

Full wwPDB X-ray Structure Validation Report (i)

Jun 11, 2024 – 10:43 PM EDT

PDB ID	:	6NDB
Title	:	RHODOCETIN IN COMPLEX WITH THE INTEGRIN ALPHA2-A DO-
		MAIN AND COBALT
Authors	:	Stetefeld, J.; McDougall, M.D.; Loewen, P.C.
Deposited on	:	2018-12-13
Resolution	:	3.20 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36.2
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	Similar resolution
IVIETIC	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	1133 (3.20-3.20)
Clashscore	141614	1253 (3.20-3.20)
Ramachandran outliers	138981	1234 (3.20-3.20)
Sidechain outliers	138945	1233 (3.20-3.20)
RSRZ outliers	127900	1095 (3.20-3.20)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	135	71%	23%	••
1	D	135	72%	23%	••••
1	G	135	74%	19%	• •
1	J	135	76%	19%	••••
1	М	135	.%	36%	••••

Mol	Chain	Length	Quality of chain		
1	Р	135	% 66%	30%	•••
2	В	124	71%	23%	•••
2	Е	124	% 68%	29%	•••
2	Н	124	70%	26%	•••
2	K	124	69%	26%	
2	Ν	124	62%	33%	••
2	Q	124	69%	25%	••
3	С	217	73%	14%	• 12%
3	F	217	% 68%	19%	12%
3	Ι	217	70%	18%	12%
3	L	217	.% 7 1%	16%	• 12%
3	О	217	68%	20%	12%
3	R	217	70%	17%	• 12%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	SO4	А	202	-	-	-	Х

6NDB

2 Entry composition (i)

There are 9 unique types of molecules in this entry. The entry contains 21590 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	121	Total	С	Ν	0	S	0	0	0
	Л	131	1070	672	189	200	9	0	0	0
1	Л	121	Total	С	Ν	Ο	S	0	0	0
	D	131	1070	672	189	200	9	0	0	0
1	С	121	Total	С	Ν	0	S	0	0	0
	G	101	1070	672	189	200	9	0	0	0
1	т	121	Total	С	Ν	0	S	0	0	0
	J	131	1070	672	189	200	9	0	0	0
1	М	121	Total	С	Ν	0	S	0	0	0
	1 1/1	191	1070	672	189	200	9	0	0	0
1	D	121	Total	С	Ν	Ο	S	0	0	0
	1	131	1070	672	189	200	9		0	U

• Molecule 1 is a protein called Snaclec rhodocetin subunit gamma.

• Molecule 2 is a protein called Snaclec rhodocetin subunit delta.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	В	199	Total	С	Ν	Ο	S	0	0	0
	D	122	1029	667	174	179	9	0	0	0
2	F	199	Total	С	Ν	Ο	S	0	0	0
	Ľ	122	1029	667	174	179	9	0	0	0
2	Ц	199	Total	С	Ν	Ο	S	0	0	Ο
	11	122	1029	667	174	179	9	0	0	0
2	K	199	Total	С	Ν	Ο	S	0	0	0
	Т	122	1029	667	174	179	9	0	0	0
9	N	199	Total	С	Ν	Ο	S	0	0	0
	IN	122	1029	667	174	179	9	0	0	0
2	0	199	Total	С	Ν	0	S	0	0	0
	Q	122	1029	667	174	179	9	0	0	0

• Molecule 3 is a protein called Integrin alpha-2.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	C	101	Total	С	Ν	0	S	0	0	0
J	U	191	1482	940	250	287	5	0	0	0
2	F	101	Total	С	Ν	0	S	0	0	0
5	Ľ	191	1482	940	250	287	5	0	0	0
3	Т	101	Total	С	Ν	0	S	0	0	0
5	1	191	1482	940	250	287	5	0		0
3	т	101	Total	С	Ν	0	S	0	0	0
5		191	1482	940	250	287	5	0	0	0
3	0	101	Total	С	Ν	0	S	0	0	0
5	0	191	1482	940	250	287	5	0	0	0
2	D	101	Total	С	Ν	0	S	0	0	0
3	n	191	1482	940	250	287	5		0	U

There are 120 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	150	MET	-	expression tag	UNP P17301
С	151	GLY	-	expression tag	UNP P17301
С	152	SER	-	expression tag	UNP P17301
С	153	SER	-	expression tag	UNP P17301
С	154	HIS	-	expression tag	UNP P17301
С	155	HIS	-	expression tag	UNP P17301
С	156	HIS	-	expression tag	UNP P17301
С	157	HIS	-	expression tag	UNP P17301
С	158	HIS	-	expression tag	UNP P17301
С	159	HIS	-	expression tag	UNP P17301
С	160	SER	-	expression tag	UNP P17301
С	161	SER	-	expression tag	UNP P17301
С	162	GLY	-	expression tag	UNP P17301
С	163	LEU	-	expression tag	UNP P17301
С	164	VAL	-	expression tag	UNP P17301
С	165	PRO	-	expression tag	UNP P17301
С	166	ARG	-	expression tag	UNP P17301
С	167	GLY	-	expression tag	UNP P17301
С	168	GLY	-	expression tag	UNP P17301
С	169	SER	-	expression tag	UNP P17301
F	150	MET	-	expression tag	UNP P17301
F	151	GLY	-	expression tag	UNP P17301
F	152	SER	-	expression tag	UNP P17301
F	153	SER	-	expression tag	UNP P17301
F	154	HIS	-	expression tag	UNP P17301
F	155	HIS	-	expression tag	UNP P17301
F	156	HIS	-	expression tag	UNP P17301
F	157	HIS	-	expression tag	UNP P17301

6NDB

Continu	Continued from previous page						
Chain	Residue	Modelled	Actual	Comment	Reference		
F	158	HIS	-	expression tag	UNP P17301		
F	159	HIS	-	expression tag	UNP P17301		
F	160	SER	-	expression tag	UNP P17301		
F	161	SER	-	expression tag	UNP P17301		
F	162	GLY	-	expression tag	UNP P17301		
F	163	LEU	-	expression tag	UNP P17301		
F	164	VAL	-	expression tag	UNP P17301		
F	165	PRO	-	expression tag	UNP P17301		
F	166	ARG	-	expression tag	UNP P17301		
F	167	GLY	-	expression tag	UNP P17301		
F	168	GLY	-	expression tag	UNP P17301		
F	169	SER	-	expression tag	UNP P17301		
Ι	150	MET	-	expression tag	UNP P17301		
Ι	151	GLY	-	expression tag	UNP P17301		
Ι	152	SER	-	expression tag	UNP P17301		
Ι	153	SER	-	expression tag	UNP P17301		
Ι	154	HIS	-	expression tag	UNP P17301		
Ι	155	HIS	-	expression tag	UNP P17301		
Ι	156	HIS	-	expression tag	UNP P17301		
Ι	157	HIS	-	expression tag	UNP P17301		
Ι	158	HIS	-	expression tag	UNP P17301		
Ι	159	HIS	-	expression tag	UNP P17301		
Ι	160	SER	-	expression tag	UNP P17301		
Ι	161	SER	-	expression tag	UNP P17301		
Ι	162	GLY	-	expression tag	UNP P17301		
Ι	163	LEU	-	expression tag	UNP P17301		
Ι	164	VAL	-	expression tag	UNP P17301		
Ι	165	PRO	-	expression tag	UNP P17301		
Ι	166	ARG	-	expression tag	UNP P17301		
Ι	167	GLY	-	expression tag	UNP P17301		
Ι	168	GLY	-	expression tag	UNP P17301		
Ι	169	SER	-	expression tag	UNP P17301		
L	150	MET	-	expression tag	UNP P17301		
L	151	GLY	-	expression tag	UNP P17301		
L	152	SER	-	expression tag	UNP P17301		
L	153	SER	-	expression tag	UNP P17301		
L	154	HIS	-	expression tag	UNP P17301		
L	155	HIS	-	expression tag	UNP P17301		
L	156	HIS	-	expression tag	UNP P17301		
L	157	HIS	-	expression tag	UNP P17301		
L	158	HIS	-	expression tag	UNP P17301		
L	159	HIS	-	expression tag	UNP P17301		

 α J fa . . . :

