

Full wwPDB X-ray Structure Validation Report (i)

Jun 11, 2024 – 10:53 PM EDT

PDB ID	:	6NDE
Title	:	RHODOCETIN IN COMPLEX WITH THE INTEGRIN ALPHA2-A DO-
		MAIN WITH PRASEDYMIUM
Authors	:	Stetefeld, J.; McDougall, M.D.; Loewen, P.C.
Deposited on	:	2018-12-13
Resolution	:	3.50 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36.2
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#Entries)$	Similar resolution $(\#Entries, resolution range(Å))$
R _{free}	130704	1659 (3.60-3.40)
Clashscore	141614	1036 (3.58-3.42)
Ramachandran outliers	138981	1005 (3.58-3.42)
Sidechain outliers	138945	1006 (3.58-3.42)
RSRZ outliers	127900	1559 (3.60-3.40)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain			
1	А	135	2% 7 2%	23%		•
1	D	135	5%	25%	5%	•
1	G	135	5%	27%	·	•
1	J	135	% 77%	18%		•
1	М	135	^{2%} 67%	26%	•	•

Mol	Chain	Length	Quality of chain		
1	Р	135	4% 67%	28%	•••
2	В	124	2% 7 2%	23%	••
2	Е	124	5% 68%	29%	•••
2	Н	124	70%	27%	•••
2	К	124	72%	26%	••
2	Ν	124	77%	19%	•••
2	Q	124	74%	20%	••
3	С	217	73%	14% •	12%
3	F	217	64%	23% •	12%
3	Ι	217	65%	21% •	12%
3	L	217	75%	13%	12%
3	0	217	69%	19%	12%
3	R	217	% 72%	16%	12%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4	SO4	А	202	-	-	-	Х
4	SO4	0	403	-	-	Х	-
7	CL	Н	201	-	-	-	Х
7	CL	J	202	-	-	-	Х
8	NH4	D	202	-	-	Х	-

6NDE

2 Entry composition (i)

There are 9 unique types of molecules in this entry. The entry contains 21590 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	121	Total	С	Ν	0	S	0	0	0
	Л	131	1070	672	189	200	9	0	0	0
1	П	121	Total	С	Ν	0	S	0	0	0
	D	131	1070	672	189	200	9	0	0	0
1	С	121	Total	С	Ν	0	S	0	0	0
	G	101	1070	672	189	200	9	0		0
1	т	121	Total	С	Ν	0	S	0	0	0
	J	131	1070	672	189	200	9	0	0	0
1	М	121	Total	С	Ν	0	S	0	0	0
		191	1070	672	189	200	9	0	0	0
1	D	121	Total	С	Ν	Ο	S	0	0	0
	1	131	1070	672	189	200	9		0	U

• Molecule 1 is a protein called Snaclec rhodocetin subunit gamma.

• Molecule 2 is a protein called Snaclec rhodocetin subunit delta.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	В	199	Total	С	Ν	Ο	S	0	0	0
	D	122	1029	667	174	179	9	0	0	0
2	F	199	Total	С	Ν	Ο	S	0	0	0
	Ľ	122	1029	667	174	179	9	0	0	0
2	Ц	199	Total	С	Ν	Ο	S	0	0	0
	11	122	1029	667	174	179	9	0	0	0
2	K	199	Total	С	Ν	Ο	S	0	0	0
	Т	122	1029	667	174	179	9	0	0	0
0	N	199	Total	С	Ν	Ο	S	0	0	0
	IN	122	1029	667	174	179	9	0	0	0
2	0	199	Total	С	Ν	0	S	0	0	0
	Q	122	1029	667	174	179	9	0	0	0

• Molecule 3 is a protein called Integrin alpha-2.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
2	C	101	Total	С	Ν	0	\mathbf{S}	0	0	0
່ <u>ບ</u>	U	191	1482	940	250	287	5	0	0	0
2	F	101	Total	С	Ν	0	S	0	0	0
5	Ľ	191	1482	940	250	287	5	0	0	0
3	Т	101	Total	С	Ν	0	S	0	0	0
5	1	191	1482	940	250	287	5	0	0	0
3	т	101	Total	С	Ν	0	S	0	0	0
5		191	1482	940	250	287	5	0	0	0
3	0	101	Total	С	Ν	Ο	S	0	0	0
5	5 0	191	1482	940	250	287	5	0	0	0
2	D	101	Total	С	Ν	0	S	0	0	0
3	n	191	1482	940	250	287	5		0	U

There are 120 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
С	150	MET	-	expression tag	UNP P17301
С	151	GLY	-	expression tag	UNP P17301
С	152	SER	-	expression tag	UNP P17301
С	153	SER	-	expression tag	UNP P17301
С	154	HIS	-	expression tag	UNP P17301
С	155	HIS	-	expression tag	UNP P17301
С	156	HIS	-	expression tag	UNP P17301
С	157	HIS	-	expression tag	UNP P17301
С	158	HIS	-	expression tag	UNP P17301
С	159	HIS	-	expression tag	UNP P17301
С	160	SER	-	expression tag	UNP P17301
С	161	SER	-	expression tag	UNP P17301
С	162	GLY	-	expression tag	UNP P17301
С	163	LEU	-	expression tag	UNP P17301
С	164	VAL	-	expression tag	UNP P17301
С	165	PRO	-	expression tag	UNP P17301
С	166	ARG	-	expression tag	UNP P17301
С	167	GLY	-	expression tag	UNP P17301
С	168	GLY	-	expression tag	UNP P17301
С	169	SER	-	expression tag	UNP P17301
F	150	MET	-	expression tag	UNP P17301
F	151	GLY	-	expression tag	UNP P17301
F	152	SER	-	expression tag	UNP P17301
F	153	SER	-	expression tag	UNP P17301
F	154	HIS	-	expression tag	UNP P17301
F	155	HIS	-	expression tag	UNP P17301
F	156	HIS	-	expression tag	UNP P17301
F	157	HIS	-	expression tag	UNP P17301

6NDE

	Bosiduo	Modelled	Actual	Commont	Boforonco
E	159		Actual		IND D17201
F F	158	HIS	-	expression tag	UNP P17301
F F	159	HI5 CED	-	expression tag	UNP P17301
	100	SER	-	expression tag	UNP P17301
F	101	SER	-	expression tag	UNP P17301
F F	102	GLY	-	expression tag	UNP P17301
F D	103		-	expression tag	UNP P17301
	164	VAL	-	expression tag	UNP P17301
F	165	PRO	-	expression tag	UNP P17301
F'	166	ARG	-	expression tag	UNP P17301
F'	167	GLY	-	expression tag	UNP P17301
F	168	GLY	-	expression tag	UNP P17301
F'	169	SER	-	expression tag	UNP P17301
I	150	MET	-	expression tag	UNP P17301
I	151	GLY	-	expression tag	UNP P17301
I	152	SER	-	expression tag	UNP P17301
I	153	SER	-	expression tag	UNP P17301
I	154	HIS	-	expression tag	UNP P17301
I	155	HIS	-	expression tag	UNP P17301
Ι	156	HIS	-	expression tag	UNP P17301
Ι	157	HIS	-	expression tag	UNP P17301
Ι	158	HIS	-	expression tag	UNP P17301
Ι	159	HIS	-	expression tag	UNP P17301
Ι	160	SER	-	expression tag	UNP P17301
Ι	161	SER	-	expression tag	UNP P17301
Ι	162	GLY	-	expression tag	UNP P17301
Ι	163	LEU	-	expression tag	UNP P17301
Ι	164	VAL	-	expression tag	UNP P17301
Ι	165	PRO	-	expression tag	UNP P17301
Ι	166	ARG	-	expression tag	UNP P17301
Ι	167	GLY	-	expression tag	UNP P17301
Ι	168	GLY	-	expression tag	UNP P17301
Ι	169	SER	-	expression tag	UNP P17301
L	150	MET	-	expression tag	UNP P17301
L	151	GLY	-	expression tag	UNP P17301
L	152	SER	-	expression tag	UNP P17301
L	153	SER	-	expression tag	UNP P17301
L	154	HIS	-	expression tag	UNP P17301
L	155	HIS	-	expression tag	UNP P17301
L	156	HIS	-	expression tag	UNP P17301
L	157	HIS	-	expression tag	UNP P17301
L	158	HIS	-	expression tag	UNP P17301
L	159	HIS	_	expression tag	UNP P17301

 α J fa . . :

