B:282:VAL:HG13	1:B:295:PHE:HE1	1.75	0.51
1:B:551:HIS:CE1	1:B:559:MET:HB3	2.45	0.51
1:B:812:PHE:O	1:B:812:PHE:CD1	2.58	0.51
1:A:111:ILE:HA	1:A:325[B]:LEU:HG	1.91	0.51
1:A:252:ALA:HB3	1:A:255:LEU:HD22	1.93	0.51
1:A:624:ASN:CB	1:A:627:GLY:HA3	2.40	0.51
1:A:867:ALA:O	1:A:871:ALA:N	2.36	0.51
1:B:775:ASP:HB2	1:B:811:SER:OG	2.11	0.51
1:A:97:PRO:HG3	1:A:119:ARG:HG3	1.92	0.51
1:A:891:MET:HE1	1:A:905:VAL:HG13	1.93	0.51
1:B:429:ARG:HH22	1:B:1058:PRO:CA	2.23	0.51
1:B:450:ASN:HA	1:B:452:TYR:CE2	2.45	0.51
1:A:514:VAL:HG13	1:A:613:ASN:ND2	2.25	0.51

37	'W	7
-		-

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:97:PRO:HB2	1:B:119:ARG:NH1	2.25	0.51
1:B:590:ASP:HB3	1:B:987:TYR:CZ	2.46	0.51
1:B:650:LEU:HA	1:B:676:LEU:HB2	1.92	0.51
1:A:838:HIS:O	1:A:839:GLU:HB2	2.10	0.51
1:B:486:ASN:HD21	1:B:1065:ASP:HA	1.76	0.51
1:A:22:ALA:HB1	1:A:27:ILE:HG22	1.93	0.51
1:A:220:GLN:HE21	1:A:235:ARG:HH12	1.58	0.51
1:B:251:PRO:HG3	1:B:345:LEU:HD13	1.93	0.51
1:A:559:MET:CG	1:A:564:ILE:HD11	2.41	0.51
1:B:656:CYS:O	1:B:657:LEU:HD23	2.11	0.51
1:A:130:LEU:HD21	1:A:274:THR:CG2	2.40	0.50
1:A:749:HIS:CE1	1:A:783:GLN:HE22	2.29	0.50
1:B:117:THR:HG22	1:B:121:LEU:HD12	1.91	0.50
1:A:621:ARG:HG3	1:A:625:GLY:O	2.12	0.50
1:A:890:ASP:O	1:A:894:MET:HG2	2.11	0.50
1:A:657:LEU:O	1:A:658:ASN:HB2	2.12	0.50
1:B:353:ARG:O	1:B:438:LEU:HD11	2.12	0.50
1:B:429:ARG:HD2	1:B:1051:PHE:HB3	1.94	0.50
1:B:1060:ARG:O	1:B:1060:ARG:NH1	2.41	0.50
1:A:350:LEU:O	1:A:419:MET:HE2	2.11	0.50
1:A:359:PRO:HB3	1:A:437:PHE:HB2	1.93	0.50
1:B:57:HIS:CE1	1:B:73:GLU:OE1	2.64	0.50
1:B:356:THR:HG21	1:B:394:ILE:HG21	1.94	0.50
1:B:634:ASN:CG	1:B:958:GLU:HG3	2.32	0.50
1:A:19:PHE:CD1	1:A:29:THR:HB	2.47	0.50
1:A:528:LYS:HE2	1:A:532:GLU:OE2	2.12	0.50
1:A:619:LEU:HD11	1:A:654:PHE:CD2	2.46	0.50
1:B:302:ILE:CD1	1:B:318:VAL:HG22	2.41	0.50
1:B:310:GLU:HG2	1:B:317:ILE:H	1.76	0.50
1:A:270:ILE:HG13	1:A:295:PHE:CE1	2.47	0.49
1:A:423:LEU:HD12	1:A:442:ILE:CD1	2.42	0.49
1:B:70:SER:O	1:B:74:VAL:HG23	2.12	0.49
1:A:356:THR:HG22	1:A:402:LEU:HD11	1.95	0.49
1:A:694:LYS:NZ	1:A:876:GLY:O	2.44	0.49
1:B:422:ALA:O	1:B:426:PHE:HD1	1.95	0.49
1:B:140:PRO:O	1:B:209:LYS:HB2	2.13	0.49
1:A:324:ILE:HG22	1:A:325[B]:LEU:HD22	1.95	0.49
1:B:950:VAL:HG21	1:B:955:LEU:HD21	1.94	0.49
1:B:432:ALA:O	1:B:433:THR:HG22	2.13	0.49
1:A:370:ILE:HD11	1:A:394:ILE:HD11	1.95	0.48
1:A:1043:ASP:CG	1:A:1044:SER:H	2.17	0.48

27	TΤ	17
0	L V V	1

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:357:GLU:CG	1:B:363:PHE:O	2.55	0.48
1:B:559:MET:HG3	1:B:564:ILE:HD11	1.95	0.48
1:B:218:GLU:O	1:B:234:GLU:CA	2.61	0.48
1:A:891:MET:HE1	1:A:905:VAL:CG1	2.43	0.48
1:A:1021:GLU:OE1	1:A:1033:VAL:HG13	2.13	0.48
1:B:5:LYS:HB3	1:B:83:ALA:HA	1.95	0.48
1:A:622:GLY:O	1:A:624:ASN:N	2.46	0.48
1:B:312:VAL:HG12	1:B:408:TRP:HD1	1.78	0.48
1:A:131:ALA:HB2	1:A:295:PHE:CD2	2.49	0.48
1:B:16:ILE:HD13	1:B:386:GLY:CA	2.38	0.48
1:B:323:HIS:HA	1:B:326:ASP:HB2	1.94	0.48
1:A:264:ALA:O	1:A:268:LEU:HG	2.13	0.48
1:A:759:VAL:HG11	1:A:789:ILE:HD13	1.94	0.48
1:B:90:TYR:CE2	1:B:304:VAL:HA	2.48	0.48
1:B:131:ALA:HA	1:B:270:ILE:HD11	1.96	0.48
1:A:179:ILE:CG2	1:A:180:ARG:N	2.77	0.48
1:A:906:VAL:HG23	1:A:906:VAL:O	2.14	0.48
1:B:302:ILE:CD1	1:B:318:VAL:CG2	2.91	0.48
1:A:677:CYS:N	1:A:713:HIS:HD2	2.00	0.48
1:A:408:TRP:O	1:A:418:ARG:NH2	2.46	0.48
1:A:8:VAL:O	1:A:10:ASN:N	2.38	0.48
1:B:131:ALA:HA	1:B:270:ILE:CD1	2.44	0.48
1:A:224:ASP:HA	1:A:324:ILE:HG23	1.95	0.47
1:A:411[A]:ASN:HB3	1:A:412:PRO:HD2	1.96	0.47
1:A:376:ALA:HB3	1:A:426:PHE:CE1	2.49	0.47
1:B:25:LEU:HG	1:B:319:LYS:HE2	1.96	0.47
1:B:369:ARG:HE	1:B:391:GLY:HA2	1.79	0.47
1:B:477:LEU:HD11	1:B:1054:LEU:HD22	1.96	0.47
1:B:774:MET:HG3	1:B:814:TRP:CD1	2.49	0.47
1:A:627:GLY:HA2	1:A:631:TYR:CE2	2.49	0.47
1:B:33:TRP:NE1	1:B:49:SER:HB2	2.29	0.47
1:B:21:ALA:HB1	1:B:319:LYS:HG3	1.97	0.47
1:A:19:PHE:HE2	1:A:42:HIS:HB2	1.79	0.47
1:A:33:TRP:CG	1:A:43:ARG:HD2	2.50	0.47
1:A:131:ALA:HB2	1:A:295:PHE:CE2	2.49	0.47
1:A:308:VAL:HG13	1:A:351[A]:GLN:HE21	1.79	0.47
1:A:350:LEU:O	1:A:419:MET:CE	2.63	0.47
1:A:403:VAL:CG2	1:A:404[A]:LYS:H	2.27	0.47
1:A:479:TYR:CD2	1:A:479:TYR:C	2.88	0.47
1:A:250:ALA:HB3	1:A:308:VAL:O	2.14	0.47
1:B:137:PRO:O	1:B:295:PHE:HB3	2.15	0.47