6NDB

Continued from previous page					DC
Chain	Residue	Modelled	Actual	Comment	Reference
	160	SER	-	expression tag	UNP P17301
	161	SER	-	expression tag	UNP P17301
L	162	GLY	-	expression tag	UNP P17301
L	163	LEU	-	expression tag	UNP P17301
L	164	VAL	-	expression tag	UNP P17301
L	165	PRO	-	expression tag	UNP P17301
L	166	ARG	-	expression tag	UNP P17301
L	167	GLY	-	expression tag	UNP P17301
L	168	GLY	-	expression tag	UNP P17301
L	169	SER	-	expression tag	UNP P17301
0	150	MET	-	expression tag	UNP P17301
0	151	GLY	-	expression tag	UNP P17301
0	152	SER	-	expression tag	UNP P17301
0	153	SER	-	expression tag	UNP P17301
0	154	HIS	-	expression tag	UNP P17301
0	155	HIS	-	expression tag	UNP P17301
0	156	HIS	-	expression tag	UNP P17301
0	157	HIS	-	expression tag	UNP P17301
0	158	HIS	-	expression tag	UNP P17301
0	159	HIS	-	expression tag	UNP P17301
0	160	SER	-	expression tag	UNP P17301
0	161	SER	-	expression tag	UNP P17301
0	162	GLY	-	expression tag	UNP P17301
0	163	LEU	-	expression tag	UNP P17301
0	164	VAL	-	expression tag	UNP P17301
0	165	PRO	-	expression tag	UNP P17301
0	166	ARG	-	expression tag	UNP P17301
0	167	GLY	-	expression tag	UNP P17301
0	168	GLY	-	expression tag	UNP P17301
0	169	SER	_	expression tag	UNP P17301
R	150	MET	_	expression tag	UNP P17301
R	151	GLY	_	expression tag	UNP P17301
R	152	SER	-	expression tag	UNP P17301
R	153	SER	-	expression tag	UNP P17301
R	154	HIS	-	expression tag	UNP P17301
R	155	HIS	-	expression tag	UNP P17301
R	156	HIS	-	expression tag	UNP P17301
R	157	HIS	_	expression tag	UNP P17301
R	158	HIS	-	expression tag	UNP P17301
R	159	HIS	-	expression tag	UNP P17301
R	160	SER	_	expression tag	UNP P17301
R	161	SER	-	expression tag	UNP P17301

 α 1 0 . . . :

Chain	Residue	Modelled	Actual	Comment	Reference
R	162	GLY	-	expression tag	UNP P17301
R	163	LEU	-	expression tag	UNP P17301
R	164	VAL	-	expression tag	UNP P17301
R	165	PRO	-	expression tag	UNP P17301
R	166	ARG	-	expression tag	UNP P17301
R	167	GLY	-	expression tag	UNP P17301
R	168	GLY	-	expression tag	UNP P17301
R	169	SER	-	expression tag	UNP P17301

Continued from previous page...

• Molecule 4 is SULFATE ION (three-letter code: SO4) (formula: O_4S).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Е	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Е	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	G	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Н	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	J	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	K	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Ν	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	О	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Q	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Q	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	R	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 5 is COBALT (II) ION (three-letter code: CO) (formula: Co).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	С	1	Total Co 1 1	0	0
5	F	1	Total Co 1 1	0	0
5	Ι	1	Total Co 1 1	0	0
5	L	1	Total Co 1 1	0	0
5	О	1	Total Co 1 1	0	0
5	R	1	Total Co 1 1	0	0

• Molecule 6 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	С	1	Total Na 1 1	0	0
6	F	1	Total Na 1 1	0	0
6	Ι	1	Total Na 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	L	1	Total Na 1 1	0	0
6	Ο	1	Total Na 1 1	0	0
6	R	1	Total Na 1 1	0	0

• Molecule 7 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	С	1	Total Cl 1 1	0	0
7	Е	1	Total Cl 1 1	0	0
7	G	1	Total Cl 1 1	0	0
7	Н	1	Total Cl 1 1	0	0
7	J	1	Total Cl 1 1	0	0
7	K	1	Total Cl 1 1	0	0
7	L	1	Total Cl 1 1	0	0
7	М	1	Total Cl 1 1	0	0
7	R	1	Total Cl 1 1	0	0

• Molecule 8 is AMMONIUM ION (three-letter code: NH4) (formula: H_4N).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	D	1	Total N 1 1	0	0

• Molecule 9 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	А	5	Total O 5 5	0	0
9	D	1	Total O 1 1	0	0
9	F	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Snaclec rhodocetin subunit gamma

• Molecule 1: Snaclec rhodocetin subunit gamma

• Molecule 2: Snaclec rhodocetin subunit delta

TYR SER

• Molecule 2: Snaclec rhodocetin subunit delta

• Molecule 2: Snaclec rhodocetin subunit delta

• Molecule 2: Snaclec rhodocetin subunit delta

• Molecule 3: Integrin alpha-2

Chain I:	70%	18%	12%
MET CLY SER SER SER HIS HIS HIS HIS HIS HIS SER CLV VAL CLV VAL CLV CLV CLV CLV SER SER SER SER SER SER SER SER SER SER	L172 • V178 V178 C179 D180 D180 D180 D180 T207 T207 T207 T201 T201 T201	T242 Y264 S265 G270	1282 D283 S286 L292 1296
C299 F307 Y314 Y314 Y314 K330 K330 K333 K333 K333 K333 K333 K33	1344 8345 1350 1350 1350 1356 1356 1356 1356 1356 1356 1356 1356		
• Molecule 3: Integrin alpha-2	2		
Chain L:	71%	16% •	12%
MET SER SER SER HIS HIS HIS HIS HIS HIS SER HIS SER HIS SER HIS SER AIS CLV VAL VAL CLEU VAL CLEU SER SER SER SER SER SER SER SER SER SER	L172 L173 D174 V175 S184 K192 K192 E196 E196 C200 Q200 Q200 A217 N211	T231 K232 E233 E234 T239	1242 2243 0244 1249 1249 F253 F253
R272 S273 S273 S277 V277 D283 D283 R290 R290 R290 R290 R290 R313 C313 C313 C313 C313 C313 C313 C313	S334 F342 N343 V344 V344 V344 F362 F362 F362 F362 CLU GLV		
• Molecule 3: Integrin alpha-2	2		
Chain O:	68%	20%	12%
MET GLY SER SER HIS HIS HIS HIS HIS SER CIY VAL VAL VAL VAL CUY GLY SER SER SER SER SER SER SER SER SER SER	L172 D174 D174 D174 N28 W188 W280 C200 C200 C200 C210 C210 C210 C210 C21	E233 E234 E234 I236 V237 T239 T239	T242 S243 Q244 L249 T252 F253
R260 (269 (270 R271 R271 R271 R274 R274 R283 R283 R313 (1312 (1312 (1312 (1312 (1312 (1312 (1312 (1312 (1312) (1322) R323 R323 R323	1,225 1,326 1,326 1,326 1,326 1,324 1,324 1,324 1,324 1,324 1,325 1,355 1,355 1,355 1,355 1,355 1,355 1,355 1,355 1,355 1,355 1,355 1,355 1,355 1,355 1,355 1,355 1,355 1,355 1,355	111	
• Molecule 3: Integrin alpha-2	2		
Chain R:	70%	17% •	12%
MET GLY SER SER HIS HIS HIS HIS HIS SER HIS SER CLY VAL VAL VAL CLY VAL CLY VAL SER SER SER SER SER SER SER SER SER SER	L172 D180 E181 E181 V199 V199 T204 T204 T204 T206 T208 T208 T208 T208 T208 T208 T208 T208	E234 E234 M235 N235 V237 V237 T239	T242 8244 0244 1249 1229 F252 F253 F253
9257 1282 1282 1282 1282 1282 1282 1282 1382 13	V344 8345 D346 A349 F352 F352 F362 F362 GUU GLY		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 41	Depositor
Cell constants	131.84Å 131.84Å 251.70Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	47.07 - 3.20	Depositor
Resolution (A)	47.03 - 3.20	EDS
% Data completeness	99.0 (47.07-3.20)	Depositor
(in resolution range)	99.1 (47.03-3.20)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	0.14	Depositor
$< I/\sigma(I) > 1$	$2.98 (at 3.19 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0238	Depositor
D D.	0.228 , 0.292	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.230 , 0.292	DCC
R_{free} test set	3546 reflections $(5.07%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	62.1	Xtriage
Anisotropy	0.062	Xtriage
Bulk solvent $k_{sol}(e/A^3)$, $B_{sol}(A^2)$	0.31, 19.7	EDS
L-test for twinning ²	$< L >=0.50, < L^2>=0.33$	Xtriage
Estimated twinning fraction	0.458 for h,-k,-l	Xtriage
F_o, F_c correlation	0.90	EDS
Total number of atoms	21590	wwPDB-VP
Average B, all atoms $(Å^2)$	67.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.31% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SO4, NA, CO, CL, NH4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.67	0/1101	0.78	0/1491
1	D	0.69	0/1101	0.79	0/1491
1	G	0.68	0/1101	0.81	0/1491
1	J	0.67	0/1101	0.80	0/1491
1	М	0.70	0/1101	0.82	0/1491
1	Р	0.70	0/1101	0.81	0/1491
2	В	0.67	0/1064	0.78	0/1439
2	Е	0.66	0/1064	0.79	0/1439
2	Н	0.65	0/1064	0.79	0/1439
2	Κ	0.67	0/1064	0.76	0/1439
2	Ν	0.69	0/1064	0.79	0/1439
2	Q	0.69	0/1064	0.81	0/1439
3	С	0.71	0/1506	0.78	0/2040
3	F	0.69	0/1506	0.80	0/2040
3	Ι	0.70	0/1506	0.80	0/2040
3	L	0.69	0/1506	0.78	0/2040
3	0	0.69	0/1506	0.79	0/2040
3	R	0.68	0/1506	0.79	0/2040
All	All	0.68	0/22026	0.79	0/29820

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	G	0	1
1	J	0	1
2	В	0	1
2	Е	0	1

Continued from previous page...