6NDE

Continued from previous page					
Chain	Residue	Modelled	Actual	Comment	Reference
L	160	SER	-	expression tag	UNP P17301
L	161	SER	-	expression tag	UNP P17301
L	162	GLY	-	expression tag	UNP P17301
L	163	LEU	-	expression tag	UNP P17301
L	164	VAL	-	expression tag	UNP P17301
L	165	PRO	-	expression tag	UNP P17301
L	166	ARG	-	expression tag	UNP P17301
L	167	GLY	-	expression tag	UNP P17301
L	168	GLY	-	expression tag	UNP P17301
L	169	SER	-	expression tag	UNP P17301
0	150	MET	-	expression tag	UNP P17301
0	151	GLY	-	expression tag	UNP P17301
0	152	SER	-	expression tag	UNP P17301
0	153	SER	-	expression tag	UNP P17301
0	154	HIS	-	expression tag	UNP P17301
0	155	HIS	-	expression tag	UNP P17301
0	156	HIS	-	expression tag	UNP P17301
0	157	HIS	-	expression tag	UNP P17301
0	158	HIS	-	expression tag	UNP P17301
0	159	HIS	-	expression tag	UNP P17301
0	160	SER	-	expression tag	UNP P17301
0	161	SER	-	expression tag	UNP P17301
0	162	GLY	-	expression tag	UNP P17301
0	163	LEU	-	expression tag	UNP P17301
0	164	VAL	-	expression tag	UNP P17301
0	165	PRO	-	expression tag	UNP P17301
0	166	ARG	-	expression tag	UNP P17301
0	167	GLY	-	expression tag	UNP P17301
0	168	GLY	-	expression tag	UNP P17301
0	169	SER	-	expression tag	UNP P17301
R	150	MET	-	expression tag	UNP P17301
R	151	GLY	-	expression tag	UNP P17301
R	152	SER	-	expression tag	UNP P17301
R	153	SER	-	expression tag	UNP P17301
R	154	HIS	-	expression tag	UNP P17301
R	155	HIS	-	expression tag	UNP P17301
R	156	HIS	-	expression tag	UNP P17301
R	157	HIS	-	expression tag	UNP P17301
R	158	HIS	-	expression tag	UNP P17301
R	159	HIS	-	expression tag	UNP P17301
R	160	SER	-	expression tag	UNP P17301
R	161	SER	-	expression tag	UNP P17301

 α J fa . . . :

Chain	Residue	Modelled	Actual	Comment	Reference
R	162	GLY	-	expression tag	UNP P17301
R	163	LEU	-	expression tag	UNP P17301
R	164	VAL	-	expression tag	UNP P17301
R	165	PRO	-	expression tag	UNP P17301
R	166	ARG	-	expression tag	UNP P17301
R	167	GLY	-	expression tag	UNP P17301
R	168	GLY	-	expression tag	UNP P17301
R	169	SER	-	expression tag	UNP P17301

• Molecule 4 is SULFATE ION (three-letter code: SO4) (formula: O_4S).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Е	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Е	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	G	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	Н	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	J	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	K	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Ν	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	О	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Q	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	Q	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
4	R	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 5 is PRASEODYMIUM ION (three-letter code: PR) (formula: Pr).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	С	1	Total Pr 1 1	0	0
5	F	1	Total Pr 1 1	0	0
5	Ι	1	Total Pr 1 1	0	0
5	L	1	Total Pr 1 1	0	0
5	Ο	1	Total Pr 1 1	0	0
5	R	1	Total Pr 1 1	0	0

• Molecule 6 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	С	1	Total Na 1 1	0	0
6	F	1	Total Na 1 1	0	0
6	Ι	1	Total Na 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	L	1	Total Na 1 1	0	0
6	О	1	Total Na 1 1	0	0
6	R	1	Total Na 1 1	0	0

• Molecule 7 is CHLORIDE ION (three-letter code: CL) (formula: Cl).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	С	1	Total Cl 1 1	0	0
7	Е	1	Total Cl 1 1	0	0
7	G	1	Total Cl 1 1	0	0
7	Н	1	Total Cl 1 1	0	0
7	J	1	Total Cl 1 1	0	0
7	K	1	Total Cl 1 1	0	0
7	L	1	Total Cl 1 1	0	0
7	М	1	Total Cl 1 1	0	0
7	R	1	Total Cl 1 1	0	0

• Molecule 8 is AMMONIUM ION (three-letter code: NH4) (formula: H_4N).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	D	1	Total N 1 1	0	0

• Molecule 9 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	А	5	Total O 5 5	0	0
9	F	1	Total O 1 1	0	0
9	L	1	Total O 1 1	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Snaclec rhodocetin subunit gamma

• •

• Molecule 2: Snaclec rhodocetin subunit delta

• Molecule 2: Snaclec rhodocetin subunit delta

• Molecule 2: Snaclec rhodocetin subunit delta

Chain Q:	74%	20% • •
C 1 C 1 C 1 C 1 C 1 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	P70 K75 K75 K78 W78 S79 D81 A82 A82 A82 A82 A82 A82 A82 A82 A82 A82	R110 8117 K121 F122 F122 SER
• Molecule 3: Integrin alpha-2		
Chain C:	73%	14% · 12%
MET GLY SER SER HIS HIS HIS HIS HIS SER HIS SER SER SER CLY CLI 7 SER SER SER SER SER	1131 1231 1231 1231 1231 1231 1234 1234 1234 1234 1235 1255 12355 1235 1235 1235 1235 1235 1235 1235 1235 1235 1235	A259 A263 A263 A263 A263 C291 L292 L292 L292 R307 G308
1309 V311 V311 V311 V311 R312 R315 R319 L320 L320 L320 L320 L320 L320 L320 L320	A349 A349 I361 F362 SER ILE GLY GLY	
• Molecule 3: Integrin alpha-2		
Chain F: 64%	23%	• 12%
MET CLY SER SER SER HIS SER HIS HIS HIS SER HIS SER HIS SER RIS SER CLY CLY CLY CLY CLY CLY SER SER SER SER SER SER SER SER SER SER	V178 C179 D180 S184 F194 F194 F206 T209 T209 T209 T209 T209 T209 T209 T209	K232 1238 1242 1242 8265 8265 8265 8265

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 41	Depositor
Cell constants	132.35Å 132.35Å 254.24Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	48.57 - 3.50	Depositor
Resolution (A)	48.53 - 3.50	EDS
% Data completeness	97.5 (48.57-3.50)	Depositor
(in resolution range)	97.5 (48.53 - 3.50)	EDS
R _{merge}	(Not available)	Depositor
R_{sym}	0.14	Depositor
$< I/\sigma(I) > 1$	$1.64 (at 3.48 \text{\AA})$	Xtriage
Refinement program	REFMAC	Depositor
D D.	0.290 , 0.369	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.296 , 0.369	DCC
R_{free} test set	2746 reflections $(5.13%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	71.4	Xtriage
Anisotropy	0.352	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.31, 66.2	EDS
L-test for twinning ²	$< L >=0.51, < L^2>=0.34$	Xtriage
Estimated twinning fraction	0.448 for h,-k,-l	Xtriage
F_o, F_c correlation	0.84	EDS
Total number of atoms	21590	wwPDB-VP
Average B, all atoms $(Å^2)$	125.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.50% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NA, SO4, NH4, CL, PR

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles		
INIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.70	0/1101	0.82	0/1491	
1	D	0.71	0/1101	0.86	0/1491	
1	G	0.72	0/1101	0.87	0/1491	
1	J	0.69	0/1101	0.82	0/1491	
1	М	0.70	0/1101	0.83	0/1491	
1	Р	0.70	0/1101	0.84	0/1491	
2	В	0.69	0/1064	0.78	0/1439	
2	Е	0.69	0/1064	0.84	0/1439	
2	Н	0.69	0/1064	0.84	0/1439	
2	К	0.69	0/1064	0.77	0/1439	
2	N	0.70	0/1064	0.81	0/1439	
2	Q	0.71	0/1064	0.82	0/1439	
3	С	0.71	0/1506	0.82	1/2040~(0.0%)	
3	F	0.70	0/1506	0.83	0/2040	
3	Ι	0.71	0/1506	0.83	0/2040	
3	L	0.70	0/1506	0.81	0/2040	
3	0	0.70	0/1506	0.81	0/2040	
3	R	0.70	0/1506	0.81	0/2040	
All	All	0.70	0/22026	0.82	1/29820~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	D	0	1
1	G	0	1
1	М	0	1
2	В	0	1
2	Ε	0	1

Mol	Chain	#Chirality outliers	#Planarity outliers
2	Н	0	1
2	Ν	0	1
2	Q	0	1
All	All	0	8

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	С	184	SER	O-C-N	7.56	134.79	122.70

There are no chirality outliers.