37	'W	7
-		-

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:278:GLY:HA2	1:B:324:ILE:HG21	1.97	0.47
1:A:547:MET:O	1:A:551:HIS:NE2	2.45	0.47
1:B:427:ARG:NH1	1:B:1037:GLN:NE2	2.62	0.47
1:A:437:PHE:O	1:A:441:ILE:HG13	2.14	0.47
1:B:52:VAL:HA	1:B:76:ARG:HH22	1.80	0.47
1:B:903:ALA:O	1:B:907[B]:SER:HB3	2.16	0.47
1:A:987:TYR:HB3	1:A:990:VAL:HB	1.97	0.46
1:B:574:ALA:HB1	1:B:806:TRP:CG	2.50	0.46
1:B:921:MET:CG	1:B:926:LEU:HD12	2.42	0.46
1:A:403:VAL:CG2	1:A:404[B]:LYS:H	2.27	0.46
1:A:620:LEU:O	1:A:653:VAL:HA	2.15	0.46
1:B:562:TYR:O	1:B:566:ARG:HG3	2.15	0.46
1:A:29:THR:OG1	1:A:47:ASP:N	2.44	0.46
1:A:551:HIS:CE1	1:A:559:MET:HB3	2.51	0.46
1:B:16:ILE:HA	1:B:19:PHE:CD2	2.51	0.46
1:B:628:TYR:O	1:B:628:TYR:CD1	2.68	0.46
1:A:655:ASP:OD1	1:A:662:ASN:HB3	2.15	0.46
1:B:450:ASN:HA	1:B:452:TYR:CD2	2.50	0.46
1:B:634:ASN:ND2	1:B:958:GLU:CG	2.79	0.46
1:B:90:TYR:HE2	1:B:304:VAL:HA	1.81	0.46
1:A:31:ALA:HB2	1:A:46:ALA:HB2	1.97	0.46
1:B:485:VAL:HG11	1:B:1048:VAL:HG21	1.96	0.46
1:A:8:VAL:C	1:A:10:ASN:H	2.17	0.46
1:A:206:TYR:CE1	1:A:208:GLU:HB2	2.50	0.46
1:A:887:VAL:CG1	1:A:918:VAL:HA	2.45	0.46
1:B:397:TYR:HB2	1:B:398:TYR:CD2	2.50	0.46
1:B:484:THR:O	1:B:484:THR:HG22	2.15	0.46
1:B:784:PRO:HB2	1:B:789:ILE:HD11	1.98	0.46
1:A:714:ILE:HG12	1:A:743:PRO:HG2	1.98	0.46
1:B:548:ARG:HB3	1:B:582:GLU:OE1	2.16	0.46
1:A:569:GLY:O	1:A:573:HIS:CD2	2.65	0.46
1:A:251:PRO:HD2	1:A:348:HIS:CD2	2.51	0.45
1:A:791:GLU:OE2	1:B:725:LYS:NZ	2.49	0.45
1:B:231:HIS:CE1	1:B:264:ALA:HB1	2.50	0.45
1:B:838:HIS:CE1	1:B:845:PHE:CE1	3.04	0.45
1:A:343:ILE:C	1:A:344:ARG:HG2	2.37	0.45
1:B:838:HIS:O	1:B:839:GLU:CB	2.64	0.45
1:B:882:ALA:HA	1:B:883:PRO:HA	1.77	0.45
1:A:389:TYR:CE2	1:A:392:ALA:HB2	2.52	0.45
1:B:834:GLU:HG3	1:B:838:HIS:NE2	2.32	0.45
1:A:519:LYS:HD2	1:A:519:LYS:O	2.17	0.45

37	'W	7
-		-

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:A:759:VAL:O	1:A:763:VAL:HG23	2.16	0.45
1:B:30:VAL:HA	1:B:48:GLU:HG3	1.99	0.45
1:B:401:LEU:HD21	1:B:404[B]:LYS:HG3	1.98	0.45
1:A:1027:GLU:O	1:A:1029:GLY:N	2.50	0.45
1:B:110:PHE:CE2	1:B:112:GLY:HA3	2.51	0.45
1:A:629:THR:HG23	1:A:630:ASN:H	1.81	0.45
1:B:117:THR:HG21	1:B:276:TYR:CE1	2.51	0.45
1:B:121:LEU:HD22	1:B:298:VAL:HB	1.99	0.45
1:B:361:HIS:O	1:B:364:ILE:HG13	2.15	0.45
1:A:22:ALA:HB1	1:A:27:ILE:CG2	2.48	0.44
1:B:11:ARG:HE	1:B:37:ASP:CG	2.21	0.44
1:B:312:VAL:CG1	1:B:349:ALA:CB	2.95	0.44
1:B:678:GLU:OE1	1:B:714:ILE:HG21	2.16	0.44
1:A:574:ALA:HB1	1:A:806:TRP:CG	2.53	0.44
1:B:263[A]:LEU:HD23	1:B:263[A]:LEU:HA	1.83	0.44
1:A:270:ILE:HG21	1:A:298:VAL:HG21	1.98	0.44
1:A:358:ASP:HB2	1:A:432:ALA:HB1	1.99	0.44
1:A:474:THR:HG23	1:A:1059:ARG:NH2	2.32	0.44
1:A:474:THR:O	1:A:475:LYS:C	2.55	0.44
1:B:7:LEU:HD13	1:B:78:ALA:HA	1.99	0.44
1:A:6:ILE:O	1:A:30:VAL:N	2.51	0.44
1:A:895:MET:O	1:A:900:LEU:N	2.47	0.44
1:B:220:GLN:HE21	1:B:235:ARG:HH12	1.65	0.44
1:A:549:ASP:OD2	1:A:747:HIS:CE1	2.71	0.44
1:A:922:LEU:HD13	1:A:938:GLN:HA	2.00	0.44
1:A:281:THR:O	1:A:298:VAL:HG13	2.18	0.44
1:B:16:ILE:HA	1:B:19:PHE:HD2	1.83	0.44
1:A:103:CYS:SG	1:A:108:ILE:HB	2.58	0.44
1:A:249:ARG:HD3	1:A:253:PRO:HG3	2.00	0.44
1:A:411[B]:ASN:HB2	1:A:412:PRO:CD	2.47	0.44
1:A:559:MET:HG2	1:A:564:ILE:HD11	1.99	0.44
1:A:592:SER:HA	1:A:596:LEU:HB2	2.00	0.44
1:A:216:HIS:NE2	1:A:283:GLU:HB3	2.32	0.44
1:A:376:ALA:HB2	1:A:425:GLU:HG2	2.00	0.44
1:A:627:GLY:HA2	1:A:631:TYR:HE2	1.83	0.44
1:B:449:ASP:O	1:B:450:ASN:HB2	2.18	0.44
1:A:299:ASN:HA	1:A:300:PRO:HD3	1.70	0.44
1:A:381:ILE:CD1	1:A:407:ALA:HB2	2.48	0.44
1:A:729:ALA:HB2	1:A:758:THR:HG23	1.99	0.44
1:B:282:VAL:HG13	1:B:295:PHE:CE1	2.51	0.44
1:A:222:LEU:HD13	1:A:337:VAL:HG21	2.00	0.43