Mol	Chain	#Chirality outliers	#Planarity outliers
All	All	0	5

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (5) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	132	PRO	Peptide
2	В	4	HIS	Peptide
2	Е	89	TRP	Peptide
1	G	132	PRO	Peptide
1	J	88	SER	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1070	0	988	26	0
1	D	1070	0	988	18	0
1	G	1070	0	988	21	0
1	J	1070	0	988	25	0
1	М	1070	0	988	41	0
1	Р	1070	0	988	35	0
2	В	1029	0	977	24	0
2	Е	1029	0	977	31	0
2	Н	1029	0	977	28	0
2	K	1029	0	977	23	0
2	Ν	1029	0	977	34	0
2	Q	1029	0	977	28	0
3	С	1482	0	1478	16	0
3	F	1482	0	1479	22	0
3	Ι	1482	0	1479	19	0
3	L	1482	0	1478	18	0
3	0	1482	0	1478	29	0
3	R	1482	0	1478	23	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	А	10	0	0	0	0
4	В	5	0	0	0	0
4	D	5	0	0	0	0
4	Е	10	0	0	0	0
4	G	5	0	0	0	0
4	Н	5	0	0	0	0
4	J	5	0	0	0	0
4	К	5	0	0	0	0
4	Ν	5	0	0	0	0
4	0	5	0	0	1	0
4	Q	10	0	0	0	0
4	R	5	0	0	0	0
5	С	1	0	0	0	0
5	F	1	0	0	0	0
5	Ι	1	0	0	0	0
5	L	1	0	0	0	0
5	0	1	0	0	0	0
5	R	1	0	0	0	0
6	С	1	0	0	0	0
6	F	1	0	0	0	0
6	Ι	1	0	0	0	0
6	L	1	0	0	0	0
6	0	1	0	0	0	0
6	R	1	0	0	0	0
7	С	1	0	0	1	0
7	Е	1	0	0	0	0
7	G	1	0	0	0	0
7	Н	1	0	0	0	0
7	J	1	0	0	0	0
7	Κ	1	0	0	0	0
7	L	1	0	0	0	0
7	М	1	0	0	0	0
7	R	1	0	0	0	0
8	D	1	0	0	0	0
9	A	5	0	0	0	0
9	D	1	0	0	0	0
9	F	1	0	0	0	0
All	All	21590	0	20660	390	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

All (390) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

6NDB	
-	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:M:87:MET:SD	2:N:40:SER:OG	2.35	0.85
1:M:89:ALA:HB1	2:N:42:HIS:NE2	1.93	0.84
1:P:87:MET:SD	2:Q:40:SER:OG	2.37	0.82
2:N:32:GLN:HE21	2:N:32:GLN:CA	1.92	0.81
1:P:89:ALA:HB1	2:Q:42:HIS:CE1	2.15	0.81
2:H:20:LYS:HE2	2:H:28:PHE:CD2	2.19	0.77
1:M:29:GLU:CD	2:N:79:SER:OG	2.23	0.76
1:M:87:MET:O	1:M:88:SER:HB2	1.84	0.76
1:P:87:MET:O	1:P:88:SER:HB2	1.84	0.75
2:E:90:LEU:HD12	2:E:90:LEU:C	2.06	0.75
1:P:29:GLU:CD	2:Q:79:SER:HG	1.90	0.74
2:E:31:ALA:HB1	3:O:353:LYS:HE2	1.71	0.72
1:M:29:GLU:CD	2:N:79:SER:HG	1.94	0.70
2:H:90:LEU:HD12	2:H:90:LEU:C	2.11	0.70
3:I:344:VAL:HG13	3:I:349:ALA:HB3	1.73	0.69
1:P:29:GLU:CD	2:Q:79:SER:OG	2.31	0.69
3:R:204:ILE:HA	3:R:209:THR:O	1.94	0.68
1:M:29:GLU:OE2	2:N:79:SER:OG	2.12	0.68
1:M:29:GLU:OE1	2:N:79:SER:OG	2.11	0.67
2:E:20:LYS:HE2	2:E:28:PHE:CD2	2.29	0.67
1:G:116:TRP:O	2:H:89:TRP:HA	1.95	0.67
2:N:13:TYR:CE1	2:N:121:LYS:HG3	2.29	0.67
3:R:204:ILE:HG12	3:R:235:MET:HE1	1.77	0.67
1:P:5:LEU:HB3	1:P:6:PRO:HD2	1.77	0.67
2:E:14:ARG:NH1	3:O:359:GLU:OE2	2.28	0.66
3:O:260:ARG:NH2	4:O:403:SO4:O4	2.26	0.66
1:D:79:GLN:O	1:D:101:SER:OG	2.10	0.66
1:D:31:PHE:O	1:D:35:GLN:HG2	1.96	0.66
2:E:61:THR:CG2	2:E:100:VAL:HB	2.26	0.65
3:O:231:THR:OG1	3:O:234:GLU:HB2	1.96	0.65
1:A:31:PHE:O	1:A:35:GLN:HG2	1.96	0.65
2:B:88:VAL:HG12	2:B:88:VAL:O	1.95	0.65
3:F:322:THR:O	3:F:326:ILE:HG12	1.96	0.65
3:F:344:VAL:HG13	3:F:349:ALA:HB3	1.78	0.65
3:R:204:ILE:HG12	3:R:235:MET:CE	2.27	0.65
1:A:87:MET:SD	2:B:40:SER:OG	2.48	0.65
1:A:115:LYS:HA	2:B:88:VAL:HG12	1.78	0.64
1:G:72:LEU:HD11	2:H:76:TRP:HB3	1.78	0.64
1:J:31:PHE:O	1:J:35:GLN:HG2	1.98	0.64
3:L:253:PHE:CZ	3:L:292:LEU:HG	2.33	0.64
1:M:20:ASN:HD21	1:M:61:ILE:HA	1.62	0.64
1:A:25:TRP:CZ2	1:A:73:ARG:HD3	2.34	0.62

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:H:88:VAL:HG12	2:H:88:VAL:O	1.98	0.62
2:N:32:GLN:HE21	2:N:32:GLN:HA	1.64	0.61
3:L:362:PHE:N	3:L:362:PHE:HD1	1.98	0.61
1:G:87:MET:O	1:G:88:SER:HB3	2.00	0.61
1:M:69:TRP:NE1	1:M:125:ASN:HB2	2.16	0.61
3:L:362:PHE:N	3:L:362:PHE:CD1	2.68	0.61
1:D:17:GLN:HE21	1:D:17:GLN:HA	1.63	0.61
3:I:194:PHE:CD1	3:I:350:LEU:HD22	2.35	0.61
2:Q:90:LEU:HD12	2:Q:90:LEU:C	2.22	0.61
2:Q:13:TYR:CE1	2:Q:121:LYS:HG3	2.36	0.60
1:A:30:ARG:O	1:A:33:THR:OG1	2.17	0.60
3:C:253:PHE:CZ	3:C:292:LEU:HG	2.36	0.60
3:C:231:THR:OG1	3:C:234:GLU:HB2	2.01	0.60
3:C:239:THR:O	3:C:242:THR:HG22	2.01	0.59
1:D:72:LEU:HD11	2:E:76:TRP:HB3	1.84	0.59
1:D:116:TRP:O	2:E:89:TRP:HA	2.01	0.59
3:I:349:ALA:O	3:I:352:GLU:HG2	2.01	0.59
1:P:52:PHE:CD1	1:P:52:PHE:C	2.75	0.59
1:J:116:TRP:O	2:K:89:TRP:HA	2.01	0.59
1:G:31:PHE:O	1:G:35:GLN:HG2	2.01	0.59
3:F:194:PHE:CD1	3:F:350:LEU:HD22	2.38	0.58
1:A:43:SER:HB3	2:B:80:ASP:OD2	2.03	0.58
1:D:87:MET:O	1:D:88:SER:HB3	2.02	0.58
2:N:1:CYS:SG	2:N:7:SER:HB3	2.43	0.58
2:H:88:VAL:O	2:H:88:VAL:CG1	2.51	0.58
1:J:102:GLN:OE1	2:K:91:ARG:NH2	2.27	0.58
1:A:116:TRP:O	2:B:89:TRP:HA	2.04	0.58
2:E:88:VAL:HG12	2:E:88:VAL:O	2.02	0.58
2:H:16:PHE:HB3	2:H:18:GLU:OE1	2.04	0.57
1:M:70:ILE:HG22	2:N:78:TRP:HZ3	1.70	0.57
2:N:90:LEU:C	2:N:90:LEU:HD12	2.24	0.57
1:P:89:ALA:HB1	2:Q:42:HIS:NE2	2.19	0.57
1:A:75:ARG:HD2	2:B:77:GLU:OE2	2.04	0.57
1:J:43:SER:HB3	2:K:80:ASP:OD2	2.05	0.57
3:C:184:SER:HB2	3:C:283:ASP:OD2	2.04	0.57
1:P:29:GLU:OE1	2:Q:79:SER:OG	2.22	0.57
2:B:88:VAL:O	2:B:88:VAL:CG1	2.53	0.57
2:E:28:PHE:CE1	2:E:32:GLN:NE2	2.73	0.57
1:A:87:MET:SD	2:B:40:SER:CB	2.93	0.56
3:I:172:LEU:HD12	3:I:207:THR:O	2.05	0.56
1:M:5:LEU:HB3	1:M:6:PRO:HD2	1.88	0.56

