

wwPDB EM Validation Summary Report (i)

Jul 3, 2024 - 10:01 am BST

PDB ID	:	6RM3
EMDB ID	:	EMD-4935
Title	:	Evolutionary compaction and adaptation visualized by the structure of the
		dormant microsporidian ribosome
Authors	:	Barandun, J.; Hunziker, M.; Vossbrinck, C.R.; Klinge, S.
Deposited on	:	2019-05-05
Resolution	:	3.40 Å(reported)
Based on initial model	:	4V88

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{f Entries})$		
Clashscore	158937	4297		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	S60	1244	9% 61%	31%	6% •
2	L70	119	67%	26%	6% •
3	LA0	237	5% 87%		11% •
4	SA0	264	46% 68%	6%	25%
5	LAA	148	• 95%		5%
6	SAA	104	85%		9% 7%
7	LB0	384	9%88%		8% •

Mol	Chain	Length	Quality of chain	
8	SB0	237	49% 76%	13% 11%
9	LBB	55	5%	5% 7%
10	CDD	0.4	51%	
10	SBB	94	82%	5% 13%
11	LC0	334	91%	7% •
12	SC0	237	78%	13% 8%
13	LCC	108	93%	• •
14	SCC	67	82%	12% 6%
15	LD0	295	90%	6% •
16	SD0	215	79%	7% •
17	LDD	111	9% 84%	8% 8%
18	SDD	68	62%	10% •
19	LE0	172	78%	8% •
20	SEO	262	46%	
20	SEO	202	91%	6% •
21	LEE	139	8 5%	• 12%
22	SEE	60	87%	7% 7%
23	LF0	239	88%	8% •
24	SF0	189	93%	7% •
25	m LFF	98	5% 91%	7% •
26	SFF	151	45% 55%	
27	LG0	200	31%	6% •
28	SG0	217	52%	17% 7%
29	LGG	106	83%	11% 6%
30	SGG	337	96%	16% ·
31	LH0	186	91%	8% •
32	SH0	161	64% 76%	20% •

Continue contract c	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
33	LHH	122	93%	5% •
34	LI0	217	91%	8%
35	SI0	166	83%	12% 5%
36	LII	95	91%	7% •
37	LJ0	171	88%	10% •
38	SJ0	189	81%	9% 10%
39	LJJ	93	97%	•
40	LL0	162	91%	9%
41	SL0	158	85%	15% •
42	LLL	52	94%	• •
43	LM0	105	82%	5% 13%
44	LMM	127	35% 5% 61%	
45	SM0	131	82%	8% 9%
46	LN0	204	92%	8%
47	SN0	149	87%	11% •
48	LNN	160	47% • 50%	
49	SNN	168	88%	11% •
50	LO0	192	85%	5% 10%
51	SO0	135	79%	19% ·
52	LOO	103	87%	8% 5%
53	LP0	169	6 9%	7% 9%
54	SP0	143	69% 14%	17%
55	LPP	89	• 87%	7% 7%
56	LQ0	193	90%	5% 5%
57	SQ0	155	90%	8% •