27	TΤ	17
0	L V V	1

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:240:GLN:HG2	1:A:245:LYS:HA	2.00	0.43
1:A:316:ASP:HB3	1:A:319:LYS:HB2	2.00	0.43
1:B:100:VAL:HG22	1:B:110:PHE:CZ	2.52	0.43
1:B:239:VAL:CG1	1:B:457:ILE:HD11	2.32	0.43
1:B:627:GLY:HA3	1:B:631:TYR:CE2	2.53	0.43
1:B:248:GLU:HG2	1:B:305:GLU:HB3	2.01	0.43
1:A:350:LEU:CD2	1:A:415:ALA:HB1	2.48	0.43
1:A:756:ALA:HB1	1:B:754:ILE:HG22	2.01	0.43
1:B:361:HIS:O	1:B:362:ASN:C	2.56	0.43
1:B:1032:LEU:HD22	1:B:1054:LEU:HD11	2.00	0.43
1:B:41:LEU:O	1:B:42:HIS:C	2.55	0.43
1:B:634:ASN:ND2	1:B:958:GLU:HG2	2.33	0.43
1:A:226:HIS:HE1	1:A:327:GLY:O	2.01	0.43
1:A:414:GLU:OE2	1:A:418:ARG:NH1	2.51	0.43
1:B:62:LEU:O	1:B:67:SER:OG	2.37	0.43
1:B:279:ALA:HB3	1:B:321:GLN:HE21	1.83	0.43
1:B:560:ARG:HH11	1:B:1009:THR:HA	1.83	0.43
1:B:599:ASP:HA	1:B:600:PRO:HD2	1.89	0.43
1:A:108:ILE:H	1:A:108:ILE:HG13	1.70	0.43
1:A:141:ALA:HA	1:A:207:LEU:O	2.18	0.43
1:A:624:ASN:CG	1:A:627:GLY:HA3	2.39	0.43
1:B:272:GLY:C	1:B:274:THR:H	2.22	0.43
1:B:304:VAL:HG21	1:B:353:ARG:HE	1.83	0.43
1:B:316:ASP:OD1	1:B:316:ASP:C	2.56	0.43
1:B:914:PHE:CD2	1:B:941:ALA:HA	2.54	0.43
1:A:11:ARG:HB3	1:A:68:TYR:CE1	2.53	0.43
1:A:310:GLU:OE1	1:A:382:ARG:NH1	2.34	0.43
1:A:557:THR:HG21	1:A:587:ALA:HB3	2.01	0.43
1:A:218:GLU:CD	1:A:237:CYS:HG	2.22	0.43
1:B:308:VAL:O	1:B:312:VAL:HG22	2.19	0.43
1:B:803:ASP:O	1:B:807:ILE:HG13	2.19	0.43
1:A:90:TYR:CB	1:A:301:ARG:NH1	2.65	0.42
1:A:382:ARG:HB3	1:A:406:THR:HB	2.01	0.42
1:A:546:THR:HG21	1:A:814:TRP:CE2	2.54	0.42
1:B:282:VAL:HA	1:B:298:VAL:HG22	2.01	0.42
1:A:881:VAL:C	1:A:885:SER:OG	2.57	0.42
1:B:41:LEU:HD12	1:B:44:PHE:HB2	2.01	0.42
1:B:416:ILE:O	1:B:420:ASP:HB2	2.20	0.42
1:B:987:TYR:HB3	1:B:990:VAL:HB	2.02	0.42
1:A:53:GLY:N	1:A:73:GLU:OE2	2.47	0.42
1:A:1037:GLN:HB2	1:A:1051:PHE:O	2.19	0.42

37	'W	7
-		-

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:272:GLY:O	1:B:274:THR:N	2.52	0.42
1:A:85:ALA:HA	1:A:109:ILE:O	2.19	0.42
1:A:90:TYR:HB3	1:A:302:ILE:O	2.19	0.42
1:B:245:LYS:HB3	1:B:248:GLU:OE2	2.19	0.42
1:B:263[A]:LEU:HG	1:B:293:PHE:CZ	2.55	0.42
1:B:724:LEU:HD23	1:B:746:PHE:CZ	2.55	0.42
1:A:14:ILE:HD12	1:A:14:ILE:HA	1.89	0.42
1:B:7:LEU:HD13	1:B:78:ALA:CA	2.49	0.42
1:B:14:ILE:HD12	1:B:17:ARG:HB3	2.00	0.42
1:B:324:ILE:HG22	1:B:325[A]:LEU:HD12	2.01	0.42
1:A:218:GLU:OE2	1:A:305:GLU:HG3	2.20	0.42
1:B:311:VAL:HG13	1:B:382:ARG:HH11	1.85	0.42
1:B:312:VAL:HG11	1:B:349:ALA:CB	2.49	0.42
1:A:220:GLN:HB2	1:A:235:ARG:HH12	1.85	0.42
1:A:479:TYR:O	1:A:483:VAL:HG12	2.19	0.42
1:A:929:PRO:HG2	1:A:932:GLY:O	2.20	0.42
1:A:33:TRP:CD1	1:A:43:ARG:HD2	2.55	0.42
1:A:238:SER:HB2	1:A:452:TYR:CE1	2.54	0.42
1:A:882:ALA:HA	1:A:883:PRO:HA	1.87	0.42
1:B:96:SER:O	1:B:100:VAL:HG23	2.20	0.42
1:B:551:HIS:ND1	1:B:559:MET:HB3	2.35	0.42
1:B:834:GLU:HG3	1:B:838:HIS:HE2	1.85	0.42
1:A:548:ARG:HB3	1:A:582:GLU:OE1	2.19	0.42
1:B:40:ALA:O	1:B:43:ARG:HG2	2.20	0.42
1:B:838:HIS:NE2	1:B:845:PHE:HE1	2.18	0.42
1:B:1021:GLU:HB2	1:B:1035:VAL:HG22	2.02	0.42
1:A:358:ASP:HB2	1:A:432:ALA:CB	2.50	0.41
1:A:494:ARG:HB2	1:A:823:ALA:HB1	2.02	0.41
1:B:145:LEU:HA	1:B:146:PRO:HD2	1.90	0.41
1:B:270:ILE:O	1:B:274:THR:HG23	2.19	0.41
1:B:452:TYR:CD2	1:B:452:TYR:N	2.83	0.41
1:A:886:LYS:O	1:A:887:VAL:C	2.58	0.41
1:A:1008:PRO:HG2	1:A:1022:LEU:HD11	2.02	0.41
1:B:17:ARG:NH1	1:B:21:ALA:HB2	2.35	0.41
1:A:366:ASP:HB3	1:A:431:VAL:HB	2.01	0.41
1:A:541:LEU:HB3	1:A:579:LEU:HB2	2.03	0.41
1:A:112:GLY:O	1:A:277:ILE:HB	2.19	0.41
1:A:282:VAL:HG12	1:A:284:TYR:CE2	2.55	0.41
1:B:25:LEU:CD1	1:B:319:LYS:HG2	2.50	0.41
1:B:346:ASN:ND2	1:B:408:TRP:CZ2	2.85	0.41
1:B:1046:GLY:O	1:B:1064:PRO:HA	2.19	0.41