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:N:32:GLN:HE21	2:N:32:GLN:N	2.04	0.56
3:R:218:ASN:ND2	3:R:249:LEU:HD12	2.19	0.56
1:D:84:GLU:O	1:D:91:ILE:HD11	2.05	0.56
2:E:61:THR:HG21	2:E:100:VAL:HB	1.87	0.56
3:F:349:ALA:O	3:F:352:GLU:HG2	2.05	0.56
3:C:322:THR:O	3:C:326:ILE:HD13	2.05	0.56
3:C:329:ILE:N	3:C:329:ILE:HD13	2.21	0.56
2:N:32:GLN:HA	2:N:32:GLN:NE2	2.20	0.55
1:A:115:LYS:HA	2:B:88:VAL:CG1	2.37	0.55
1:P:31:PHE:O	1:P:35:GLN:HG2	2.07	0.55
3:L:239:THR:O	3:L:242:THR:HG22	2.07	0.55
1:J:72:LEU:HD11	2:K:76:TRP:HB3	1.89	0.55
2:E:16:PHE:HB3	2:E:18:GLU:OE1	2.06	0.55
1:J:87:MET:O	1:J:88:SER:HB3	2.07	0.55
2:H:36:SER:HA	2:H:121:LYS:O	2.07	0.54
2:E:90:LEU:HD12	2:E:91:ARG:N	2.21	0.54
3:F:330:LYS:O	3:F:333:ALA:HB3	2.08	0.54
1:M:89:ALA:HB1	2:N:42:HIS:CE1	2.43	0.54
1:A:110:TRP:HA	3:C:245:TYR:CE2	2.43	0.54
2:E:90:LEU:C	2:E:90:LEU:CD1	2.76	0.54
2:Q:34:LYS:N	2:Q:34:LYS:HD2	2.23	0.54
1:A:25:TRP:CH2	1:A:73:ARG:HD3	2.43	0.54
3:F:204:ILE:HA	3:F:209:THR:O	2.08	0.54
2:E:92:ARG:HB2	2:E:93:PRO:CD	2.39	0.53
3:O:204:ILE:HA	3:O:209:THR:O	2.08	0.53
3:F:172:LEU:HD12	3:F:207:THR:O	2.09	0.53
1:D:69:TRP:NE1	1:D:125:ASN:HB2	2.23	0.53
2:N:40:SER:O	2:N:41:ILE:HD13	2.09	0.53
1:P:12:ASP:OD1	1:P:13:GLN:N	2.41	0.53
2:Q:61:THR:CG2	2:Q:100:VAL:HB	2.38	0.53
1:G:94:VAL:HA	2:H:107:TRP:CZ3	2.44	0.53
3:F:178:VAL:HA	3:F:214:ILE:O	2.08	0.53
1:P:20:ASN:ND2	1:P:61:ILE:HD12	2.24	0.53
1:P:28:ALA:O	1:P:31:PHE:HB3	2.08	0.53
3:L:231:THR:OG1	3:L:234:GLU:HB2	2.08	0.53
1:P:20:ASN:O	1:P:22:PRO:HD3	2.09	0.53
1:P:69:TRP:HA	1:P:69:TRP:CE3	2.44	0.53
1:M:87:MET:HG3	1:M:89:ALA:H	1.74	0.52
1:P:11:TYR:HB2	1:P:52:PHE:CE2	2.45	0.52
1:A:87:MET:SD	2:B:40:SER:HB3	2.49	0.52
1:M:35:GLN:O	1:M:36:ALA:HB3	2.09	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:E:1:CYS:SG	2:E:7:SER:HB2	2.49	0.52
2:H:30:TYR:HA	2:H:36:SER:O	2.09	0.52
1:J:110:TRP:HA	3:L:245:TYR:CE2	2.45	0.52
3:L:322:THR:O	3:L:326:ILE:HD13	2.08	0.52
2:Q:54:ALA:HB1	2:Q:63:MET:HE1	1.91	0.52
1:A:8:TRP:CZ3	1:A:131:PHE:CE2	2.97	0.52
1:G:69:TRP:NE1	1:G:125:ASN:HB2	2.25	0.52
3:O:239:THR:O	3:O:242:THR:HG22	2.09	0.52
1:P:12:ASP:CG	1:P:13:GLN:H	2.12	0.52
2:B:44:ARG:O	2:B:47:GLU:HB3	2.09	0.52
1:A:87:MET:O	1:A:88:SER:CB	2.57	0.52
2:E:14:ARG:HG2	2:E:16:PHE:CE1	2.45	0.52
3:F:282:THR:HG22	3:F:284:GLY:H	1.75	0.52
1:M:33:THR:HA	1:M:39:GLY:O	2.10	0.52
1:P:20:ASN:HD21	1:P:61:ILE:HA	1.74	0.52
1:P:74:ASP:OD2	2:Q:75:LYS:N	2.43	0.52
1:D:89:ALA:HB1	2:E:42:HIS:NE2	2.24	0.51
1:A:72:LEU:HD11	2:B:76:TRP:HB3	1.91	0.51
2:E:88:VAL:O	2:E:88:VAL:CG1	2.58	0.51
1:P:52:PHE:HE1	1:P:56:LEU:HD12	1.75	0.51
3:F:204:ILE:HB	3:F:232:LYS:CG	2.40	0.51
1:G:24:THR:HG22	1:G:26:ASP:H	1.75	0.51
2:H:28:PHE:CD1	2:H:28:PHE:C	2.83	0.51
1:D:94:VAL:HA	2:E:107:TRP:CZ3	2.46	0.51
1:M:55:GLN:OE1	3:R:207:THR:HG22	2.11	0.51
3:O:227:ASN:HD22	3:O:269:GLY:CA	2.24	0.51
3:I:178:VAL:HA	3:I:214:ILE:O	2.10	0.51
3:I:231:THR:HB	3:I:234:GLU:HB2	1.93	0.51
3:L:362:PHE:HD1	3:L:362:PHE:H	1.57	0.51
3:I:330:LYS:O	3:I:333:ALA:HB3	2.11	0.50
3:O:344:VAL:CG1	3:0:346:ASP:0	2.60	0.50
2:Q:65:LEU:HD21	2:Q:98:MET:HB2	1.93	0.50
2:Q:88:VAL:CG1	2:Q:88:VAL:O	2.59	0.50
2:B:32:GLN:O	2:B:33:HIS:HB2	2.12	0.50
2:N:20:LYS:O	2:N:115:THR:HA	2.12	0.50
2:N:61:THR:CG2	2:N:100:VAL:HB	2.42	0.50
3:O:188:TRP:CD2	3:O:244:GLN:HB2	2.47	0.50
1:P:61:ILE:O	1:P:61:ILE:HG23	2.12	0.50
3:R:239:THR:O	3:R:242:THR:HG22	2.12	0.50
3:F:218:ASN:HD21	3:F:248:ASP:H	1.58	0.50
3:O:233:GLU:O	3:O:237:VAL:HG23	2.12	0.50