All (8) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	В	4	HIS	Peptide
1	D	132	PRO	Peptide
2	Е	89	TRP	Peptide
1	G	132	PRO	Peptide
2	Н	89	TRP	Peptide
1	М	10	ALA	Peptide
2	N	89	TRP	Peptide
2	Q	89	TRP	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1070	0	988	27	0
1	D	1070	0	988	31	0
1	G	1070	0	988	27	0
1	J	1070	0	988	26	0
1	М	1070	0	988	35	0
1	Р	1070	0	988	32	0
2	В	1029	0	977	23	0
2	Е	1029	0	977	29	0

6N	DE

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	Н	1029	0	977	26	0
2	K	1029	0	977	24	0
2	N	1029	0	977	21	0
2	Q	1029	0	977	25	0
3	C	1482	0	1478	18	0
3	F	1482	0	1478	28	0
3	Ι	1482	0	1477	28	0
3	L	1482	0	1478	17	0
3	0	1482	0	1478	25	0
3	R	1482	0	1478	22	0
4	А	10	0	0	0	0
4	В	5	0	0	0	0
4	D	5	0	0	0	0
4	Е	10	0	0	0	0
4	G	5	0	0	0	0
4	Н	5	0	0	0	0
4	J	5	0	0	0	0
4	K	5	0	0	0	0
4	N	5	0	0	0	0
4	0	5	0	0	2	0
4	Q	10	0	0	0	0
4	R	5	0	0	0	0
5	С	1	0	0	0	0
5	F	1	0	0	0	0
5	Ι	1	0	0	0	0
5	L	1	0	0	0	0
5	0	1	0	0	0	0
5	R	1	0	0	0	0
6	С	1	0	0	0	0
6	F	1	0	0	0	0
6	Ι	1	0	0	0	0
6	L	1	0	0	0	0
6	0	1	0	0	0	0
6	R	1	0	0	0	0
7	С	1	0	0	1	0
7	E	1	0	0	0	0
7	G	1	0	0	0	0
7	Н	1	0	0	0	0
7	J	1	0	0	0	0
7	K	1	0	0	0	0
7	L	1	0	0	0	0
7	М	1	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
7	R	1	0	0	0	0
8	D	1	0	0	3	0
9	А	5	0	0	0	0
9	F	1	0	0	0	0
9	L	1	0	0	0	0
All	All	21590	0	20657	399	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 9.

All (399) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

A + 1	A + 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:87:MET:SD	2:B:40:SER:HB3	1.94	1.07
2:H:90:LEU:HD12	2:H:90:LEU:O	1.68	0.93
1:J:87:MET:SD	2:K:40:SER:HB3	2.11	0.90
2:H:90:LEU:HD12	2:H:90:LEU:C	1.93	0.88
2:E:90:LEU:HD12	2:E:90:LEU:C	1.97	0.85
1:D:19:PHE:CD1	8:D:202:NH4:N	2.47	0.83
2:H:90:LEU:O	2:H:90:LEU:CD1	2.28	0.82
2:Q:1:CYS:SG	2:Q:7:SER:HB3	2.19	0.82
2:E:31:ALA:HB1	3:O:353:LYS:HE2	1.59	0.81
2:H:88:VAL:HG12	2:H:88:VAL:O	1.79	0.81
1:J:87:MET:SD	2:K:40:SER:CB	2.68	0.81
2:Q:88:VAL:HG12	2:Q:88:VAL:O	1.80	0.81
2:N:1:CYS:SG	2:N:7:SER:HB3	2.21	0.81
1:M:29:GLU:CD	2:N:79:SER:HG	1.85	0.79
1:D:20:ASN:HD21	1:D:61:ILE:HA	1.48	0.79
2:N:88:VAL:HG12	2:N:88:VAL:O	1.83	0.79
3:F:312:LEU:O	3:F:316:ASN:ND2	2.14	0.79
1:A:87:MET:SD	2:B:40:SER:CB	2.70	0.79
2:H:20:LYS:HE2	2:H:28:PHE:CD2	2.18	0.78
3:I:312:LEU:O	3:I:316:ASN:ND2	2.17	0.76
1:P:74:ASP:OD2	2:Q:75:LYS:O	2.03	0.76
2:E:88:VAL:HG12	2:E:88:VAL:O	1.85	0.76
1:P:79:GLN:O	1:P:101:SER:OG	2.04	0.74
2:E:90:LEU:HD12	2:E:90:LEU:O	1.87	0.73
1:P:29:GLU:CD	2:Q:79:SER:HG	1.91	0.73
2:N:40:SER:O	2:N:41:ILE:HD13	1.89	0.72
1:M:79:GLN:O	1:M:101:SER:OG	2.04	0.72
3:O:260:ARG:NH2	4:O:403:SO4:O4	2.23	0.72

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:J:87:MET:SD	2:K:40:SER:OG	2.47	0.72
3:I:344:VAL:HG13	3:I:349:ALA:HB3	1.72	0.71
3:F:344:VAL:HG13	3:F:349:ALA:HB3	1.73	0.71
1:G:31:PHE:O	1:G:35:GLN:HG2	1.91	0.71
2:B:88:VAL:HG12	2:B:88:VAL:O	1.91	0.70
2:Q:88:VAL:O	2:Q:88:VAL:CG1	2.40	0.70
3:I:239:THR:O	3:I:242:THR:HG22	1.91	0.70
3:F:239:THR:O	3:F:242:THR:HG22	1.93	0.69
1:M:74:ASP:OD2	2:N:75:LYS:O	2.11	0.69
1:M:93:TYR:OH	2:N:47:GLU:OE2	2.09	0.68
2:E:14:ARG:NH1	3:O:359:GLU:OE2	2.27	0.68
2:E:20:LYS:HE2	2:E:28:PHE:CD2	2.28	0.68
1:M:29:GLU:CD	2:N:79:SER:OG	2.32	0.68
3:F:361:ILE:O	3:F:362:PHE:O	2.11	0.68
1:M:95:ASN:ND2	2:N:106:PHE:HA	2.09	0.68
3:C:339:ARG:NH2	7:C:403:CL:CL	2.63	0.68
1:D:31:PHE:O	1:D:35:GLN:HG2	1.96	0.66
1:G:20:ASN:HD21	1:G:61:ILE:HA	1.60	0.66
1:D:19:PHE:CE1	8:D:202:NH4:N	2.64	0.66
1:P:93:TYR:OH	2:Q:47:GLU:OE2	2.14	0.66
2:E:84:LEU:HG	2:E:84:LEU:O	1.96	0.66
2:Q:40:SER:O	2:Q:41:ILE:HD13	1.96	0.65
2:E:90:LEU:O	2:E:90:LEU:CD1	2.44	0.65
3:I:361:ILE:O	3:I:362:PHE:O	2.15	0.65
3:R:203:ASP:OD2	3:R:208:LYS:HD2	1.97	0.65
2:H:88:VAL:O	2:H:88:VAL:CG1	2.45	0.64
1:D:79:GLN:HB3	1:D:101:SER:OG	1.98	0.64
2:N:88:VAL:O	2:N:88:VAL:CG1	2.46	0.64
1:D:64:PRO:HD2	1:D:65:GLU:OE1	1.98	0.63
3:L:200:GLN:NE2	3:L:236:ILE:HD11	2.14	0.63
2:K:20:LYS:O	2:K:115:THR:HA	1.98	0.63
1:J:87:MET:O	1:J:88:SER:HB3	1.97	0.63
2:B:88:VAL:O	2:B:88:VAL:CG1	2.47	0.63
3:R:204:ILE:HG12	3:R:235:MET:HE1	1.81	0.63
1:D:17:GLN:HE21	1:D:17:GLN:HA	1.62	0.62
1:J:72:LEU:HD12	2:K:77:GLU:O	1.99	0.62
1:A:86:SER:OG	2:B:26:GLU:OE2	2.16	0.62
3:R:204:ILE:HG12	3:R:235:MET:CE	2.30	0.62
1:P:87:MET:O	1:P:88:SER:HB2	1.98	0.62
1:P:87:MET:SD	2:Q:40:SER:OG	2.54	0.61
1:A:20:ASN:HD21	1:A:61:ILE:HA	1.66	0.61

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:P:29:GLU:OE2	2:Q:79:SER:OG	2.19	0.61	
1:J:20:ASN:HD21	1:J:61:ILE:HA	1.66	0.61	
3:C:173:ILE:HD12	3:C:209:THR:HG22	1.83	0.61	
3:L:318:ASN:O	3:L:320:LEU:HG	2.01	0.61	
1:D:30:ARG:O	1:D:33:THR:OG1	2.18	0.61	
1:A:115:LYS:HA	2:B:88:VAL:CG1	2.31	0.60	
2:H:84:LEU:O	2:H:84:LEU:HG	2.01	0.60	
3:R:271:ARG:O	3:R:273:SER:N	2.34	0.60	
1:M:20:ASN:HD21	1:M:61:ILE:HA	1.65	0.60	
1:A:93:TYR:HB2	2:B:42:HIS:O	2.01	0.60	
3:O:218:ASN:ND2	3:O:249:LEU:HD12	2.17	0.60	
1:M:87:MET:SD	2:N:40:SER:OG	2.49	0.59	
1:A:115:LYS:HA	2:B:88:VAL:HG12	1.84	0.59	
1:M:29:GLU:OE2	2:N:79:SER:OG	2.20	0.59	
3:I:349:ALA:O	3:I:350:LEU:C	2.40	0.59	
1:M:49:GLU:O	1:M:53:VAL:HG23	2.02	0.59	
3:C:207:THR:O	3:C:208:LYS:HG2	2.02	0.59	
3:O:216:TYR:CE2	3:O:252:THR:HA	2.38	0.59	
3:C:318:ASN:O	3:C:320:LEU:HG	2.03	0.59	
2:B:32:GLN:O	:B:32:GLN:O 2:B:33:HIS:HB2		0.59	
3:C:231:THR:OG1	3:C:234:GLU:HB2	2.03	0.59	
1:P:31:PHE:O	1:P:35:GLN:HG2	2.02	0.59	
1:M:23:LYS:O	1:M:124:LYS:HA	2.04	0.58	
1:G:79:GLN:HB3	1:G:101:SER:OG	2.03	0.58	
2:E:88:VAL:O	2:E:88:VAL:CG1	2.51	0.58	
2:H:78:TRP:HD1	2:H:82:ALA:O	1.87	0.58	
1:P:29:GLU:CD	2:Q:79:SER:OG	2.40	0.58	
1:A:31:PHE:O	1:A:35:GLN:HG2	2.03	0.58	
3:L:231:THR:OG1	3:L:234:GLU:HB2	2.03	0.58	
2:E:90:LEU:C	2:E:90:LEU:CD1	2.69	0.58	
1:J:31:PHE:O	1:J:35:GLN:HG2	2.03	0.58	
3:C:329:ILE:N	3:C:329:ILE:HD13	2.19	0.57	
2:E:78:TRP:HD1	2:E:82:ALA:O	1.87	0.57	
1:P:52:PHE:CD1	1:P:52:PHE:C	2.78	0.57	
3:0:271:ARG:0	3:O:273:SER:N	2.37	0.57	
1:D:93:TYR:CE2	1:J:77:LYS:HB2	2.39	0.57	
2:K:22:TRP:CZ2	2:K:68:ASN:HB2	2.38	0.57	
1:P:5:LEU:HB3	1:P:6:PRO:HD2	1.86	0.57	
3:I:325:LEU:O	3:I:329:ILE:HG12	2.05	0.57	
1:G:64:PRO:HD2	1:G:65:GLU:OE1	2.04	0.57	
1:J:86:SER:OG	2:K:26:GLU:OE2	2.21	0.57	

		Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (Å)		
1:G:87:MET:SD	2:H:40:SER:OG	2.44	0.57	
3:I:360:GLN:O	3:I:362:PHE:N	2.38	0.57	
1:P:49:GLU:O	1:P:53:VAL:HG23	2.05	0.57	
2:K:22:TRP:CH2	2:K:68:ASN:HB2	2.40	0.56	
3:R:204:ILE:HA	3:R:209:THR:O	2.06	0.56	
3:F:286:SER:OG	3:F:328:GLU:OE2	2.18	0.56	
3:I:178:VAL:HA	3:I:214:ILE:O	2.05	0.56	
1:P:95:ASN:ND2	2:Q:106:PHE:HA	2.20	0.56	
1:D:5:LEU:HB3	1:D:6:PRO:HD2	1.87	0.56	
3:F:204:ILE:HB	3:F:232:LYS:CG	2.36	0.56	
3:L:200:GLN:NE2	3:L:236:ILE:CD1	2.69	0.56	
3:F:204:ILE:HA	3:F:209:THR:O	2.06	0.56	
1:G:3:ASN:N	1:G:3:ASN:ND2	2.53	0.56	
3:O:218:ASN:HD22	3:O:249:LEU:HD12	1.71	0.55	
2:Q:34:LYS:N	2:Q:34:LYS:HD2	2.20	0.55	
1:J:71:GLY:O	2:K:78:TRP:HA	2.06	0.55	
1:M:87:MET:O	1:M:88:SER:HB2	2.07	0.55	
1:J:71:GLY:O	2:K:78:TRP:HE3	1.90	0.55	
1:M:55:GLN:OE1	3:R:207:THR:HG22	2.06	0.55	
1:M:95:ASN:HD21	2:N:106:PHE:HA	1.72	0.54	
3:O:261:LYS:NZ	4:0:403:SO4:O3	2.35	0.54	
3:R:218:ASN:ND2	3:R:249:LEU:HD12	2.22	0.54	
2:K:8:TYR:HB2	2:K:49:PHE:CE2	2.42	0.54	
3:L:362:PHE:CD1	3:L:362:PHE:N	2.75	0.54	
3:O:203:ASP:OD2	3:O:208:LYS:HD2	2.06	0.54	
1:A:73:ARG:HG3	1:A:74:ASP:O	2.08	0.54	
2:H:94:TYR:CE2	2:H:110:ARG:HA	2.42	0.54	
1:G:5:LEU:HB3	1:G:6:PRO:HD2	1.90	0.54	
1:M:84:GLU:O	1:M:91:ILE:HD11	2.07	0.54	
1:G:84:GLU:O	1:G:91:ILE:HD11	2.08	0.54	
1:M:5:LEU:HB3	1:M:6:PRO:HD2	1.90	0.54	
3:O:231:THR:OG1	3:O:234:GLU:HB2	2.07	0.54	
2:H:107:TRP:N	2:H:107:TRP:CD1	2.74	0.54	
1:D:97:ASN:HB2	2:E:106:PHE:CD1	2.44	0.53	
3:L:362:PHE:N	3:L:362:PHE:HD1	2.06	0.53	
2:B:71:TRP:HA	2:B:74:CYS:SG	2.49	0.53	
3:R:216:TYR:CE2	3:R:252:THR:HA	2.44	0.53	
3:F:282:THR:HG22	3:F:284:GLY:H	1.73	0.53	
2:B:22:TRP:CZ2	2:B:68:ASN:HB2	2.43	0.53	
3:F:314:TYR:O	3:F:318:ASN:ND2	2.41	0.52	
2:E:107:TRP:N	2:E:107:TRP:CD1	2.77	0.52	

		Interatomic	Clash	
Atom-1	Atom-1 Atom-2		overlap (Å)	
1:M:31:PHE:O	1:M:35:GLN:HG2	2.10	0.52	
3:C:200:GLN:NE2	3:C:236:ILE:HD11	2.25	0.52	
1:P:11:TYR:HB2	1:P:52:PHE:CE2	2.45	0.52	
3:C:316:ASN:ND2	3:C:345:SER:O	2.42	0.52	
3:F:296:ILE:O	3:F:299:CYS:HB2	2.10	0.52	
1:P:25:TRP:HB3	1:P:121:CYS:SG	2.49	0.52	
1:G:28:ALA:O	1:G:31:PHE:HB3	2.09	0.52	
3:O:181:GLU:HG3	3:O:181:GLU:O	2.08	0.52	
2:K:71:TRP:HA	2:K:74:CYS:SG	2.51	0.51	
1:M:42:VAL:HG13	1:M:70:ILE:HG23	1.91	0.51	
3:R:239:THR:O	3:R:242:THR:HG22	2.09	0.51	
1:G:30:ARG:O	1:G:33:THR:OG1	2.23	0.51	
2:B:95:CYS:O	2:B:109:ASN:HA	2.11	0.51	
1:G:63:ARG:HG3	1:G:126:PRO:HG3	1.93	0.51	
3:O:239:THR:O	3:O:242:THR:HG22	2.11	0.51	
3:I:357:LEU:O	3:I:361:ILE:HG12	2.11	0.50	
3:L:253:PHE:CZ	3:L:292:LEU:HG	2.47	0.50	
3:F:204:ILE:HB	3:F:232:LYS:HG2	1.93	0.50	
2:K:95:CYS:O	2:K:109:ASN:HA	2.12	0.50	
2:Q:94:TYR:CE2	2:Q:110:ARG:HA	2.47	0.50	
1:D:69:TRP:CD1	1:D:125:ASN:HB2	2.47	0.50	
1:J:93:TYR:HB2	2:K:42:HIS:O	2.12	0.50	
1:M:87:MET:O	1:M:88:SER:CB	2.59	0.50	
1:D:69:TRP:NE1	1:D:125:ASN:HB2	2.26	0.50	
3:I:314:TYR:O	3:I:318:ASN:ND2	2.45	0.50	
1:D:116:TRP:O	2:E:89:TRP:HA	2.11	0.49	
3:F:178:VAL:HA	3:F:214:ILE:O	2.12	0.49	
3:R:227:ASN:ND2	3:R:269:GLY:CA	2.75	0.49	
3:C:259:ALA:O	3:C:263:ALA:HB3	2.12	0.49	
3:C:361:ILE:O	3:C:362:PHE:CD1	2.64	0.49	
3:F:349:ALA:O	3:F:350:LEU:C	2.49	0.49	
1:M:70:ILE:HG22	1:M:71:GLY:H	1.78	0.49	
3:I:204:ILE:HA	3:I:209:THR:O	2.13	0.49	
3:I:242:THR:HG23	3:I:242:THR:O	2.12	0.49	
1:M:35:GLN:O	1:M:36:ALA:HB3	2.13	0.49	
3:R:322:THR:O	3:R:323:LYS:C	2.51	0.49	
2:Q:59:LYS:HE3	2:Q:59:LYS:H	1.77	0.49	
1:A:87:MET:O	1:A:88:SER:CB	2.61	0.49	
3:C:200:GLN:NE2	3:C:236:ILE:CD1	2.76	0.49	
2:E:94:TYR:CE2	2:E:110:ARG:HA	2.47	0.49	
1:J:131:PHE:HD1	1:J:132:PRO:O	1.95	0.49	