\mathfrak{P}^r	יח	X	71	7
Э.	L	v	V	1

A + a 1	A t a	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:323:HIS:HB3	1:A:328:ALA:HB3	2.02	0.41
1:A:375:SER:HA	1:A:426:PHE:CE2	2.56	0.41
1:B:114:LYS:HG3	1:B:277:ILE:CD1	2.51	0.41
1:B:305:GLU:O	1:B:308:VAL:HG22	2.19	0.41
1:A:62:LEU:HB2	1:A:67:SER:OG	2.21	0.41
1:A:546:THR:HG21	1:A:814:TRP:CD1	2.55	0.41
1:A:955:LEU:HD23	1:A:955:LEU:HA	1.91	0.41
1:B:71:ILE:HG23	1:B:99:PHE:HD1	1.84	0.41
1:A:19:PHE:HD1	1:A:29:THR:HB	1.84	0.41
1:B:54:ARG:HE	1:B:54:ARG:HB2	1.56	0.41
1:B:252:ALA:HA	1:B:253:PRO:HD2	1.95	0.41
1:B:374[A]:ARG:NH2	1:B:427:ARG:HD3	2.36	0.41
1:B:659:TRP:CE2	1:B:661:GLU:HB3	2.56	0.41
1:B:1052:PHE:CE2	1:B:1061:ILE:HD13	2.55	0.41
1:A:348:HIS:O	1:A:409:ALA:N	2.44	0.41
1:A:102:ALA:HA	1:A:105:LYS:HB3	2.03	0.41
1:A:220:GLN:HE21	1:A:235:ARG:NH1	2.17	0.41
1:A:419:MET:O	1:A:423:LEU:HG	2.20	0.41
1:A:444:HIS:HA	1:A:445:PRO:HD3	1.88	0.41
1:A:887:VAL:HG22	1:A:917:SER:HB2	2.02	0.41
1:A:940:LYS:O	1:A:941:ALA:C	2.59	0.41
1:B:249:ARG:CZ	1:B:253:PRO:HG3	2.50	0.41
1:B:383:LEU:HD22	1:B:405:VAL:HG22	2.03	0.41
1:B:296[B]:ILE:HG13	1:B:297:GLU:N	2.35	0.41
1:B:747:HIS:HB2	1:B:771:ASP:OD2	2.21	0.41
1:A:703:LEU:HD23	1:A:703:LEU:HA	1.81	0.40
1:A:793:LEU:HD23	1:A:793:LEU:HA	1.85	0.40
1:B:99:PHE:O	1:B:100:VAL:C	2.57	0.40
1:B:558:ARG:HA	1:B:558:ARG:HD3	1.88	0.40
1:B:1052:PHE:HD2	1:B:1061:ILE:CD1	2.31	0.40
1:A:357:GLU:O	1:A:434:ASN:HB3	2.21	0.40
1:B:223:GLY:O	1:B:277:ILE:HA	2.21	0.40
1:B:382:ARG:O	1:B:383:LEU:HD23	2.20	0.40
1:A:50:TYR:HB2	1:A:77:VAL:HG13	2.03	0.40
1:A:527:PRO:HB2	1:A:713:HIS:CE1	2.56	0.40
1:B:519:LYS:HA	1:B:615:LEU:HD23	2.03	0.40
1:A:424:ARG:O	1:A:426:PHE:N	2.55	0.40
1:A:120:GLN:HE21	1:A:120:GLN:HB3	1.66	0.40
1:B:248:GLU:HB3	1:B:305:GLU:HB2	2.04	0.40
1:B:624:ASN:HB2	1:B:631:TYR:CD2	2.56	0.40
1:B:1044:SER:C	1:B:1046:GLY:H	2.24	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Pe	erc	entile	es
1	А	1001/1165~(86%)	875~(87%)	107 (11%)	19 (2%)		8	33	
1	В	1002/1165~(86%)	899~(90%)	82 (8%)	21 (2%)		7	30	
All	All	2003/2330 (86%)	1774 (89%)	189 (9%)	40 (2%)		7	31	

All (40) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	92	LEU
1	А	622	GLY
1	А	623	ALA
1	А	1030	LYS
1	В	92	LEU
1	В	145	LEU
1	В	362	ASN
1	В	500	ASN
1	В	861	TRP
1	В	1030	LYS
1	А	425	GLU
1	А	492	LYS
1	А	627	GLY
1	А	1028	LYS
1	А	1040	SER
1	А	1045	GLN
1	В	63	GLY
1	В	66	GLU
1	В	144	PRO
1	В	273	ALA
1	А	9	ALA
1	А	458	ASP

Mol	Chain	Res	Type
1	А	1065	ASP
1	В	209	LYS
1	В	301	ARG
1	В	886	LYS
1	А	177	ARG
1	А	292	LYS
1	В	9	ALA
1	В	12	SER
1	А	911	GLU
1	В	250	ALA
1	В	356	THR
1	В	333	PRO
1	В	450	ASN
1	А	64	PRO
1	А	140	PRO
1	В	338	PRO
1	А	457	ILE
1	В	251	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	749/933~(80%)	699~(93%)	50 (7%)	16 46
1	В	769/933~(82%)	709~(92%)	60 (8%)	12 40
All	All	1518/1866~(81%)	1408 (93%)	110 (7%)	14 44

All (110) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	37	ASP
1	А	50	TYR
1	А	51	GLN
1	А	54	ARG
1	А	71	ILE

Mol	Chain	Res	Type
1	А	81	SER
1	А	90	TYR
1	А	100	VAL
1	А	108	ILE
1	А	120	GLN
1	А	128	ARG
1	А	145	LEU
1	А	168	SER
1	А	179	ILE
1	А	224	ASP
1	А	232	LEU
1	А	234	GLU
1	А	239	VAL
1	А	254	TYR
1	А	277	ILE
1	А	286	MET
1	А	304	VAL
1	А	344	ARG
1	А	393	ILE
1	А	394	ILE
1	А	416	ILE
1	А	459	THR
1	А	474	THR
1	А	542	LEU
1	А	557	THR
1	А	584	TRP
1	А	590	ASP
1	А	597	THR
1	А	621	ARG
1	А	630	ASN
1	А	692	ARG
1	А	720	MET
1	А	796	SER
1	А	848	LEU
1	А	854	SER
1	А	860	ARG
1	А	885	SER
1	А	891	MET
1	A	913	SER
1	А	919	VAL
1	A	931	SER
1	A	958	GLU

Mol	Chain	Res	Type
1	А	998	SER
1	А	1021	GLU
1	А	1045	GLN
1	В	10	ASN
1	В	30	VAL
1	В	54	ARG
1	В	69	LEU
1	В	90	TYR
1	В	120	GLN
1	В	134	VAL
1	В	145	LEU
1	В	168	SER
1	В	179	ILE
1	В	206	TYR
1	В	219	SER
1	В	221	ILE
1	В	225	THR
1	В	232	LEU
1	В	254	TYR
1	В	262	GLU
1	В	263[A]	LEU
1	В	263[B]	LEU
1	В	267	SER
1	В	289	ASP
1	В	324	ILE
1	В	325[A]	LEU
1	В	325[B]	LEU
1	В	326	ASP
1	В	334	GLN
1	В	350	LEU
1	В	381	ILE
1	В	387	THR
1	В	399	ASP
1	В	401	LEU
1	В	403	VAL
1	В	427	ARG
1	В	433	THR
1	В	436	THR
1	В	452	TYR
1	В	521	LEU
1	В	542	LEU
1	В	557	THR