	pagem	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:N:88:VAL:CG1	2:N:88:VAL:O	2.59	0.50	
1:P:29:GLU:OE2	2:Q:79:SER:OG	2.28	0.50	
1:M:79:GLN:O	1:M:101:SER:OG	2.25	0.49	
1:J:87:MET:SD	2:K:40:SER:OG	2.59	0.49	
3:L:200:GLN:OE1	3:L:232:LYS:HE3	2.11	0.49	
3:C:344:VAL:HG13	3:C:349:ALA:HB3	1.94	0.49	
1:M:29:GLU:OE1	2:N:79:SER:CB	2.60	0.49	
1:M:131:PHE:HD1	1:M:132:PRO:O	1.95	0.49	
3:I:264:TYR:O	3:I:270:GLY:HA3	2.13	0.49	
2:H:90:LEU:HD12	2:H:91:ARG:N	2.27	0.49	
1:P:116:TRP:O	2:Q:89:TRP:HA	2.13	0.49	
3:R:344:VAL:CG1	3:R:346:ASP:O	2.60	0.49	
1:P:69:TRP:NE1	1:P:125:ASN:HB2	2.28	0.49	
1:G:64:PRO:HD2	1:G:65:GLU:OE1	2.12	0.49	
2:K:68:ASN:ND2	2:K:95:CYS:SG	2.86	0.49	
1:M:80:GLN:O	1:M:80:GLN:HG2	2.12	0.48	
1:M:20:ASN:O	1:M:22:PRO:HD3	2.13	0.48	
2:E:97:VAL:O	2:E:107:TRP:HA	2.14	0.48	
2:N:65:LEU:HD21	2:N:98:MET:HB2	1.96	0.48	
3:R:344:VAL:HG13	3:R:349:ALA:HB3	1.94	0.48	
1:G:79:GLN:O	1:G:101:SER:OG	2.24	0.48	
3:I:239:THR:O	3:I:242:THR:HG22	2.13	0.48	
2:K:33:HIS:HD2	2:K:122:PHE:O	1.96	0.48	
1:P:94:VAL:HG13	1:P:96:TRP:CD1	2.49	0.48	
2:H:63:MET:HB2	2:H:118:PHE:HA	1.95	0.48	
2:K:68:ASN:HA	2:K:95:CYS:SG	2.54	0.48	
3:O:200:GLN:NE2	3:O:236:ILE:CD1	2.77	0.48	
1:J:89:ALA:HB1	2:K:42:HIS:CE1	2.49	0.47	
1:D:43:SER:HA	2:E:78:TRP:CZ3	2.48	0.47	
3:F:337:THR:O	3:F:341:PHE:HB3	2.14	0.47	
2:K:44:ARG:O	2:K:47:GLU:HB3	2.15	0.47	
3:C:218:ASN:ND2	3:C:249:LEU:HD12	2.29	0.47	
2:H:90:LEU:C	2:H:90:LEU:CD1	2.81	0.47	
1:D:93:TYR:CE2	1:J:77:LYS:HB2	2.50	0.47	
3:I:180:ASP:HB3	3:I:282:THR:HA	1.96	0.47	
1:J:8:TRP:CZ3	1:J:131:PHE:CE2	3.02	0.47	
1:P:29:GLU:OE1	2:Q:79:SER:CB	2.62	0.47	
1:J:18:ALA:HB1	1:J:61:ILE:HD11	1.97	0.47	
1:P:49:GLU:O	1:P:53:VAL:HG23	2.14	0.47	
3:R:254:GLY:O	3:R:257:GLN:HB3	2.15	0.47	
3:R:283:ASP:CG	3:R:283:ASP:O	2.53	0.47	

	te de pagem	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:5:LEU:HB3	1:D:6:PRO:HD2	1.97	0.47	
2:H:20:LYS:O	2:H:115:THR:HA	2.15	0.47	
1:J:87:MET:O	1:J:88:SER:CB	2.62	0.47	
3:L:218:ASN:ND2	3:L:249:LEU:HD12	2.30	0.47	
1:M:99:GLY:HA2	1:M:120:ASP:HB2	1.96	0.47	
1:P:11:TYR:HB2	1:P:52:PHE:CD2	2.50	0.46	
2:Q:30:TYR:HA	2:Q:36:SER:O	2.15	0.46	
2:Q:32:GLN:CA	2:Q:32:GLN:HE21	2.27	0.46	
1:M:78:GLU:OE1	1:M:78:GLU:N	2.44	0.46	
3:O:227:ASN:ND2	3:O:269:GLY:CA	2.78	0.46	
2:B:84:LEU:HG	2:B:84:LEU:O	2.16	0.46	
2:H:28:PHE:CE1	2:H:32:GLN:OE1	2.68	0.46	
2:B:34:LYS:HE3	2:B:34:LYS:HA	1.98	0.46	
1:G:3:ASN:N	1:G:3:ASN:ND2	2.64	0.46	
3:O:200:GLN:NE2	3:O:236:ILE:HD13	2.31	0.46	
2:Q:90:LEU:HD12	2:Q:91:ARG:N	2.31	0.46	
2:B:68:ASN:HA	2:B:95:CYS:SG	2.55	0.46	
3:F:307:PHE:HA	3:F:340:TYR:O	2.15	0.46	
1:A:18:ALA:HB1	1:A:61:ILE:HD11	1.98	0.46	
3:F:204:ILE:HB	3:F:232:LYS:HG3	1.97	0.46	
3:I:337:THR:O	3:I:341:PHE:HB3	2.16	0.46	
1:M:11:TYR:HB2	1:M:52:PHE:CE2	2.50	0.46	
3:O:325:LEU:O	3:O:328:GLU:N	2.49	0.46	
3:O:344:VAL:HG13	3:O:349:ALA:HB3	1.98	0.46	
3:R:216:TYR:CE2	3:R:252:THR:HA	2.50	0.46	
2:E:63:MET:HB2	2:E:118:PHE:HA	1.98	0.46	
3:L:184:SER:HB2	3:L:283:ASP:OD2	2.15	0.46	
1:M:61:ILE:HG23	1:M:61:ILE:O	2.15	0.46	
1:A:97:ASN:HB2	2:B:106:PHE:HB2	1.96	0.46	
1:M:8:TRP:CZ3	1:M:131:PHE:CE2	3.04	0.46	
1:M:23:LYS:O	1:M:124:LYS:HA	2.16	0.46	
2:N:30:TYR:HA	2:N:36:SER:O	2.16	0.45	
3:O:210:GLN:OE1	3:O:271:ARG:NE	2.49	0.45	
3:O:227:ASN:HD22	3:O:269:GLY:HA2	1.81	0.45	
1:J:40:HIS:CD2	2:K:80:ASP:HA	2.51	0.45	
1:G:89:ALA:HB1	2:H:42:HIS:NE2	2.31	0.45	
2:N:62:SER:HA	2:N:98:MET:O	2.17	0.45	
1:G:87:MET:HG3	1:G:89:ALA:H	1.80	0.45	
1:M:25:TRP:NE1	1:M:70:ILE:O	2.47	0.45	
3:R:325:LEU:O	3:R:328:GLU:N	2.46	0.45	
3:I:292:LEU:O	3:I:296:ILE:HG12	2.16	0.45	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:M:116:TRP:O	2:N:89:TRP:HA	2.16	0.45	
1:P:99:GLY:HA2	1:P:120:ASP:HB2	1.98	0.45	
1:A:67:TYR:HE2	1:A:117:ASP:HB3	1.81	0.45	
3:C:288:ASP:HB2	3:C:291:MET:HE3	1.99	0.45	
1:M:49:GLU:O	1:M:53:VAL:HG23	2.17	0.45	
1:M:69:TRP:HA	1:M:69:TRP:CE3	2.52	0.45	
2:K:36:SER:HA	2:K:121:LYS:O	2.17	0.45	
2:K:3:LEU:HD23	2:K:4:HIS:CE1	2.51	0.45	
2:K:8:TYR:HB2	2:K:49:PHE:CE2	2.52	0.45	
3:O:200:GLN:HE22	3:O:236:ILE:HD13	1.82	0.45	
3:R:180:ASP:HB2	3:R:282:THR:HA	1.98	0.45	
3:R:231:THR:HB	3:R:234:GLU:HB2	1.99	0.45	
2:B:36:SER:HA	2:B:121:LYS:O	2.16	0.45	
3:I:296:ILE:O	3:I:299:CYS:HB2	2.17	0.45	
1:G:84:GLU:O	1:G:91:ILE:HD11	2.16	0.44	
1:J:82:SER:HA	2:K:73:GLU:OE1	2.16	0.44	
1:M:94:VAL:HG13	1:M:96:TRP:CD1	2.51	0.44	
2:Q:108:PHE:CE1	3:R:318:ASN:HB3	2.52	0.44	
2:B:71:TRP:HA	2:B:74:CYS:SG	2.57	0.44	
2:H:97:VAL:O	2:H:107:TRP:HA	2.16	0.44	
1:J:71:GLY:O	2:K:78:TRP:HA	2.17	0.44	
2:B:30:TYR:HA	2:B:36:SER:O	2.17	0.44	
1:P:12:ASP:CG	1:P:13:GLN:N	2.70	0.44	
2:E:9:ASN:CG	2:E:9:ASN:O	2.55	0.44	
2:E:30:TYR:HA	2:E:36:SER:O	2.17	0.44	
2:E:86:TYR:CE2	2:E:88:VAL:HG21	2.52	0.44	
1:A:110:TRP:HA	3:C:245:TYR:CD2	2.52	0.44	
1:M:28:ALA:O	1:M:31:PHE:HB3	2.18	0.44	
2:H:9:ASN:CG	2:H:9:ASN:O	2.55	0.44	
1:M:42:VAL:HB	1:M:128:VAL:HG12	1.99	0.44	
2:Q:29:CYS:O	2:Q:32:GLN:HB2	2.18	0.44	
3:R:322:THR:O	3:R:323:LYS:C	2.56	0.44	
2:E:36:SER:HA	2:E:121:LYS:O	2.16	0.44	
1:P:42:VAL:HG12	1:P:128:VAL:O	2.18	0.44	
1:A:42:VAL:HB	1:A:128:VAL:HG12	2.00	0.44	
1:A:43:SER:CB	2:B:80:ASP:OD2	2.65	0.44	
3:C:291:MET:HE1	1:G:11:TYR:HA	2.00	0.44	
1:D:94:VAL:HA	2:E:107:TRP:CH2	2.53	0.44	
1:M:69:TRP:C	1:M:70:ILE:HG13	2.37	0.44	
1:D:39:GLY:O	1:D:40:HIS:CD2	2.71	0.43	
2:E:28:PHE:CD1	2:E:28:PHE:C	2.90	0.43	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:E:59:LYS:HG2	2:E:60:TYR:CE2	2.53	0.43	
2:K:21:THR:HA	2:K:114:LYS:O	2.18	0.43	
2:N:92:ARG:HB2	2:N:93:PRO:CD	2.48	0.43	
2:B:16:PHE:CE1	2:B:28:PHE:HE2	2.36	0.43	
1:G:5:LEU:HB3	1:G:6:PRO:HD2	2.01	0.43	
2:H:1:CYS:SG	2:H:7:SER:HB2	2.58	0.43	
1:J:87:MET:HE3	2:K:38:LEU:O	2.17	0.43	
3:F:239:THR:O	3:F:242:THR:HG22	2.19	0.43	
1:M:65:GLU:OE2	1:M:126:PRO:HD3	2.18	0.43	
3:O:218:ASN:ND2	3:O:249:LEU:HD12	2.33	0.43	
2:K:84:LEU:O	2:K:84:LEU:HG	2.19	0.43	
2:K:116:VAL:C	2:K:117:SER:O	2.55	0.43	
1:P:25:TRP:O	1:P:25:TRP:CE3	2.72	0.43	
2:Q:40:SER:O	2:Q:41:ILE:HD13	2.19	0.43	
1:A:87:MET:O	1:A:88:SER:HB2	2.18	0.43	
1:D:64:PRO:HD2	1:D:65:GLU:OE1	2.18	0.43	
1:J:43:SER:CB	2:K:80:ASP:OD2	2.66	0.43	
3:I:339:ARG:O	3:I:360:GLN:NE2	2.52	0.43	
2:N:108:PHE:CE1	3:O:318:ASN:HB3	2.54	0.43	
3:O:283:ASP:HA	3:0:311:VAL:O	2.17	0.43	
1:P:8:TRP:CZ3	1:P:131:PHE:CE2	3.06	0.43	
2:H:92:ARG:HB2	2:H:93:PRO:CD	2.49	0.43	
3:O:216:TYR:CE2	3:O:252:THR:HA	2.54	0.43	
3:R:253:PHE:CE1	3:R:292:LEU:HG	2.53	0.43	
3:L:192:LYS:O	3:L:196:GLU:HG3	2.18	0.43	
3:O:312:LEU:HG	3:O:344:VAL:O	2.19	0.43	
3:R:188:TRP:CD2	3:R:244:GLN:HB2	2.54	0.43	
1:J:110:TRP:HA	3:L:245:TYR:CD2	2.54	0.42	
1:M:67:TYR:HA	1:M:107:LEU:O	2.19	0.42	
2:N:67:LEU:HD12	2:N:67:LEU:HA	1.89	0.42	
3:O:344:VAL:HG12	3:O:346:ASP:O	2.19	0.42	
3:L:173:ILE:O	3:L:271:ARG:NH2	2.52	0.42	
1:A:23:LYS:O	1:A:124:LYS:HA	2.19	0.42	
2:E:107:TRP:N	2:E:107:TRP:CD1	2.86	0.42	
3:F:204:ILE:HB	3:F:232:LYS:HG2	2.01	0.42	
2:N:63:MET:HB2	2:N:118:PHE:HA	2.00	0.42	
2:N:71:TRP:HA	2:N:74:CYS:SG	2.60	0.42	
3:O:292:LEU:C	3:O:292:LEU:HD23	2.39	0.42	
3:R:305:LEU:HD12	3:R:305:LEU:HA	1.78	0.42	
3:C:277:VAL:HG22	3:C:305:LEU:HB3	2.01	0.42	
2:H:28:PHE:CD1	2:H:28:PHE:O	2.72	0.42	