	A h o	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:P:25:TRP:NE1	1:P:70:ILE:O	2.46	0.49	
1:A:85:TRP:CG	2:B:40:SER:HB2	2.47	0.49	
1:M:55:GLN:HE22	3:R:205:GLY:HA3	1.78	0.49	
1:P:69:TRP:HA	1:P:69:TRP:CE3	2.47	0.49	
3:I:330:LYS:O	3:I:333:ALA:HB3	2.13	0.48	
1:G:32:CYS:HB3	1:G:40:HIS:O	2.12	0.48	
2:E:40:SER:O	2:E:41:ILE:HD13	2.13	0.48	
1:M:25:TRP:HB3	1:M:121:CYS:SG	2.53	0.48	
2:B:20:LYS:O	2:B:115:THR:HA	2.12	0.48	
1:D:17:GLN:HE21	1:D:17:GLN:CA	2.26	0.48	
1:D:53:VAL:O	1:D:57:VAL:HG23	2.12	0.48	
1:G:24:THR:HG22	1:G:26:ASP:H	1.78	0.48	
3:F:252:THR:O	3:F:255:ALA:HB3	2.13	0.48	
1:D:32:CYS:HB3	1:D:40:HIS:O	2.14	0.48	
2:E:1:CYS:SG	2:E:7:SER:CB	3.02	0.48	
1:D:34:GLU:HG3	1:D:34:GLU:O	2.14	0.48	
1:D:43:SER:HA	2:E:78:TRP:CZ3	2.49	0.48	
3:O:204:ILE:HA	3:O:209:THR:O	2.13	0.48	
3:F:325:LEU:O	3:F:329:ILE:HG12	2.14	0.48	
3:L:259:ALA:O	3:L:263:ALA:HB3	2.14	0.48	
1:D:94:VAL:HA	2:E:107:TRP:CZ3	2.48	0.48	
2:B:22:TRP:CH2	2:B:68:ASN:HB2	2.49	0.47	
3:L:362:PHE:HD1	3:L:362:PHE:H	1.61	0.47	
1:M:70:ILE:HG22	2:N:78:TRP:HZ3	2:N:78:TRP:HZ3 1.78 0.4		
2:Q:90:LEU:HD12	2:Q:90:LEU:C	2.35	0.47	
3:F:322:THR:O	3:F:326:ILE:HG12	2.13	0.47	
1:J:102:GLN:OE1	2:K:91:ARG:NH2	2.44	0.47	
1:A:11:TYR:HA	3:I:291:MET:CE	2.45	0.47	
2:H:21:THR:HG23	2:H:112:CYS:O	2.14	0.47	
1:M:25:TRP:NE1	1:M:70:ILE:O	2.46	0.47	
1:P:23:LYS:O	1:P:124:LYS:HA	2.15	0.47	
1:P:87:MET:O	1:P:88:SER:CB	2.62	0.47	
2:E:1:CYS:SG	2:E:7:SER:HB3	2.54	0.47	
2:N:61:THR:CG2	2:N:100:VAL:HB	2.44	0.47	
1:P:33:THR:HA	1:P:39:GLY:O	2.15	0.47	
1:A:71:GLY:O	2:B:78:TRP:HA	2.15	0.47	
1:D:115:LYS:HA	2:E:88:VAL:HG12	1.96	0.47	
1:J:28:ALA:O	1:J:31:PHE:HB3	2.14	0.47	
1:P:85:TRP:HD1	1:P:89:ALA:O	1.98	0.47	
1:G:23:LYS:HE3	1:G:31:PHE:HD2	1.80	0.46	
1:G:69:TRP:CD1	1:G:125:ASN:HB2	2.50	0.46	

	A h o	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:I:179:CYS:O	3:I:179:CYS:O 3:I:215:GLN:HA		0.46
1:D:111:THR:HG21	2:E:90:LEU:CD2	2.44	0.46
3:I:252:THR:O	3:I:255:ALA:HB3	2.16	0.46
1:G:92:ILE:O	1:G:92:ILE:CG2	2.62	0.46
1:J:87:MET:O	1:J:88:SER:CB	2.63	0.46
3:O:180:ASP:HB2	3:O:282:THR:HA	1.97	0.46
1:J:85:TRP:CG	2:K:40:SER:HB2	2.50	0.46
1:M:69:TRP:HA	1:M:69:TRP:CE3	2.50	0.46
2:N:90:LEU:C	2:N:90:LEU:HD12	2.36	0.46
3:R:181:GLU:O	3:R:181:GLU:HG3	2.14	0.46
2:B:52:LYS:HE2	2:B:56:GLN:HE21	1.80	0.46
2:H:40:SER:O	2:H:41:ILE:HD13	2.16	0.46
1:P:11:TYR:HB2	1:P:52:PHE:CD2	2.51	0.46
1:M:69:TRP:CE3	1:M:105:GLN:O	2.69	0.46
3:C:347:GLU:OE1	3:C:347:GLU:N	2.40	0.46
1:G:72:LEU:HD11	2:H:76:TRP:HB3	1.98	0.46
3:C:344:VAL:HG13	3:C:349:ALA:HB3	1.98	0.46
2:E:86:TYR:CE2	2:E:88:VAL:HG21	2.51	0.46
1:M:89:ALA:HB1	2:N:42:HIS:CE1	2.50	0.46
1:D:63:ARG:HG3	1:D:126:PRO:HG3	1.98	0.46
1:D:84:GLU:O	1:D:91:ILE:HD11	2.16	0.46
3:F:204:ILE:HB	3:F:232:LYS:HG3	F:232:LYS:HG31.970.46Q:70:PRO:HA2.160.46	
1:P:82:SER:OG	2:Q:70:PRO:HA		
3:C:253:PHE:CZ	3:C:292:LEU:HG	2.51	0.46
2:E:33:HIS:O	2:E:36:SER:HB3	2.16	0.46
1:J:95:ASN:ND2	2:K:47:GLU:OE1	2.37	0.45
3:L:180:ASP:HB2	3:L:282:THR:HA	1.98	0.45
1:A:67:TYR:HE2	1:A:117:ASP:HB3	1.82	0.45
2:B:30:TYR:HA	2:B:36:SER:O	2.16	0.45
2:H:1:CYS:SG	2:H:7:SER:CB	3.04	0.45
1:P:56:LEU:O	1:P:56:LEU:HD23	2.15	0.45
1:G:111:THR:HG21	2:H:90:LEU:CD2	2.46	0.45
1:P:69:TRP:CE3	1:P:105:GLN:O	2.70	0.45
1:A:60:ASN:HD21	3:I:262:TYR:HE1	1.62	0.45
1:G:3:ASN:N	1:G:3:ASN:HD22	2.15	0.45
1:D:20:ASN:ND2	1:D:61:ILE:HA	2.26	0.45
2:E:71:TRP:HA	2:E:74:CYS:SG	2.57	0.45
3:I:180:ASP:CB	3:I:282:THR:HA	2.47	0.45
3:0:205:GLY:0	3:O:207:THR:N	2.49	0.45
3:R:250:THR:HG22	3:R:250:THR:O	2.17	0.45
1:A:43:SER:HB3	2:B:80:ASP:OD2	2.15	0.45