Mol	Chain	Res	Type
1	В	584	TRP
1	В	590	ASP
1	В	597	THR
1	В	720	MET
1	В	804	PRO
1	В	812	PHE
1	В	863	GLN
1	В	884	SER
1	В	885	SER
1	В	894	MET
1	В	902	VAL
1	В	907[A]	SER
1	В	907[B]	SER
1	В	931	SER
1	В	998	SER
1	В	1021	GLU
1	В	1025	ASP
1	В	1042	THR
1	В	1044	SER
1	В	1060	ARG
1	В	1066	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (26) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	51	GLN
1	А	220	GLN
1	А	226	HIS
1	А	299	ASN
1	А	348	HIS
1	А	444	HIS
1	А	486	ASN
1	А	573	HIS
1	А	630	ASN
1	А	713	HIS
1	А	1057	GLN
1	В	10	ASN
1	В	57	HIS
1	В	120	GLN
1	В	220	GLN
1	В	231	HIS
1	В	299	ASN

		1	1 0
Mol	Chain	Res	Type
1	В	346	ASN
1	В	361	HIS
1	В	444	HIS
1	В	486	ASN
1	В	630	ASN
1	В	713	HIS
1	В	863	GLN
1	В	873	GLN
1	В	1037	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

2 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Dec Link		ond leng	ths	B	ond ang	gles
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
1	KCX	А	718[A]	1,3	10,11,12	0.72	0	6,12,14	1.02	1 (16%)
1	KCX	В	718[A]	1,3	10,11,12	0.94	0	6,12,14	0.92	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	KCX	А	718[A]	1,3	-	1/9/10/12	-
1	KCX	В	718[A]	1,3	-	3/9/10/12	-

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	718[A]	KCX	CD-CG-CB	-2.22	105.24	113.62

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	А	718[A]	KCX	O-C-CA-CB
1	В	718[A]	KCX	O-C-CA-CB
1	В	718[A]	KCX	CG-CD-CE-NZ
1	В	718[A]	KCX	CE-CD-CG-CB

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 6 ligands modelled in this entry, 6 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2		$OWAB(Å^2)$	$Q{<}0.9$	
1	А	1003/1165~(86%)	0.52	156 (15%)	2	1	19, 72, 163, 191	8~(0%)
1	В	1001/1165~(85%)	0.30	113 (11%)	5	2	19, 56, 139, 190	7~(0%)
All	All	2004/2330~(86%)	0.41	269 (13%)	3	1	19, 65, 156, 191	15 (0%)

All (269) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	335	SER	11.1
1	А	142	THR	8.1
1	В	288	ALA	7.7
1	А	285	LEU	7.5
1	В	346	ASN	7.1
1	В	341[A]	GLU	7.0
1	А	136	VAL	6.7
1	В	207	LEU	6.5
1	А	215	ARG	6.4
1	А	334	GLN	6.4
1	В	167	ALA	6.0
1	В	331	GLY	6.0
1	А	294	TYR	6.0
1	А	124	LYS	5.9
1	В	96	SER	5.8
1	А	108	ILE	5.7
1	А	115	ALA	5.6
1	А	1043	ASP	5.6
1	А	290	THR	5.6
1	В	206	TYR	5.6
1	A	225	THR	5.5
1	A	141	ALA	5.5
1	В	135	GLY	5.4
1	А	116[A]	ASP	5.4

Mol	Chain	Res	Type	RSRZ
1	А	133	SER	5.3
1	A	144	PRO	5.3
1	А	313	THR	5.2
1	А	454	THR	5.2
1	В	272	GLY	5.1
1	А	296[A]	ILE	5.1
1	А	336	GLY	5.1
1	А	145	LEU	5.1
1	А	275	ASN	5.0
1	А	164	MET	5.0
1	В	132	ILE	4.9
1	В	278	GLY	4.8
1	А	457	ILE	4.8
1	А	1046	GLY	4.8
1	А	214	ALA	4.7
1	А	852	ALA	4.6
1	А	274	THR	4.6
1	А	335	SER	4.6
1	А	450	ASN	4.6
1	В	97	PRO	4.6
1	А	168	SER	4.5
1	А	453	THR	4.5
1	А	411[A]	ASN	4.5
1	А	449	ASP	4.4
1	А	167	ALA	4.3
1	А	56	PRO	4.3
1	A	367	TYR	4.3
1	А	339	ASN	4.3
1	В	95	GLU	4.3
1	A	286	MET	4.2
1	A	511	GLY	4.2
1	A	1044	SER	4.2
1	А	221	ILE	4.2
1	В	128	ARG	4.2
1	А	855	LEU	4.1
1	В	255	LEU	4.1
1	В	214	ALA	4.1
1	В	334	GLN	4.0
1	В	253	PRO	4.0
1	В	289	ASP	4.0
1	A	99	PHE	4.0
1	В	275	ASN	3.9

Mol	Chain	Res	Type	RSRZ
1	А	96	SER	3.9
1	В	213	ARG	3.9
1	В	127	ALA	3.9
1	А	415	ALA	3.9
1	В	131	ALA	3.9
1	В	142	THR	3.8
1	В	179	ILE	3.8
1	В	271	ALA	3.8
1	А	856	GLY	3.8
1	В	212	GLU	3.8
1	А	434	ASN	3.7
1	В	139	VAL	3.7
1	В	276	TYR	3.7
1	В	226	HIS	3.7
1	А	238	SER	3.6
1	В	166	LYS	3.6
1	А	322	ILE	3.6
1	А	431	VAL	3.5
1	В	336	GLY	3.5
1	В	294	TYR	3.5
1	А	326	ASP	3.5
1	А	60	ARG	3.5
1	А	315	ILE	3.5
1	А	1045	GLN	3.5
1	В	223	GLY	3.5
1	А	179	ILE	3.5
1	А	298	VAL	3.5
1	В	345	LEU	3.4
1	A	55	GLY	3.4
1	В	205	VAL	3.4
1	А	332	THR	3.4
1	А	287	ASP	3.4
1	A	452	TYR	3.4
1	В	116[A]	ASP	3.4
1	А	312	VAL	3.4
1	A	337	VAL	3.4
1	А	113	PRO	3.3
1	В	165	LEU	3.3
1	В	145	LEU	3.3
1	A	432	ALA	3.3
1	В	261	GLN	3.3
1	А	143	GLU	3.3