	io de pagem	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
3:L:175:VAL:O	3:L:211:VAL:HA	2.19	0.42	
3:C:339:ARG:NH2	7:C:403:CL:CL	2.89	0.42	
2:N:13:TYR:OH	2:N:46:GLU:OE2	2.33	0.42	
3:O:322:THR:O	3:0:323:LYS:C	2.57	0.42	
2:Q:1:CYS:SG	2:Q:7:SER:HB3	2.59	0.42	
3:R:233:GLU:O	3:R:237:VAL:HG23	2.20	0.42	
1:J:131:PHE:HD1	1:J:132:PRO:O	2.02	0.42	
1:G:43:SER:HA	2:H:78:TRP:CE3	2.55	0.42	
3:I:307:PHE:HA	3:I:340:TYR:O	2.20	0.42	
1:M:35:GLN:H	1:M:35:GLN:HG2	1.60	0.42	
2:Q:70:PRO:HG2	2:Q:109:ASN:ND2	2.35	0.42	
3:F:179:CYS:O	3:F:215:GLN:HA	2.20	0.42	
3:F:206:PRO:O	3:F:271:ARG:NH2	2.53	0.42	
1:G:94:VAL:HA	2:H:107:TRP:CH2	2.54	0.42	
1:P:131:PHE:HD1	1:P:132:PRO:O	2.03	0.42	
1:G:71:GLY:O	2:H:78:TRP:HA	2.20	0.41	
1:M:42:VAL:HG13	1:M:70:ILE:HG23	2.02	0.41	
1:P:33:THR:HA	1:P:39:GLY:O	2.20	0.41	
2:Q:107:TRP:CD1	2:Q:107:TRP:N	2.87	0.41	
3:C:322:THR:O	3:C:326:ILE:CD1	2.68	0.41	
2:H:26:GLU:HA	2:H:26:GLU:OE1	2.21	0.41	
1:J:24:THR:HG22	1:J:26:ASP:H	1.86	0.41	
3:L:277:VAL:HG22	3:L:305:LEU:HB3	2.01	0.41	
3:0:172:LEU:O	3:O:274:ALA:HA	2.20	0.41	
3:R:344:VAL:HG12	3:R:346:ASP:O	2.20	0.41	
1:A:89:ALA:HB1	2:B:42:HIS:CE1	2.55	0.41	
3:F:264:TYR:O	3:F:270:GLY:HA3	2.21	0.41	
1:G:87:MET:O	1:G:88:SER:CB	2.68	0.41	
3:L:188:TRP:CD2	3:L:244:GLN:HB2	2.56	0.41	
3:L:289:GLY:O	3:L:292:LEU:HB2	2.21	0.41	
3:R:199:VAL:HG13	3:R:235:MET:HE3	2.01	0.41	
1:D:44:ILE:HD11	1:D:53:VAL:HG11	2.02	0.41	
3:F:216:TYR:CD2	3:F:216:TYR:C	2.94	0.41	
1:J:18:ALA:HB1	1:J:61:ILE:CD1	2.51	0.41	
1:J:97:ASN:HB2	2:K:106:PHE:HB2	2.02	0.41	
2:N:97:VAL:O	2:N:107:TRP:HA	2.20	0.41	
3:C:357:LEU:O	3:C:361:ILE:HG12	2.20	0.41	
3:F:218:ASN:H	3:F:218:ASN:ND2	2.18	0.41	
3:I:172:LEU:CD1	3:I:207:THR:O	2.69	0.41	
3:I:314:TYR:O	3:I:318:ASN:ND2	2.49	0.41	
1:M:74:ASP:OD2	2:N:75:LYS:N	2.54	0.41	

