

wwPDB X-ray Structure Validation Summary Report (i)

May 23, 2024 – 03:53 PM EDT

PDB ID : 4S2D

Title : Joint X-ray/neutron structure of Trichoderma reesei xylanase II in complex

with MES at pH 5.7

Authors: Kovalevsky, A.Y.; Wan, Q.; Langan, P.

Deposited on : 2015-01-20

Resolution : 1.60 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org*A user guide is available at

https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

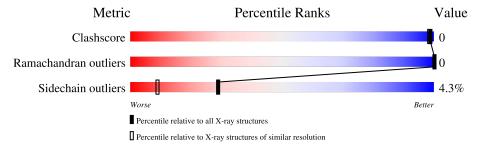
The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

 $\begin{array}{ccc} & Mol Probity & : & 4.02b\text{-}467 \\ \text{Xtriage (Phenix)} & : & 1.13 \\ & & EDS & : & \textbf{FAILED} \end{array}$

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION, NEUTRON DIFFRACTION

The reported resolution of this entry is 1.60 Å.

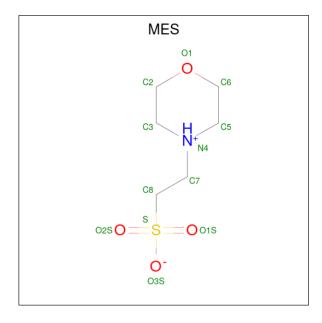
Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution		
Metric	$(\# \mathrm{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$		
Clashscore	141614	3665 (1.60-1.60)		
Ramachandran outliers	138981	3564 (1.60-1.60)		
Sidechain outliers	138945	3563 (1.60-1.60)		

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 3572 atoms, of which 1306 are hydrogens and 622 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.


• Molecule 1 is a protein called Endo-1,4-beta-xylanase 2.

Mol	Chain	Residues		Atoms					ZeroOcc	AltConf	Trace	
1	Δ	190	Total	С	D	Н	N	О	S	0	153	0
1	$\begin{array}{c c} 1 & A & \end{array}$	190	3093	934	319	1294	253	292	1	0	100	U

• Molecule 2 is IODIDE ION (three-letter code: IOD) (formula: I).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	A	1	Total I 1 1	0	0

• Molecule 3 is 2-(N-MORPHOLINO)-ETHANESULFONIC ACID (three-letter code: MES) (formula: C₆H₁₃NO₄S).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf			
2	Λ	1	Total	С	D	Н	N	О	S	0	0
3 A	1	25	6	1	12	1	4	1	0	U	

• Molecule 4 is water.

Mol	Chain	Residues	Ato	ns	ZeroOcc	AltConf
4	A	151	Total I 453 30	O 2 151	0	0

 ${\tt SEQUENCE-PLOTS\ INFO missing INFO}$

3 Data and refinement statistics (i)

EDS failed to run properly - this section is therefore incomplete.

Property	Value	Source	
Space group	P 21 21 21	Depositor	
Cell constants	49.17Å 60.21Å 70.43Å	Depositor	
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Беровног	
Resolution (Å)	19.99 - 1.60	Depositor	
% Data completeness	94.7 (19.99-1.60)	Depositor	
(in resolution range)	,	-	
R_{merge}	0.05	Depositor	
R_{sym}	(Not available)	Depositor	
$< I/\sigma(I) >$	-	Xtriage	
Refinement program	nCNS 1.0.0	Depositor	
R, R_{free}	0.192 , 0.196	Depositor	
Wilson B-factor (A^2)	(Not available)	Xtriage	
Anisotropy	(Not available)	Xtriage	
L-test for twinning ¹	$ < L >=$ (Not available), $ =$ (Not available)	Xtriage	
Estimated twinning fraction	No twinning to report.	Xtriage	
Total number of atoms	3572	wwPDB-VP	
Average B, all atoms (\mathring{A}^2)	22.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: (Not available)

Theoretical values of $<|L|>, < L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

4 Model quality (i)

4.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: DOD, MES, IOD, PCA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bo	nd angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A	0.39	0/2751	0.66	$1/3753 \ (0.0\%)$

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\mathbf{Observed}(^{o})$	$\operatorname{Ideal}(^{o})$
1	A	43	GLY	N-CA-C	-5.06	100.46	113.10

There are no chirality outliers.

There are no planarity outliers.

4.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	1799	1294	260	0	0
2	A	1	0	0	0	0
3	A	13	12	13	1	0
4	A	453	0	0	0	1
All	All	2266	1306	273	1	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 0.

All (1) close contacts within the same asymmetric unit are listed below, sorted by their clash

magnitude.

Atom 1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	${ m distance} ({ m \AA})$	overlap (Å)

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	$\begin{array}{c} \text{Clash} \\ \text{overlap } (\text{\AA}) \end{array}$
4:A:1059:DOD:O	4:A:1091:DOD:D2[3_544]	1.49	0.71

4.3 Torsion angles (i)

4.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	\mathbf{s}
1	A	53/190 (28%)	52 (98%)	1 (2%)	0	100 100	

There are no Ramachandran outliers to report.

4.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	A	40/155~(26%)	38 (95%)	2 (5%)	24 6

All (2) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	4[A]	GLN
1	A	4[B]	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

4.3.3 RNA (i)

There are no RNA molecules in this entry.

4.4 Non-standard residues in protein, DNA, RNA chains (i)

1 non-standard protein/DNA/RNA residue is modelled in this entry.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

4.5 Carbohydrates (i)

There are no monosaccharides in this entry.

4.6 Ligand geometry (i)

Of 2 ligands modelled in this entry, 1 is monoatomic - leaving 1 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

4.7 Other polymers (i)

There are no such residues in this entry.

4.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

5 Fit of model and data (i)

5.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

5.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

5.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

5.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

5.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