Mol	Chain	Res	Type	RSRZ	
1	А	1047	MET	3.3	
1	А	451	SER	3.3	
1	А	258	ALA	3.3	
1	В	352[A]	CYS	3.2	
1	В	409	ALA	3.2	
1	В	178	VAL	3.2	
1	А	279	ALA	3.2	
1	А	904	ASP	3.2	
1	В	137	PRO	3.2	
1	В	27	ILE	3.2	
1	А	363	PHE	3.2	
1	В	386	GLY	3.2	
1	В	399	ASP	3.2	
1	В	86	ILE	3.2	
1	A	210	LEU	3.2	
1	А	83	ALA	3.2	
1	А	72	ASP	3.1	
1	А	226	HIS	3.1	
1	A	123	ASN	3.1	
1	A	209	LYS	3.1	
1	В	342	ASP	3.1	
1	В	143	GLU	3.1	
1	В	347	GLY	3.1	
1	A	228	ASN	3.0	
1	A	114	LYS	3.0	
1	A	284	TYR	3.0	
1	A	125	VAL	3.0	
1	В	333	PRO	3.0	
1	A	267	SER	3.0	
1	A	343	ILE	3.0	
1	A	106	ALA	3.0	
1	A	239	VAL	2.9	
1	A	98[A]	GLU	2.9	
1	A	896	VAL	2.9	
1	B	180	ARG	2.9	
1	A	905	VAL	2.8	
1	B	296[A]	ILE	2.8	
1	A	134	VAL	2.8	
1	B	301	ARG	2.8	
1	A	407	ALA	2.8	
1	A	146	PRO	2.8	
1	B	91	GLY	2.8	

Mol	Chain	Res	Type	RSRZ	
1	В	208 GLU		2.8	
1	В	445	445 PRO		
1	А	128 ARG		2.8	
1	А	321	GLN	2.8	
1	В	129	ASN	2.8	
1	А	223	GLY	2.8	
1	А	119	ARG	2.7	
1	А	95	GLU	2.7	
1	В	144	PRO	2.7	
1	А	345	LEU	2.7	
1	А	252	ALA	2.7	
1	В	339	ASN	2.7	
1	В	264	ALA	2.7	
1	В	109	ILE	2.7	
1	А	10	ASN	2.7	
1	В	215	ARG	2.7	
1	В	233	PHE	2.6	
1	А	4	SER	2.6	
1	А	117	THR	2.6	
1	В	123	ASN	2.6	
1	В	907[A]	SER	2.6	
1	А	445	PRO	2.6	
1	А	368	GLY	2.6	
1	В	340	GLN	2.6	
1	В	267	SER	2.6	
1	А	1064	PRO	2.6	
1	А	122	GLY	2.6	
1	В	241	ARG	2.6	
1	B	284	TYR	2.5	
1	А	410	PRO	2.5	
1	В	3	ILE	2.5	
1	В	293	PHE	2.5	
1	А	54	ARG	2.5	
1	A	433	THR	2.5	
1	А	61	ASP	2.5	
1	A	163	VAL	2.5	
1	В	112	GLY	2.5	
1	В	2	PRO	2.5	
1	В	332	THR	2.5	
1	А	295	PHE	2.5	
1	А	360	GLU	2.5	
1	А	327	GLY	2.5	

Mol	Chain	Res	Type	RSRZ
1	В	326	326 ASP	
1	В	297	297 GLU	
1	В	315 ILE		2.5
1	А	207	LEU	2.5
1	А	97	PRO	2.5
1	А	270	ILE	2.5
1	В	344	ARG	2.5
1	В	1045	GLN	2.4
1	В	94	SER	2.4
1	А	261	GLN	2.4
1	А	70	SER	2.4
1	В	274	THR	2.4
1	В	134	VAL	2.4
1	А	303	GLN	2.4
1	В	419	MET	2.4
1	А	265	ALA	2.4
1	А	377	SER	2.3
1	В	79	LYS	2.3
1	А	381	ILE	2.3
1	В	330	ILE	2.3
1	А	165	LEU	2.3
1	А	227	GLY	2.3
1	А	289	ASP	2.3
1	В	29	THR	2.3
1	А	222	LEU	2.3
1	В	434	ASN	2.3
1	А	205	VAL	2.3
1	В	254	TYR	2.3
1	В	412	PRO	2.3
1	А	325[A]	LEU	2.3
1	В	265	ALA	2.3
1	А	897	SER	2.2
1	А	389	TYR	2.2
1	В	327	GLY	2.2
1	А	277	ILE	2.2
1	А	907[A]	SER	2.2
1	В	458	ASP	2.2
1	В	230	VAL	2.2
1	А	112	GLY	2.2
1	А	62	LEU	2.2
1	А	859	THR	2.2
1	A	2	PRO	2.2

Continued from previous page...