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A:5:LEU:HB3	1:A:6:PRO:HD2	2.03	0.41	
1:G:69:TRP:CD1	1:G:125:ASN:HB2	2.56	0.41	
2:H:21:THR:HG23	2:H:112:CYS:O	2.19	0.41	
3:R:181:GLU:HG3	3:R:181:GLU:O	2.20	0.41	
3:F:173:ILE:HD12	3:F:361:ILE:CG2	2.50	0.41	
3:I:356:THR:HG22	3:I:360:GLN:OE1	2.21	0.41	
3:O:174:ASP:OD2	3:O:274:ALA:HB3	2.21	0.41	
3:O:253:PHE:CE1	3:O:292:LEU:HG	2.55	0.41	
1:M:37:LYS:O	1:M:38:ARG:HB2	2.21	0.41	
1:D:34:GLU:HG3	1:D:34:GLU:O	2.21	0.40	
1:G:85:TRP:HE3	2:H:66:GLY:O	2.04	0.40	
1:J:89:ALA:HB1	2:K:42:HIS:NE2	2.35	0.40	
2:B:13:TYR:CD2	2:B:49:PHE:HE2	2.39	0.40	
2:E:86:TYR:CZ	2:E:88:VAL:HG21	2.56	0.40	
3:I:296:ILE:O	3:I:299:CYS:N	2.54	0.40	
2:Q:59:LYS:H	2:Q:59:LYS:HE3	1.85	0.40	
1:J:11:TYR:O	1:J:12:ASP:C	2.59	0.40	
2:N:3:LEU:O	2:N:4:HIS:HB2	2.21	0.40	
2:Q:54:ALA:HB1	2:Q:63:MET:CE	2.51	0.40	
2:N:90:LEU:HD12	2:N:91:ARG:N	2.37	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	129/135~(96%)	112 (87%)	14 (11%)	3~(2%)	6 34
1	D	129/135~(96%)	119 (92%)	8 (6%)	2(2%)	9 43
1	G	129/135~(96%)	115 (89%)	13 (10%)	1 (1%)	19 58
1	J	129/135~(96%)	111 (86%)	14 (11%)	4 (3%)	4 26

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	М	129/135~(96%)	111 (86%)	16~(12%)	2(2%)	9	43
1	Р	129/135~(96%)	114 (88%)	13 (10%)	2(2%)	9	43
2	В	120/124~(97%)	104 (87%)	12 (10%)	4 (3%)	4	25
2	Е	120/124~(97%)	102 (85%)	16 (13%)	2(2%)	9	42
2	Н	120/124 (97%)	106 (88%)	11 (9%)	3(2%)	5	32
2	Κ	120/124~(97%)	101 (84%)	16 (13%)	3~(2%)	5	32
2	Ν	120/124 (97%)	101 (84%)	15 (12%)	4 (3%)	4	25
2	Q	120/124~(97%)	107 (89%)	7 (6%)	6 (5%)	2	16
3	С	189/217~(87%)	176 (93%)	12 (6%)	1 (0%)	29	67
3	F	189/217~(87%)	176 (93%)	12 (6%)	1 (0%)	29	67
3	Ι	189/217~(87%)	173 (92%)	13 (7%)	3 (2%)	9	43
3	L	189/217~(87%)	175~(93%)	11 (6%)	3(2%)	9	43
3	Ο	189/217~(87%)	171 (90%)	16 (8%)	2 (1%)	14	51
3	R	189/217~(87%)	172 (91%)	13 (7%)	4 (2%)	7	37
All	All	2628/2856~(92%)	2346 (89%)	232 (9%)	50 (2%)	8	39

Continued from previous page...

All (50) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	Е	2	PRO
1	G	88	SER
2	Н	2	PRO
1	М	88	SER
2	Ν	117	SER
1	Р	88	SER
2	Q	3	LEU
2	Q	117	SER
1	А	76	ARG
1	А	88	SER
2	В	33	HIS
3	С	313	GLY
1	D	88	SER
3	F	334	SER
3	Ι	286	SER
3	Ι	334	SER
1	J	88	SER
1	J	89	ALA

Mol	Chain	Res	Type
2	K	117	SER
3	L	313	GLY
2	Ν	2	PRO
3	0	313	GLY
2	Q	9	ASN
1	А	89	ALA
2	В	117	SER
3	L	217	ALA
1	М	36	ALA
1	Р	76	ARG
2	В	2	PRO
1	D	132	PRO
2	Н	117	SER
1	J	24	THR
1	J	76	ARG
3	L	290	SER
2	N	9	ASN
2	N	33	HIS
2	Q	33	HIS
2	В	83	LYS
3	Ι	217	ALA
2	K	2	PRO
2	K	83	LYS
3	R	217	ALA
3	R	323	LYS
2	Е	111	GLY
3	R	326	ILE
2	Н	88	VAL
3	0	326	ILE
2	Q	2	PRO
2	Q	88	VAL
3	R	313	GLY

Continued from previous page...

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

6NI	DΒ

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	114/118~(97%)	107~(94%)	7~(6%)	18	54
1	D	114/118~(97%)	104 (91%)	10 (9%)	10	36
1	G	114/118~(97%)	105~(92%)	9~(8%)	12	43
1	J	114/118~(97%)	110 (96%)	4 (4%)	36	69
1	М	114/118~(97%)	108~(95%)	6~(5%)	22	58
1	Р	114/118~(97%)	106~(93%)	8 (7%)	15	48
2	В	110/112~(98%)	101 (92%)	9~(8%)	11	41
2	Е	110/112 (98%)	104 (94%)	6 (6%)	21	57
2	Н	110/112~(98%)	104 (94%)	6 (6%)	21	57
2	Κ	110/112~(98%)	99~(90%)	11 (10%)	7	30
2	Ν	110/112~(98%)	102~(93%)	8 (7%)	14	46
2	Q	110/112~(98%)	104 (94%)	6~(6%)	21	57
3	С	160/181~(88%)	150 (94%)	10 (6%)	18	52
3	F	160/181~(88%)	152~(95%)	8~(5%)	24	60
3	Ι	160/181~(88%)	153~(96%)	7 (4%)	28	64
3	L	160/181~(88%)	152~(95%)	8 (5%)	24	60
3	Ο	160/181~(88%)	157~(98%)	3(2%)	57	81
3	R	160/181~(88%)	157 (98%)	3 (2%)	57	81
All	All	$230\overline{4/2466}~(93\%)$	2175 (94%)	129 (6%)	21	57

All (129) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	38	ARG
1	А	58	THR
1	А	76	ARG
1	А	87	MET
1	А	90	SER
1	А	98	THR
1	А	118	TYR
2	В	32	GLN
2	В	34	LYS
2	В	44	ARG
2	В	55	SER
2	В	67	LEU
2	В	81	ASP
2	В	91	ARG

Mol	Chain	Res	Type
2	В	117	SER
2	В	122	PHE
3	С	172	LEU
3	С	184	SER
3	С	273	SER
3	С	303	ASN
3	С	312	LEU
3	С	334	SER
3	С	337	THR
3	С	339	ARG
3	С	343	ASN
3	С	362	PHE
1	D	13	GLN
1	D	17	GLN
1	D	30	ARG
1	D	37	LYS
1	D	83	SER
1	D	86	SER
1	D	88	SER
1	D	90	SER
1	D	116	TRP
1	D	118	TYR
2	Е	7	SER
2	Е	55	SER
2	Е	67	LEU
2	Е	81	ASP
2	Е	117	SER
2	Е	122	PHE
3	F	184	SER
3	F	207	THR
3	F	231	THR
3	F	265	SER
3	F	283	ASP
3	F	321	ASP
3	F	339	ARG
3	F	345	SER
1	G	3	ASN
1	G	30	ARG
1	G	43	SER
1	G	83	SER
1	G	84	GLU
1	G	90	SER

Mol	Chain	Res	Type
1	G	92	ILE
1	G	116	TRP
1	G	118	TYR
2	Н	7	SER
2	Н	55	SER
2	Н	63	MET
2	Н	81	ASP
2	Н	110	ARG
2	Н	122	PHE
3	Ι	184	SER
3	Ι	265	SER
3	Ι	283	ASP
3	Ι	321	ASP
3	Ι	343	ASN
3	Ι	345	SER
3	Ι	360	GLN
1	J	3	ASN
1	J	37	LYS
1	J	90	SER
1	J	119	SER
2	Κ	3	LEU
2	Κ	17	SER
2	Κ	32	GLN
2	Κ	37	ARG
2	Κ	45	GLU
2	Κ	79	SER
2	Κ	81	ASP
2	Κ	91	ARG
2	Κ	110	ARG
2	K	117	SER
2	K	122	PHE
3	L	184	SER
3	L	273	SER
3	L	303	ASN
3	L	321	ASP
3	L	334	SER
3	L	343	ASN
3	L	345	SER
3	L	362	PHE
1	М	3	ASN
1	M	21	GLU
1	М	35	GLN