	, and pagetti	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:B:4:HIS:O	2:B:14:ARG:NH1	2.45	0.45	
3:O:173:ILE:O	3:O:209:THR:HA	2.17	0.45	
1:A:25:TRP:CZ2	1:A:73:ARG:HD3	2.51	0.45	
3:C:173:ILE:HD12	3:C:209:THR:CG2	2.45	0.45	
3:L:200:GLN:HE21	3:L:236:ILE:HD11	1.81	0.45	
2:Q:59:LYS:H	2:Q:59:LYS:CE	2.30	0.45	
2:H:1:CYS:SG	2:H:7:SER:HB3	2.57	0.45	
1:A:20:ASN:N	1:A:20:ASN:HD22	2.15	0.45	
1:A:28:ALA:O	1:A:31:PHE:HB3	2.16	0.45	
1:M:29:GLU:OE1	2:N:79:SER:OG	2.32	0.45	
1:P:8:TRP:CZ3	1:P:131:PHE:CE2	3.05	0.45	
2:K:30:TYR:HA	2:K:36:SER:O	2.17	0.44	
1:A:5:LEU:HB3	1:A:6:PRO:HD2	1.99	0.44	
1:J:116:TRP:O	2:K:89:TRP:HA	2.17	0.44	
1:A:11:TYR:HA	3:I:291:MET:HE1	1.99	0.44	
3:F:194:PHE:CD1	3:F:350:LEU:HD22	2.52	0.44	
3:F:335:ILE:HG13	3:F:336:PRO:HA	1.99	0.44	
1:J:3:ASN:N	1:J:3:ASN:ND2	2.65	0.44	
2:N:78:TRP:HD1	2:N:82:ALA:O	2.00	0.44	
3:O:292:LEU:C	:O:292:LEU:C 3:O:292:LEU:HD23		0.44	
2:E:92:ARG:O	2:E:93:PRO:C	2.54	0.44	
3:R:344:VAL:HG13	3:R:349:ALA:HB3	2.00	0.44	
3:I:349:ALA:O	3:I:351:LEU:N	2.51	0.44	
1:G:60:ASN:HD22	1:G:60:ASN:HA	1.70	0.43	
1:G:20:ASN:ND2	1:G:61:ILE:HA	2.29	0.43	
3:O:258:TYR:CD1	3:O:258:TYR:C	2.91	0.43	
3:R:218:ASN:HD22	3:R:249:LEU:HD12	1.82	0.43	
2:B:68:ASN:HA	2:B:95:CYS:SG	2.58	0.43	
1:D:79:GLN:O	1:D:101:SER:OG	2.29	0.43	
3:I:216:TYR:OH	3:I:282:THR:HB	2.18	0.43	
1:P:20:ASN:HD21	1:P:61:ILE:HA	1.83	0.43	
3:R:305:LEU:HD12	3:R:305:LEU:HA	1.78	0.43	
1:G:69:TRP:NE1	1:G:125:ASN:HB2	2.33	0.43	
2:Q:78:TRP:HD1	2:Q:82:ALA:O	2.00	0.43	
2:N:84:LEU:HG	2:N:84:LEU:O	2.18	0.43	
1:P:89:ALA:HB1	2:Q:42:HIS:CE1	2.53	0.43	
2:B:34:LYS:HE3	2:B:34:LYS:HA	2.01	0.43	
1:D:13:GLN:HE21	1:D:13:GLN:HB2	1.68	0.43	
1:D:17:GLN:OE1	8:D:202:NH4:N	2.51	0.43	
3:F:361:ILE:C	3:F:362:PHE:O	2.57	0.43	
1:A:93:TYR:O	1:A:94:VAL:HG13	2.19	0.43	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:B:97:VAL:O	2:B:107:TRP:HA	2.19	0.43	
1:M:89:ALA:HB1	2:N:42:HIS:NE2	2.33	0.43	
2:E:30:TYR:HA	2:E:36:SER:O	2.19	0.43	
3:F:330:LYS:O	3:F:333:ALA:HB3	2.18	0.43	
1:G:53:VAL:O	1:G:57:VAL:HG23	2.18	0.43	
2:K:53:LEU:HD12	2:K:56:GLN:NE2	2.34	0.43	
2:Q:41:ILE:HG21	2:Q:47:GLU:HB2	2.00	0.43	
1:P:29:GLU:OE1	2:Q:79:SER:OG	2.36	0.43	
2:E:61:THR:CG2	2:E:100:VAL:HB	2.49	0.42	
3:I:303:ASN:HD22	3:I:303:ASN:HA	1.73	0.42	
2:K:28:PHE:O	2:K:32:GLN:NE2	2.51	0.42	
2:N:94:TYR:CE2	2:N:110:ARG:HA	2.55	0.42	
3:R:199:VAL:HG13	3:R:235:MET:HE3	1.99	0.42	
3:I:180:ASP:HB3	3:I:282:THR:HA	2.02	0.42	
2:Q:61:THR:CG2	2:Q:100:VAL:HB	2.49	0.42	
3:F:179:CYS:O	3:F:215:GLN:HA	2.19	0.42	
1:G:74:ASP:OD2	2:H:75:LYS:O	2.37	0.42	
2:H:30:TYR:HA	2:H:36:SER:O	2.18	0.42	
3:I:335:ILE:HG13	3:I:336:PRO:HA	2.01	0.42	
3:F:283:ASP:CG	3:F:283:ASP:O	2.57	0.42	
3:0:187:PRO:0	3:O:188:TRP:C	2.57	0.42	
1:G:97:ASN:HB2	2:H:106:PHE:CD1	2.55	0.42	
1:J:20:ASN:ND2	1:J:61:ILE:HA	2.33	0.42	
3:R:258:TYR:CD1	3:R:258:TYR:C	2.93	0.42	
2:Q:36:SER:HA	2:Q:121:LYS:O	2.19	0.42	
1:A:11:TYR:CD1	1:A:12:ASP:N	2.88	0.42	
1:J:63:ARG:O	1:J:109:ARG:NH2	2.53	0.42	
3:L:285:GLU:OE1	3:L:324:ASN:HB2	2.19	0.42	
3:L:335:ILE:HD13	3:L:335:ILE:HA	1.94	0.42	
1:G:23:LYS:HE3	1:G:31:PHE:CD2	2.55	0.42	
1:J:71:GLY:O	2:K:78:TRP:CE3	2.70	0.42	
3:O:361:ILE:O	3:O:362:PHE:CD1	2.73	0.42	
3:R:253:PHE:CE1	3:R:292:LEU:HG	2.55	0.42	
1:A:84:GLU:HG2	1:A:88:SER:O	2.20	0.41	
2:H:28:PHE:CD1	2:H:28:PHE:C	2.93	0.41	
2:K:44:ARG:O	2:K:47:GLU:HB3	2.20	0.41	
1:M:31:PHE:O	1:M:31:PHE:CD1	2.73	0.41	
1:P:33:THR:HG22	1:P:39:GLY:O	2.20	0.41	
2:H:20:LYS:O	2:H:115:THR:HA	2.20	0.41	
3:I:296:ILE:O	3:I:299:CYS:HB2	2.20	0.41	
3:L:217:ALA:C	3:L:249:LEU:O	2.59	0.41	

	A h o	Interatomic	Clash overlap (Å)	
Atom-1	Atom-2	distance (\AA)		
1:M:87:MET:HG3	1:M:89:ALA:H	1.85	0.41	
3:C:206:PRO:HA	3:C:210:GLN:HE21	1.85	0.41	
3:F:229:TYR:CZ	3:F:238:ALA:HB2	2.55	0.41	
3:F:303:ASN:HD22	3:F:303:ASN:HA	1.75	0.41	
1:J:20:ASN:N	1:J:20:ASN:HD22	2.18	0.41	
3:O:360:GLN:O	3:O:362:PHE:HB3	2.20	0.41	
3:C:291:MET:O	3:C:292:LEU:C	2.59	0.41	
2:H:86:TYR:CE2	2:H:88:VAL:HG21	2.55	0.41	
3:R:180:ASP:HB2	3:R:282:THR:HA	2.02	0.41	
3:C:200:GLN:HE21	3:C:236:ILE:HD11	1.85	0.41	
1:D:68:VAL:HA	1:D:126:PRO:O	2.21	0.41	
1:D:42:VAL:HG22	1:D:43:SER:O	2.19	0.41	
3:F:206:PRO:O	3:F:271:ARG:NH2	2.53	0.41	
3:O:283:ASP:HA	3:O:311:VAL:O	2.21	0.41	
3:I:180:ASP:OD1	3:I:180:ASP:C	2.58	0.41	
3:F:180:ASP:OD1	3:F:180:ASP:C	2.58	0.41	
3:F:216:TYR:CD2	3:F:216:TYR:C	2.94	0.41	
3:I:283:ASP:HB2	3:I:311:VAL:O	2.21	0.41	
1:P:68:VAL:HA	1:P:126:PRO:O	2.20	0.41	
1:A:8:TRP:CZ3	1:A:131:PHE:CE2	3.09	0.41	
1:A:30:ARG:O	1:A:33:THR:OG1	2.36	0.41	
1:D:94:VAL:HA	2:E:107:TRP:CH2	2.56	0.41	
2:H:90:LEU:C	2:H:90:LEU:CD1	2.66	0.41	
3:I:264:TYR:O	3:I:270:GLY:HA3	2.20	0.41	
1:J:67:TYR:HE1	1:J:117:ASP:HB3	1.86	0.41	
3:L:229:TYR:CZ	3:L:238:ALA:HB2	2.55	0.41	
1:M:70:ILE:HD11	1:M:107:LEU:HD23	2.03	0.41	
3:O:250:THR:HG22	3:O:250:THR:O	2.21	0.41	
2:Q:59:LYS:H	2:Q:59:LYS:CD	2.33	0.41	
1:G:8:TRP:CZ3	1:G:131:PHE:CE2	3.09	0.40	
2:H:92:ARG:O	2:H:93:PRO:C	2.57	0.40	
1:J:11:TYR:CD1	1:J:12:ASP:N	2.89	0.40	
3:O:227:ASN:ND2	3:O:269:GLY:CA	2.84	0.40	
2:K:22:TRP:CD1	2:K:95:CYS:HB3	2.56	0.40	
3:L:188:TRP:CD2	3:L:244:GLN:HB2	2.57	0.40	
1:M:62:LYS:O	1:M:62:LYS:HG2	2.21	0.40	
1:P:116:TRP:O	2:Q:89:TRP:HA	2.21	0.40	
2:H:33:HIS:O	2:H:36:SER:HB3	2.22	0.40	
1:M:8:TRP:CZ3	1:M:131:PHE:CE2	3.10	0.40	
3:R:271:ARG:O	3:R:272:ARG:C	2.60	0.40	
1:A:20:ASN:ND2	1:A:61:ILE:HA	2.35	0.40	