1 A 110 PHE 2.2 1 A 860 ARG 2.2 1 A 65 ILE 2.2 1 A 103 CYS 2.2 1 A 103 CYS 2.2 1 B 104 ASN 2.2 1 B 1029 GLY 2.2 1 B 1029 GLY 2.2 1 A 902 VAL 2.1 1 A 81 SER 2.1 1 A 375 SER 2.1 1 B 513 GLY 2.1 1 B 262 GLU 2.1 1 A 6 ILE 2.1 1 A 6 ILE 2.1 1 A 269 LYS 2.1 1 A 269 LYS 2.1 1 B 93 LEU 2.1 1 </th <th>Mol</th> <th>Chain</th> <th>Res</th> <th>Type</th> <th>RSRZ</th>	Mol	Chain	Res	Type	RSRZ
1 B 234 GLU 2.2 1 A 860 ARG 2.2 1 A 65 ILE 2.2 1 A 103 CYS 2.2 1 B 104 ASN 2.2 1 B 1029 GLY 2.2 1 B 1029 GLY 2.2 1 A 902 VAL 2.1 1 A 81 SER 2.1 1 A 81 SER 2.1 1 A 81 SER 2.1 1 A 61 ILE 2.1 1 B 262 GLU 2.1 1 A 6 ILE 2.1 1 A 269 LYS 2.1 1 A 269 LYS 2.1 1 B 93 LEU 2.1	1	А	110	PHE	2.2
1 A 860 ARG 2.2 1 A 65 ILE 2.2 1 A 103 CYS 2.2 1 B 104 ASN 2.2 1 B 104 ASN 2.2 1 B 1029 GLY 2.2 1 B 1029 GLY 2.2 1 A 902 VAL 2.1 1 A 81 SER 2.1 1 A 375 SER 2.1 1 B 513 GLY 2.1 1 B 262 GLU 2.1 1 B 262 GLU 2.1 1 A 6 ILE 2.1 1 A 6 ILE 2.1 1 A 269 LYS 2.1 1 B 93 LEU 2.1 1 B 231 HIS 2.1 1 B 93 <td>1</td> <td>В</td> <td>234</td> <td>GLU</td> <td>2.2</td>	1	В	234	GLU	2.2
1 A 65 ILE 2.2 1 B 104 ASN 2.2 1 B 104 ASN 2.2 1 B 1029 GLY 2.2 1 B 1029 GLY 2.2 1 A 902 VAL 2.1 1 A 375 SER 2.1 1 A 375 SER 2.1 1 A 375 SER 2.1 1 B 262 GLU 2.1 1 B 262 GLU 2.1 1 A 6 ILE 2.1 1 A 6 ILE 2.1 1 A 390 SER 2.1 1 A 269 LYS 2.1 1 B 93 LEU 2.1 1 B 222 LEU 2.1 1 B 908 <	1	А	860	ARG	2.2
1A103CYS 2.2 1B104ASN 2.2 1B260ARG 2.2 1B1029GLY 2.2 1A902VAL 2.1 1A81SER 2.1 1A375SER 2.1 1B513GLY 2.1 1B262GLU 2.1 1B262GLU 2.1 1A6ILE 2.1 1A6ILE 2.1 1A76ARG 2.1 1A76ARG 2.1 1A269LYS 2.1 1B85ALA 2.1 1B93LEU 2.1 1B93LEU 2.1 1B222LEU 2.1 1B93LEU 2.1 1B93LEU 2.1 1B908PRO 2.0 1A118MET 2.1 1B164MET 2.0 1A26GLY 2.0 1A256SER 2.0 1B343ILE 2.0 1A944GLY 2.0 1A140PRO 2.0 1A120GLN 2.0 1A120 <td< td=""><td>1</td><td>А</td><td>65</td><td>ILE</td><td>2.2</td></td<>	1	А	65	ILE	2.2
1B 104 ASN 2.2 1B 260 ARG 2.2 1B 1029 GLY 2.2 1A 902 VAL 2.1 1A 902 VAL 2.1 1A 81 SER 2.1 1A 375 SER 2.1 1B 513 GLY 2.1 1B 262 GLU 2.1 1B 262 GLU 2.1 1A6ILE 2.1 1A 6 ILE 2.1 1A 76 ARG 2.1 1A 76 ARG 2.1 1A 269 LYS 2.1 1B 93 LEU 2.1 1B 93 LEU 2.1 1B 222 LEU 2.1 1B 93 LEU 2.1 1B 93 LEU 2.1 1B 93 LEU 2.1 1B 231 HIS 2.1 1B 908 PRO 2.0 1A 26 GLY 2.0 1B 443 GLY 2.0 1B 343 ILE 2.0 1A 944 GLY 2.0 1A 140 PRO 2.0 1A 140 PRO 2.0 1A 120 GLN	1	А	103	CYS	2.2
1 B 260 ARG 2.2 1 B 1029 GLY 2.2 1 A 902 VAL 2.1 1 A 81 SER 2.1 1 A 375 SER 2.1 1 B 513 GLY 2.1 1 B 262 GLU 2.1 1 B 262 GLU 2.1 1 A 6 ILE 2.1 1 A 76 ARG 2.1 1 A 269 LYS 2.1 1 B 93 LEU 2.1 1 B 222 LEU 2.1 1 B 231 HIS 2.1 1 B 908 PRO 2.0 1 A 26	1	В	104	ASN	2.2
1B 1029 GLY 2.2 1A 902 VAL 2.1 1A 81 SER 2.1 1A 375 SER 2.1 1B 513 GLY 2.1 1B 262 GLU 2.1 1A6ILE 2.1 1A6ILE 2.1 1A6ILE 2.1 1A 76 ARG 2.1 1A 76 ARG 2.1 1A 269 LYS 2.1 1B 85 ALA 2.1 1B 231 HIS 2.1 1B 231 HIS 2.1 1B 231 HIS 2.1 1B 231 HIS 2.1 1B 266 GLY 2.0 1A 26 GLY 2.0 1B 443 GLY 2.0 1B 164 MET 2.0 1B 343 ILE 2.0 1A 944 GLY 2.0 1A 140 PRO 2.0 1A 120 2.0 1A 121 LEU 2.0 1A 242 ARG 2.0	1	В	260	ARG	2.2
1A902VAL 2.1 1A 81 SER 2.1 1A 375 SER 2.1 1B 513 GLY 2.1 1B 262 GLU 2.1 1A6ILE 2.1 1A6ILE 2.1 1A6ILE 2.1 1A 6 ILE 2.1 1A 76 ARG 2.1 1A 76 ARG 2.1 1A 269 LYS 2.1 1A 269 LYS 2.1 1B 93 LEU 2.1 1B 231 HIS 2.1 1B 908 PRO 2.0 1A 26 GLY 2.0 1B 164 MET 2.0 1B 343 ILE 2.0 1A 944 GLY 2.0 1A 140 PRO 2.0 1A 120 2.0 2.0 1A 121 LEU 2.0 <td>1</td> <td>В</td> <td>1029</td> <td>GLY</td> <td>2.2</td>	1	В	1029	GLY	2.2
1 A 81 SER 2.1 1 A 375 SER 2.1 1 B 513 GLY 2.1 1 B 262 GLU 2.1 1 A 6 ILE 2.1 1 A 6 ILE 2.1 1 A 6 ILE 2.1 1 A 76 ARG 2.1 1 A 76 ARG 2.1 1 A 269 LYS 2.1 1 A 269 LYS 2.1 1 B 93 LEU 2.1 1 B 93 LEU 2.1 1 B 222 LEU 2.1 1 B 231 HIS 2.1 1 B 908 PRO 2.0 1 A 26 GLY 2.0 1 B 164 MET 2.0 1 B 256	1	А	902	VAL	2.1
1 A 375 SER 2.1 1 B 513 GLY 2.1 1 B 262 GLU 2.1 1 A 6 ILE 2.1 1 A 6 ILE 2.1 1 A 129 ASN 2.1 1 A 76 ARG 2.1 1 A 390 SER 2.1 1 A 269 LYS 2.1 1 A 269 LYS 2.1 1 B 93 LEU 2.1 1 B 222 LEU 2.1 1 B 231 HIS 2.1 1 B 231 HIS 2.1 1 A 118 MET 2.1 1 B 908 PRO 2.0 1 A 26 GLY 2.0 1 B 164 MET 2.0 1 A 854	1	А	81	SER	2.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	375	SER	2.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	513	GLY	2.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	В	262	GLU	2.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	А	6	ILE	2.1
1 A 76 ARG 2.1 1 A 390 SER 2.1 1 A 269 LYS 2.1 1 B 85 ALA 2.1 1 B 93 LEU 2.1 1 B 93 LEU 2.1 1 B 222 LEU 2.1 1 B 231 HIS 2.1 1 B 231 HIS 2.1 1 A 118 MET 2.1 1 B 231 HIS 2.1 1 A 118 MET 2.1 1 B 908 PRO 2.0 1 A 26 GLY 2.0 1 B 164 MET 2.0 1 B 256 SER 2.0 1 A 944 GLY 2.0 1 A 140 PRO 2.0 1 A 140 <td>1</td> <td>А</td> <td>129</td> <td>ASN</td> <td>2.1</td>	1	А	129	ASN	2.1