Mol	Chain	Res	Type
1	М	43	SER
1	М	88	SER
1	М	119	SER
2	Ν	32	GLN
2	Ν	33	HIS
2	N	55	SER
2	Ν	59	LYS
2	Ν	63	MET
2	Ν	81	ASP
2	Ν	91	ARG
2	N	122	PHE
3	0	321	ASP
3	0	345	SER
3	0	352	GLU
1	Р	9	SER
1	Р	21	GLU
1	Р	43	SER
1	Р	52	PHE
1	Р	88	SER
1	Р	90	SER
1	Р	92	ILE
1	Р	119	SER
2	Q	17	SER
2	Q	32	GLN
2	Q	34	LYS
2	Q	59	LYS
2	Q	91	ARG
2	Q	122	PHE
3	R	283	ASP
3	R	321	ASP
3	R	352	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (19) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	59	ASN
2	В	69	ASN
2	В	109	ASN
1	D	13	GLN
1	D	17	GLN
1	D	60	ASN
2	Е	32	GLN

Mol	Chain	Res	Type
3	F	303	ASN
1	G	3	ASN
1	G	60	ASN
3	Ι	210	GLN
3	Ι	303	ASN
3	Ι	343	ASN
1	J	59	ASN
2	K	33	HIS
1	М	40	HIS
2	N	32	GLN
3	0	200	GLN
2	Q	32	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 37 ligands modelled in this entry, 21 are monoatomic and 1 is modelled with single atom - leaving 15 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Туре	Chain	Res	Tink	B	ond leng	gths	E	ond ang	gles
IVIOI					Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
4	SO4	N	201	6,5	4,4,4	0.34	0	6,6,6	0.10	0

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	Bond angles		
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	SO4	0	403	-	4,4,4	0.33	0	$6,\!6,\!6$	0.09	0
4	SO4	А	202	-	4,4,4	0.36	0	6,6,6	0.07	0
4	SO4	В	201	6	4,4,4	0.31	0	6,6,6	0.16	0
4	SO4	Q	201	-	4,4,4	0.35	0	6,6,6	0.09	0
4	SO4	D	201	-	4,4,4	0.36	0	6,6,6	0.12	0
4	SO4	J	201	-	4,4,4	0.27	0	6,6,6	0.14	0
4	SO4	R	402	-	4,4,4	0.38	0	6,6,6	0.07	0
4	SO4	Е	201	-	4,4,4	0.33	0	6,6,6	0.07	0
4	SO4	Н	202	6,5	4,4,4	0.32	0	6,6,6	0.22	0
4	SO4	А	201	-	4,4,4	0.32	0	6,6,6	0.10	0
4	SO4	G	202	-	4,4,4	0.31	0	6,6,6	0.15	0
4	SO4	Q	202	6	4,4,4	0.33	0	6,6,6	0.09	0
4	SO4	Е	203	6,5	4,4,4	0.29	0	6,6,6	0.30	0
4	SO4	K	202	6	4,4,4	0.30	0	6,6,6	0.13	0

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 1 short contact:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	0	403	SO4	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
1	А	131/135~(97%)	0.05	0 100 100	43, 61, 85, 91	0
1	D	131/135~(97%)	0.06	0 100 100	36, 57, 87, 103	0
1	G	131/135~(97%)	0.05	0 100 100	35, 59, 92, 102	0
1	J	131/135~(97%)	0.05	0 100 100	43, 59, 83, 97	0
1	М	131/135~(97%)	0.31	2 (1%) 73 61	39, 74, 123, 140	0
1	Р	131/135~(97%)	0.27	2 (1%) 73 61	42, 71, 125, 134	0
2	В	122/124~(98%)	0.15	0 100 100	47, 75, 107, 124	0
2	Е	122/124~(98%)	0.25	1 (0%) 86 78	40, 65, 97, 119	0
2	Н	122/124~(98%)	0.21	2 (1%) 72 59	40, 65, 95, 117	0
2	Κ	122/124~(98%)	0.15	2 (1%) 72 59	46, 73, 107, 127	0
2	Ν	122/124~(98%)	0.05	0 100 100	39, 71, 103, 128	0
2	Q	122/124~(98%)	0.04	0 100 100	44, 72, 103, 122	0
3	С	191/217~(88%)	0.19	4 (2%) 63 49	42, 65, 91, 145	0
3	F	191/217~(88%)	0.20	3 (1%) 72 59	33, 62, 95, 114	0
3	Ι	191/217~(88%)	0.16	1 (0%) 91 86	32, 62, 95, 122	0
3	L	191/217~(88%)	0.17	2 (1%) 82 72	42, 63, 92, 143	0
3	Ο	191/217~(88%)	0.18	1 (0%) 91 86	39, 60, 91, 115	0
3	R	191/217~(88%)	0.19	0 100 100	38, 59, 93, 117	0
All	All	2664/2856 (93%)	0.16	20 (0%) 86 78	32, 64, 99, 145	0

All (20) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	М	133	SER	3.0
3	С	272	ARG	2.8
2	Κ	13	TYR	2.6

Mol	Chain	Res	Type	RSRZ
2	Е	3	LEU	2.6
2	Н	3	LEU	2.5
1	М	12	ASP	2.5
3	С	342	PHE	2.4
3	С	310	ALA	2.4
1	Р	37	LYS	2.2
3	Ι	172	LEU	2.2
3	С	198	PHE	2.2
2	Н	13	TYR	2.2
3	L	342	PHE	2.2
2	Κ	5	TRP	2.1
3	F	340	TYR	2.1
1	Р	132	PRO	2.1
3	L	195	LEU	2.1
3	F	307	PHE	2.0
3	0	311	VAL	2.0
3	F	172	LEU	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
4	SO4	А	202	5/5	0.55	0.51	153,157,186,208	0
7	CL	L	403	1/1	0.62	0.24	70,70,70,70	0
7	CL	K	201	1/1	0.72	0.18	70,70,70,70	0
7	CL	Н	201	1/1	0.72	0.31	$69,\!69,\!69,\!69$	0
4	SO4	Q	202	5/5	0.74	0.15	96,107,124,130	0
7	CL	G	201	1/1	0.75	0.24	74,74,74,74	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
4	SO4	Ν	201	5/5	0.78	0.14	99,99,113,126	0
4	SO4	R	402	5/5	0.80	0.19	81,88,101,101	5
7	CL	Е	202	1/1	0.81	0.25	62,62,62,62	0
4	SO4	Н	202	5/5	0.84	0.15	65,77,100,104	0
8	NH4	D	202	1/1	0.87	0.51	31,31,31,31	0
4	SO4	В	201	5/5	0.88	0.17	65,70,103,119	0
4	SO4	0	403	5/5	0.91	0.15	93,96,117,126	0
4	SO4	K	202	5/5	0.91	0.15	69,75,97,99	0
7	CL	R	403	1/1	0.91	0.08	69,69,69,69	0
4	SO4	Е	201	5/5	0.91	0.20	80,85,95,104	0
7	CL	С	403	1/1	0.92	0.10	66,66,66,66	0
6	NA	Ι	402	1/1	0.92	0.10	24,24,24,24	0
4	SO4	Е	203	5/5	0.93	0.16	68,72,85,98	0
4	SO4	D	201	5/5	0.93	0.17	50,68,74,89	0
7	CL	М	201	1/1	0.93	0.12	59, 59, 59, 59, 59	0
6	NA	С	402	1/1	0.93	0.19	$35,\!35,\!35,\!35$	0
4	SO4	J	201	5/5	0.93	0.13	62,69,79,87	0
4	SO4	G	202	5/5	0.94	0.14	55,64,75,84	0
4	SO4	Q	201	5/5	0.95	0.13	77,77,96,97	0
6	NA	0	402	1/1	0.95	0.12	49,49,49,49	0
6	NA	R	404	1/1	0.95	0.16	50, 50, 50, 50	0
4	SO4	А	201	5/5	0.95	0.11	79,86,90,96	0
7	CL	J	202	1/1	0.96	0.26	80,80,80,80	0
6	NA	F	402	1/1	0.96	0.16	21,21,21,21	0
5	CO	R	401	1/1	0.97	0.11	88,88,88,88	0
5	CO	Ι	401	1/1	0.97	0.09	60,60,60,60	0
6	NA	L	402	1/1	0.97	0.15	28,28,28,28	0
5	CO	0	401	1/1	0.98	0.08	89,89,89,89	0
5	CO	С	401	1/1	0.98	0.10	63,63,63,63	0
5	CO	F	401	1/1	0.99	0.13	63,63,63,63	0
5	CO	L	401	1/1	0.99	0.12	62,62,62,62	0

6.5 Other polymers (i)

There are no such residues in this entry.