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
3:L:291:MET:O	3:L:292:LEU:C	2.60	0.40	
3:O:188:TRP:CD2	3:O:244:GLN:HB2	2.57	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	129/135~(96%)	105 (81%)	21 (16%)	3 (2%)	6	36
1	D	129/135~(96%)	112 (87%)	13 (10%)	4 (3%)	4	30
1	G	129/135~(96%)	109 (84%)	19~(15%)	1 (1%)	19	58
1	J	129/135~(96%)	109 (84%)	18 (14%)	2 (2%)	9	43
1	М	129/135~(96%)	115 (89%)	11 (8%)	3 (2%)	6	36
1	Р	129/135~(96%)	116 (90%)	11 (8%)	2 (2%)	9	43
2	В	120/124~(97%)	110 (92%)	7~(6%)	3 (2%)	5	34
2	Е	120/124~(97%)	102 (85%)	16 (13%)	2 (2%)	9	42
2	Н	120/124~(97%)	102 (85%)	16 (13%)	2 (2%)	9	42
2	K	120/124~(97%)	110 (92%)	8 (7%)	2 (2%)	9	42
2	Ν	120/124~(97%)	106 (88%)	12 (10%)	2 (2%)	9	42
2	Q	120/124~(97%)	108 (90%)	9 (8%)	3 (2%)	5	34
3	С	189/217~(87%)	177 (94%)	11 (6%)	1 (0%)	29	68
3	F	189/217~(87%)	168 (89%)	18 (10%)	3 (2%)	9	43
3	Ι	189/217~(87%)	167 (88%)	19 (10%)	3 (2%)	9	43
3	L	189/217~(87%)	175 (93%)	13 (7%)	1 (0%)	29	68
3	Ο	189/217~(87%)	169 (89%)	19 (10%)	1 (0%)	29	68
3	R	189/217~(87%)	172 (91%)	17 (9%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
All	All	2628/2856~(92%)	2332 (89%)	258 (10%)	38 (1%)	11 46

All (38) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	В	33	HIS
3	Ι	361	ILE
1	А	88	SER
3	F	334	SER
3	F	361	ILE
3	Ι	334	SER
1	J	88	SER
1	М	88	SER
1	Р	88	SER
2	Q	3	LEU
2	Q	117	SER
1	D	118	TYR
2	Н	2	PRO
1	J	24	THR
2	K	3	LEU
1	М	120	ASP
2	Ν	2	PRO
1	Р	65	GLU
1	А	76	ARG
1	D	132	PRO
2	Е	2	PRO
2	Ε	26	GLU
1	G	88	SER
3	L	361	ILE
1	М	36	ALA
1	A	89	ALA
2	В	117	SER
1	D	78	GLU
3	Ι	286	SER
3	С	313	GLY
1	D	76	ARG
2	Н	4	HIS
3	O	272	ARG
2	K	2	PRO
3	F	313	GLY
2	Q	88	VAL
2	В	88	VAL

Continued from previous page...

Mol	Chain	Res	Type
2	Ν	88	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
1	А	114/118~(97%)	109~(96%)	5~(4%)	28	62
1	D	114/118~(97%)	106 (93%)	8 (7%)	15	46
1	G	114/118~(97%)	108 (95%)	6 (5%)	22	55
1	J	114/118~(97%)	111 (97%)	3(3%)	46	74
1	М	114/118~(97%)	107 (94%)	7~(6%)	18	51
1	Р	114/118~(97%)	108 (95%)	6 (5%)	22	55
2	В	110/112~(98%)	101 (92%)	9~(8%)	11	40
2	Е	110/112 (98%)	101 (92%)	9 (8%)	11	40
2	Н	110/112~(98%)	103 (94%)	7~(6%)	17	50
2	Κ	110/112 (98%)	103 (94%)	7~(6%)	17	50
2	Ν	110/112~(98%)	102 (93%)	8 (7%)	14	45
2	Q	110/112~(98%)	102~(93%)	8 (7%)	14	45
3	С	160/181~(88%)	152 (95%)	8 (5%)	24	58
3	F	160/181~(88%)	152 (95%)	8 (5%)	24	58
3	Ι	160/181~(88%)	151 (94%)	9~(6%)	21	54
3	L	160/181~(88%)	154 (96%)	6 (4%)	33	65
3	Ο	160/181~(88%)	156 (98%)	4 (2%)	47	75
3	R	160/181~(88%)	157 (98%)	3 (2%)	57	80
All	All	2304/2466~(93%)	2183 (95%)	121 (5%)	22	55

All (121) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	37	LYS
	a i	1	1

Mol	Chain	Res	Type
1	А	58	THR
1	А	76	ARG
1	А	87	MET
1	А	90	SER
2	В	7	SER
2	В	34	LYS
2	В	44	ARG
2	В	55	SER
2	В	67	LEU
2	В	81	ASP
2	В	91	ARG
2	В	117	SER
2	В	122	PHE
3	С	172	LEU
3	С	184	SER
3	С	273	SER
3	С	303	ASN
3	С	312	LEU
3	С	321	ASP
3	С	339	ARG
3	С	362	PHE
1	D	13	GLN
1	D	17	GLN
1	D	30	ARG
1	D	37	LYS
1	D	64	PRO
1	D	90	SER
1	D	101	SER
1	D	118	TYR
2	E	6	SER
2	Е	17	SER
2	E	55	SER
2	E	63	MET
2	E	67	LEU
2	Е	81	ASP
2	E	102	THR
2	E	110	ARG
2	Е	122	PHE
3	F	184	SER
3	F	207	THR
3	F	265	SER
3	F	283	ASP

Mol	Chain	Res	Type
3	F	290	SER
3	F	321	ASP
3	F	345	SER
3	F	360	GLN
1	G	3	ASN
1	G	30	ARG
1	G	84	GLU
1	G	90	SER
1	G	101	SER
1	G	118	TYR
2	Н	6	SER
2	Н	55	SER
2	Н	63	MET
2	Н	81	ASP
2	Н	102	THR
2	Н	110	ARG
2	Н	122	PHE
3	Ι	184	SER
3	Ι	250	THR
3	Ι	265	SER
3	Ι	283	ASP
3	Ι	290	SER
3	Ι	321	ASP
3	Ι	343	ASN
3	Ι	345	SER
3	Ι	360	GLN
1	J	3	ASN
1	J	90	SER
1	J	132	PRO
2	K	37	ARG
2	K	67	LEU
2	K	79	SER
2	K	81	ASP
2	K	91	ARG
2	K	117	SER
2	K	122	PHE
3	L	184	SER
3	L	268	SER
3	L	273	SER
3	L	303	ASN
3	L	321	ASP
3	L	362	PHE

Mol	Chain	Res	Type
1	М	3	ASN
1	М	20	ASN
1	М	21	GLU
1	М	35	GLN
1	М	43	SER
1	М	101	SER
1	М	119	SER
2	Ν	7	SER
2	Ν	32	GLN
2	Ν	55	SER
2	Ν	63	MET
2	Ν	81	ASP
2	Ν	91	ARG
2	Ν	110	ARG
2	Ν	122	PHE
3	0	321	ASP
3	0	334	SER
3	0	343	ASN
3	0	345	SER
1	Р	3	ASN
1	Р	9	SER
1	Р	20	ASN
1	Р	21	GLU
1	Р	43	SER
1	Р	101	SER
2	Q	32	GLN
2	Q	34	LYS
2	Q	55	SER
2	Q	59	LYS
2	Q	81	ASP
2	Q	91	ARG
2	Q	110	ARG
2	Q	122	PHE
3	R	321	ASP
3	R	343	ASN
3	R	345	SER

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (30) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	60	ASN
2	В	56	GLN

Mol	Chain	Res	Type
3	С	200	GLN
3	С	210	GLN
3	С	318	ASN
1	D	13	GLN
1	D	17	GLN
1	D	60	ASN
2	Е	109	ASN
3	F	200	GLN
3	F	257	GLN
3	F	303	ASN
1	G	60	ASN
2	Н	109	ASN
3	Ι	200	GLN
3	Ι	303	ASN
3	Ι	360	GLN
1	J	60	ASN
2	K	33	HIS
3	L	200	GLN
3	L	210	GLN
3	L	303	ASN
1	М	95	ASN
2	N	32	GLN
3	0	210	GLN
3	0	318	ASN
1	Р	95	ASN
2	Q	32	GLN
3	R	210	GLN
3	R	241	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 37 ligands modelled in this entry, 21 are monoatomic and 1 is modelled with single atom - leaving 15 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Timle	Bond lengths		E	Bond ang	gles	
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
4	SO4	G	202	-	4,4,4	0.35	0	$6,\!6,\!6$	0.11	0
4	SO4	D	201	-	4,4,4	0.32	0	$6,\!6,\!6$	0.13	0
4	SO4	А	201	-	4,4,4	0.32	0	$6,\!6,\!6$	0.09	0
4	SO4	J	201	-	4,4,4	0.34	0	$6,\!6,\!6$	0.09	0
4	SO4	0	403	-	4,4,4	0.39	0	$6,\!6,\!6$	0.08	0
4	SO4	Q	202	6	4,4,4	0.34	0	$6,\!6,\!6$	0.09	0
4	SO4	Е	201	-	4,4,4	0.39	0	$6,\!6,\!6$	0.08	0
4	SO4	В	201	6	4,4,4	0.32	0	6,6,6	0.09	0
4	SO4	Н	202	6	4,4,4	0.34	0	$6,\!6,\!6$	0.15	0
4	SO4	Е	203	6	4,4,4	0.31	0	6,6,6	0.16	0
4	SO4	K	202	6	4,4,4	0.31	0	$6,\!6,\!6$	0.14	0
4	SO4	N	201	6	4,4,4	0.36	0	$6,\!6,\!6$	0.07	0
4	SO4	A	202	-	4,4,4	0.38	0	$6,\!6,\!6$	0.05	0
4	SO4	Q	201	-	4,4,4	0.31	0	$6,\!6,\!6$	0.09	0
4	SO4	R	402	-	4,4,4	0.37	0	$6,\!6,\!6$	0.07	0