1 A 390 SER 2.1 1 A 269 LYS 2.1 1 B 85 ALA 2.1 1 B 93 LEU 2.1 1 B 93 LEU 2.1 1 B 222 LEU 2.1 1 B 222 LEU 2.1 1 B 231 HIS 2.1 1 B 231 HIS 2.1 1 B 231 HIS 2.1 1 A 118 MET 2.1 1 A 266 GLY 2.0 1 B 164 MET 2.0 1 B 256 SER 2.0 1 A 944 GLY 2.0 1 A 944 GLY 2.0 1 A 140 PRO 2.0 1 A 140 PRO 2.0 1 A 121<	1	A	76	ARG	2.1
1 A 269 LYS 2.1 1 B 85 ALA 2.1 1 B 93 LEU 2.1 1 B 222 LEU 2.1 1 B 222 LEU 2.1 1 B 222 LEU 2.1 1 B 231 HIS 2.1 1 B 231 HIS 2.1 1 B 231 HIS 2.1 1 A 118 MET 2.1 1 B 908 PRO 2.0 1 A 26 GLY 2.0 1 B 443 GLY 2.0 1 B 256 SER 2.0 1 A 944 GLY 2.0 1 A 944 GLY 2.0 1 A 140 PRO 2.0 1 A 140 PRO 2.0 1 A 121<	1	А	390	SER	2.1
1 B 85 ALA 2.1 1 B 93 LEU 2.1 1 B 222 LEU 2.1 1 B 231 HIS 2.1 1 B 231 HIS 2.1 1 A 118 MET 2.1 1 A 118 MET 2.1 1 A 118 MET 2.1 1 B 908 PRO 2.0 1 A 26 GLY 2.0 1 B 443 GLY 2.0 1 B 164 MET 2.0 1 B 256 SER 2.0 1 A 944 GLY 2.0 1 A 944 GLY 2.0 1 A 140 PRO 2.0 1 A 140 PRO 2.0 1 A 120 GLN 2.0 1 A 121<	1	А	269	LYS	2.1
1 B 93 LEU 2.1 1 B 222 LEU 2.1 1 B 231 HIS 2.1 1 B 231 HIS 2.1 1 A 118 MET 2.1 1 A 118 MET 2.1 1 B 908 PRO 2.0 1 B 908 PRO 2.0 1 B 443 GLY 2.0 1 B 164 MET 2.0 1 B 256 SER 2.0 1 A 854 SER 2.0 1 A 944 GLY 2.0 1 A 140 PRO 2.0 1 A 140 PRO 2.0 1 A 120 GLN 2.0 1 A 120 GLN 2.0 1 A 121 LEU 2.0 1 A 12	1	В	85	ALA	2.1
1 B 222 LEU 2.1 1 B 231 HIS 2.1 1 A 118 MET 2.1 1 A 118 MET 2.1 1 B 908 PRO 2.0 1 B 908 PRO 2.0 1 A 26 GLY 2.0 1 B 443 GLY 2.0 1 B 164 MET 2.0 1 B 256 SER 2.0 1 A 854 SER 2.0 1 A 944 GLY 2.0 1 A 140 PRO 2.0 1 A 140 PRO 2.0 1 A 120 GLN 2.0 1 A 121 LEU 2.0 1 A 121 LEU 2.0 <	1	В	93	LEU	2.1
1 B 231 HIS 2.1 1 A 118 MET 2.1 1 B 908 PRO 2.0 1 B 908 PRO 2.0 1 A 26 GLY 2.0 1 B 443 GLY 2.0 1 B 164 MET 2.0 1 B 256 SER 2.0 1 A 854 SER 2.0 1 A 944 GLY 2.0 1 B 343 ILE 2.0 1 A 140 PRO 2.0 1 A 140 PRO 2.0 1 A 120 GLN 2.0 1 A 121 LEU 2.0 1 B 242 ARG 2.0	1	В	222	LEU	2.1
1 A 118 MET 2.1 1 B 908 PRO 2.0 1 A 26 GLY 2.0 1 B 443 GLY 2.0 1 B 443 GLY 2.0 1 B 164 MET 2.0 1 B 256 SER 2.0 1 A 854 SER 2.0 1 A 944 GLY 2.0 1 A 944 GLY 2.0 1 B 343 ILE 2.0 1 A 140 PRO 2.0 1 A 220 GLN 2.0 1 A 121 LEU 2.0 1 A 121 LEU 2.0 1 B 242 ARG 2.0	1	В	231	HIS	2.1
1 B 908 PRO 2.0 1 A 26 GLY 2.0 1 B 443 GLY 2.0 1 B 164 MET 2.0 1 B 164 MET 2.0 1 B 256 SER 2.0 1 A 854 SER 2.0 1 A 944 GLY 2.0 1 B 343 ILE 2.0 1 A 140 PRO 2.0 1 A 120 GLN 2.0 1 A 140 PRO 2.0 1 A 120 GLN 2.0 1 A 121 LEU 2.0 1 A 121 LEU 2.0 1 B 242 ARG 2.0	1	A	118	MET	2.1
1 A 26 GLY 2.0 1 B 443 GLY 2.0 1 B 164 MET 2.0 1 B 256 SER 2.0 1 B 256 SER 2.0 1 A 854 SER 2.0 1 A 944 GLY 2.0 1 B 343 ILE 2.0 1 B 343 ILE 2.0 1 A 140 PRO 2.0 1 A 120 GLN 2.0 1 A 120 GLN 2.0 1 A 121 LEU 2.0 1 B 242 ARG 2.0	1	В	908	PRO	2.0
1 B 443 GLY 2.0 1 B 164 MET 2.0 1 B 256 SER 2.0 1 A 854 SER 2.0 1 A 944 GLY 2.0 1 A 944 GLY 2.0 1 B 343 ILE 2.0 1 A 140 PRO 2.0 1 A 120 GLN 2.0 1 A 120 GLN 2.0 1 A 220 GLN 2.0 1 A 121 LEU 2.0 1 B 242 ARG 2.0	1	A	26	GLY	2.0
1 B 164 MET 2.0 1 B 256 SER 2.0 1 A 854 SER 2.0 1 A 944 GLY 2.0 1 A 944 GLY 2.0 1 B 343 ILE 2.0 1 A 140 PRO 2.0 1 A 220 GLN 2.0 1 A 121 LEU 2.0 1 B 242 ARG 2.0	1	В	443	GLY	2.0
1 B 256 SER 2.0 1 A 854 SER 2.0 1 A 944 GLY 2.0 1 A 944 GLY 2.0 1 B 343 ILE 2.0 1 A 140 PRO 2.0 1 A 220 GLN 2.0 1 A 121 LEU 2.0 1 B 242 ARG 2.0	1	В	164	MET	2.0
1 A 854 SER 2.0 1 A 944 GLY 2.0 1 B 343 ILE 2.0 1 A 140 PRO 2.0 1 A 220 GLN 2.0 1 A 121 LEU 2.0 1 B 242 ARG 2.0	1	В	256	SER	2.0
1 A 944 GLY 2.0 1 B 343 ILE 2.0 1 A 140 PRO 2.0 1 A 220 GLN 2.0 1 A 220 GLN 2.0 1 A 121 LEU 2.0 1 B 242 ARG 2.0	1	A	854	SER	2.0
1 B 343 ILE 2.0 1 A 140 PRO 2.0 1 A 220 GLN 2.0 1 A 121 LEU 2.0 1 B 242 ARG 2.0	1	A	944	GLY	2.0
1 A 140 PRO 2.0 1 A 220 GLN 2.0 1 A 121 LEU 2.0 1 B 242 ARG 2.0	1	В	343	ILE	2.0
1 A 220 GLN 2.0 1 A 121 LEU 2.0 1 B 242 ARG 2.0	1	A	140	PRO	2.0
1 A 121 LEU 2.0 1 B 242 ARG 2.0	1	A	220	GLN	2.0
$1 \qquad B \qquad 242 \qquad ARG \qquad 2.0$	1	A	121	LEU	2.0
	1	В	242	ARG	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q < 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
1	KCX	А	718[A]	12/13	0.98	0.13	20,21,22,22	0
1	KCX	В	718[A]	12/13	0.98	0.12	19,21,22,22	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q<0.9
2	MG	А	1200	1/1	0.80	0.19	$25,\!25,\!25,\!25$	0
2	MG	В	1200	1/1	0.88	0.24	40,40,40,40	0
3	ZN	А	1201	1/1	0.97	0.09	56, 56, 56, 56	0
4	CL	В	1202	1/1	0.97	0.11	30,30,30,30	0
4	CL	А	1202	1/1	0.98	0.17	24,24,24,24	0
3	ZN	В	1201	1/1	0.98	0.05	59,59,59,59	0

6.5 Other polymers (i)

There are no such residues in this entry.