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

1 monomer is involved in 2 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	0	403	SO4	2	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	#RSRZ>2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	Q<0.9
1	А	131/135~(97%)	0.14	3 (2%) 60 54	88, 119, 155, 180	0
1	D	131/135~(97%)	0.13	7 (5%) 26 24	73, 124, 160, 187	0
1	G	131/135~(97%)	0.17	7 (5%) 26 24	72, 121, 162, 193	0
1	J	131/135~(97%)	0.16	2 (1%) 73 68	90, 120, 154, 163	0
1	М	131/135~(97%)	0.18	3 (2%) 60 54	82, 131, 180, 208	0
1	Р	131/135~(97%)	0.20	5 (3%) 40 36	83, 131, 186, 208	0
2	В	122/124 (98%)	0.05	2 (1%) 72 66	86, 146, 193, 222	0
2	Е	122/124 (98%)	0.22	6 (4%) 29 26	81, 121, 161, 184	0
2	Н	122/124 (98%)	0.34	6 (4%) 29 26	78, 122, 159, 181	0
2	К	122/124 (98%)	0.07	3 (2%) 57 51	96, 145, 201, 247	0
2	N	122/124 (98%)	-0.16	0 100 100	85, 122, 158, 178	0
2	Q	122/124 (98%)	-0.10	0 100 100	86, 122, 156, 196	0
3	С	191/217~(88%)	0.17	7 (3%) 41 37	80, 125, 160, 197	0
3	F	191/217~(88%)	0.42	12 (6%) 20 18	72, 121, 162, 189	0
3	Ι	191/217~(88%)	0.38	12 (6%) 20 18	76, 119, 162, 207	0
3	L	191/217~(88%)	0.31	12 (6%) 20 18	90, 125, 159, 211	0
3	Ο	191/217 (88%)	0.22	2 (1%) 82 77	62, 105, 146, 175	0
3	R	191/217 (88%)	0.13	3 (1%) 72 66	62, 105, 149, 173	0
All	All	2664/2856~(93%)	0.18	92 (3%) 44 39	62, 122, 169, 247	0

All (92) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
3	F	343	ASN	3.9
3	Ι	340	TYR	3.7
3	L	307	PHE	3.7

Mol	Chain	Res	Type	RSRZ
3	L	308	GLY	3.6
2	Н	34	LYS	3.6
3	L	280	VAL	3.5
3	Ι	343	ASN	3.3
3	F	302	ASP	3.2
3	F	342	PHE	3.2
1	D	67	TYR	3.1
3	L	281	VAL	3.1
3	F	307	PHE	3.0
2	Е	13	TYR	3.0
1	G	96	TRP	3.0
1	М	30	ARG	3.0
3	Ι	337	THR	2.9
3	Ι	302	ASP	2.9
3	L	340	TYR	2.9
3	L	172	LEU	2.8
1	D	96	TRP	2.8
1	J	122	GLN	2.8
3	С	309	ILE	2.8
2	K	14	ARG	2.8
3	0	342	PHE	2.7
2	Н	11	TYR	2.7
3	С	310	ALA	2.7
3	Ι	341	PHE	2.7
3	F	340	TYR	2.7
1	М	128	VAL	2.7
2	В	14	ARG	2.6
3	С	308	GLY	2.6
3	Ι	342	PHE	2.6
1	Р	106	GLY	2.6
1	G	114	ARG	2.6
3	L	272	ARG	2.6
1	G	107	LEU	2.6
3	0	308	GLY	2.6
3	F	301	HIS	2.6
3	Ι	309	ILE	2.5
1	G	113	PHE	2.5
1	М	133	SER	2.5
1	P	63	ARG	2.5
1	D	113	PHE	2.5
1	J	105	GLN	2.5
3	Ι	307	PHE	2.5

Mol	Chain	Res	Type	RSRZ
3	L	341	PHE	2.5
1	D	66	LEU	2.5
3	Ι	344	VAL	2.5
2	Е	5	TRP	2.5
3	L	342	PHE	2.5
3	L	250	THR	2.4
1	А	107	LEU	2.4
1	Р	123	ALA	2.4
3	F	308	GLY	2.4
1	G	67	TYR	2.4
3	F	309	ILE	2.4
3	Ι	311	VAL	2.4
3	R	342	PHE	2.3
3	F	344	VAL	2.3
3	С	281	VAL	2.3
2	Е	34	LYS	2.3
3	L	309	ILE	2.3
2	Е	96	ALA	2.3
3	С	335	ILE	2.3
2	Н	3	LEU	2.3
2	Κ	13	TYR	2.3
1	А	106	GLY	2.3
3	F	272	ARG	2.3
1	А	61	ILE	2.2
1	D	107	LEU	2.2
2	Н	5	TRP	2.2
3	Ι	272	ARG	2.2
3	L	332	ILE	2.2
1	Р	103	MET	2.2
3	Ι	310	ALA	2.2
3	С	307	PHE	2.2
2	Н	121	LYS	2.2
2	Е	35	GLY	2.2
2	Н	35	GLY	2.1
2	Е	30	TYR	2.1
1	Р	67	TYR	2.1
2	Κ	45	GLU	2.1
1	G	102	GLN	2.1
3	F	341	PHE	2.1
3	С	244	GLN	2.1
3	F	311	VAL	2.1
1	G	105	GLN	2.0

Continued from previous page...

Mol	Chain	Res	Type	RSRZ
3	R	340	TYR	2.0
1	D	125	ASN	2.0
1	D	105	GLN	2.0
2	В	65	LEU	2.0
3	R	339	ARG	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
7	CL	J	202	1/1	-0.10	1.65	174,174,174,174	0
4	SO4	А	202	5/5	0.17	0.43	244,251,262,278	0
8	NH4	D	202	1/1	0.49	0.22	76,76,76,76	0
7	CL	K	201	1/1	0.53	0.30	152,152,152,152	0
7	CL	Н	201	1/1	0.58	0.44	91,91,91,91	0
4	SO4	Q	202	5/5	0.63	0.27	138,168,194,204	0
4	SO4	N	201	5/5	0.68	0.17	136,162,188,197	0
4	SO4	R	402	5/5	0.74	0.23	124,149,163,178	5
7	CL	G	201	1/1	0.77	0.30	98,98,98,98	0
4	SO4	0	403	5/5	0.78	0.18	149,169,185,206	0
7	CL	С	403	1/1	0.79	0.11	99,99,99,99	0
4	SO4	А	201	5/5	0.79	0.18	119,139,149,160	0
7	CL	Е	202	1/1	0.81	0.31	80,80,80,80	0
4	SO4	Q	201	5/5	0.81	0.34	159,164,180,183	0
7	CL	М	201	1/1	0.82	0.19	91,91,91,91	0
4	SO4	G	202	5/5	0.82	0.28	86,122,130,164	0
4	SO4	K	202	5/5	0.83	0.21	104,127,147,190	0
4	SO4	D	201	5/5	0.87	0.20	85,116,131,154	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors(A^2)	Q < 0.9
5	\mathbf{PR}	R	401	1/1	0.89	0.08	214,214,214,214	0
6	NA	С	402	1/1	0.89	0.19	66,66,66,66	0
4	SO4	Е	201	5/5	0.89	0.28	140,165,184,193	0
4	SO4	Е	203	5/5	0.89	0.15	106,106,128,132	0
4	SO4	В	201	5/5	0.89	0.19	117,130,147,163	0
4	SO4	Н	202	5/5	0.90	0.15	97,110,129,131	0
6	NA	R	404	1/1	0.91	0.40	$67,\!67,\!67,\!67$	0
5	PR	0	401	1/1	0.91	0.07	210,210,210,210	0
6	NA	F	402	1/1	0.91	0.28	75,75,75,75	0
4	SO4	J	201	5/5	0.92	0.14	120,121,147,148	0
7	CL	L	403	1/1	0.92	0.34	91,91,91,91	0
6	NA	Ι	402	1/1	0.92	0.26	75,75,75,75	0
6	NA	0	402	1/1	0.92	0.34	73,73,73,73	0
5	PR	С	401	1/1	0.94	0.07	183,183,183,183	0
7	CL	R	403	1/1	0.94	0.15	89,89,89,89	0
5	PR	F	401	1/1	0.94	0.07	172,172,172,172	0
5	PR	L	401	1/1	0.96	0.07	178,178,178,178	0
6	NA	L	402	1/1	0.96	0.17	$55,\!55,\!55,\!55$	0
5	PR	Ι	401	1/1	0.98	0.07	168,168,168,168	0

6.5 Other polymers (i)

There are no such residues in this entry.