Mol	Chain	Length	Quality of chain	
.	TDO		14%	
58	LR0	175	86%	8% • 6%
59	SB0	119	80%	17%
00	5100	110		1776 •
60	LS0	180	93%	7%•
61	880	160	82%	
01	066	100	9%	10% 6%
62	LT0	160	92%	8% •
	~~~		92%	
63	ST0	133	86%	12% •
64	LUO	107	84%	7% 9%
	200		77%	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
65	SU0	101	81%	14% 5%
66	IVO	146	8%	01/
00	LVU	140		• 8%
67	SV0	67	87%	7% 6%
<u> </u>	TWO	01	34%	
08	LWU	91	86%	12% ••
69	SW0	127	94%	6%
	TTO	100	5%	
70	LX0	102	88%	• 9%
71	SX0	140	96%	
			14%	
72	LXX	73	71%	• 25%
73	LVO	130	19%	00/
10		105	55%	070 •
74	SY0	133	80%	14% 6%
75	170	100	42%	
(5	LZU	120	87%	11% ••
76	SZ0	123	66% 8%	26%
	OT TO	0.5	79%	
77	SK0	99	78%	8% 14%
78	L50	2484	65%	24% • 7%



# 2 Entry composition (i)

There are 80 unique types of molecules in this entry. The entry contains 164223 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 16S rRNA.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1	S60	1231	Total 26291	C 11769	N 4701	O 8590	Р 1231	0	0

• Molecule 2 is a RNA chain called 5S rRNA.

Mol	Chain	Residues	Atoms				AltConf	Trace	
2	L70	118	Total 2523	C 1128	N 460	0 817	Р 118	0	0

• Molecule 3 is a protein called uL2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
3	LA0	232	Total 1789	C 1124	N 336	0 321	S 8	0	0

• Molecule 4 is a protein called uS2.

Mol	Chain	Residues	Atoms				AltConf	Trace	
4	SA0	197	Total 1558	C 1002	N 262	O 285	S 9	0	0

• Molecule 5 is a protein called uL15.

Mol	Chain	Residues	Atoms				AltConf	Trace	
5	LAA	148	Total 1219	C 778	N 240	0 196	${S \atop 5}$	0	0

• Molecule 6 is a protein called eS26.

Mol	Chain	Residues		At	$\mathbf{oms}$			AltConf	Trace
6	SAA	97	Total 776	C 481	N 157	O 130	S 8	0	0



• Molecule 7 is a protein called uL3.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	LB0	368	Total 2912	C 1851	N 537	0 515	S 9	0	0

• Molecule 8 is a protein called eS1.

Mol	Chain	Residues		At	AltConf	Trace			
8	SB0	210	Total 1664	C 1050	N 297	O 306	S 11	0	0

• Molecule 9 is a protein called eL29.

Mol	Chain	Residues		Ato	$\mathbf{ms}$	AltConf	Trace		
9	LBB	51	Total 416	C 262	N 84	O 68	${S \over 2}$	0	0

• Molecule 10 is a protein called eS27.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	SBB	82	Total 637	C 404	N 107	0 118	S 8	0	0

• Molecule 11 is a protein called uL4.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	LC0	329	Total 2624	C 1656	N 482	0 474	S 12	0	0

• Molecule 12 is a protein called uS5.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
12	SC0	217	Total 1642	C 1042	N 287	O 308	${ m S}{ m 5}$	0	0

• Molecule 13 is a protein called eL30.

Mol	Chain	Residues		At	$\mathbf{oms}$			AltConf	Trace
13	LCC	104	Total 797	C 510	N 137	0 146	${S \atop 4}$	0	0

• Molecule 14 is a protein called eS28.



Mol	Chain	Residues		Ato	$\mathbf{ms}$	AltConf	Trace		
14	SCC	63	Total 495	C 305	N 97	O 90	$\frac{S}{3}$	0	0

• Molecule 15 is a protein called uL18.

Mol	Chain	Residues		Ate		AltConf	Trace		
15	LD0	282	Total 2320	C 1466	N 422	0 425	${f S}{7}$	0	0

• Molecule 16 is a protein called uS3.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	SD0	210	Total 1624	C 1052	N 279	0 286	S 7	0	0

• Molecule 17 is a protein called eL31.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	LDD	102	Total 821	C 526	N 150	0 140	${ m S}{ m 5}$	0	0

• Molecule 18 is a protein called uS14.

Mol	Chain	Residues		Ato	$\mathbf{ms}$	AltConf	Trace		
18	SDD	67	Total 541	C 343	N 96	O 97	${S \atop 5}$	0	0

• Molecule 19 is a protein called eL6.

Mol	Chain	Residues		At	AltConf	Trace			
19	LE0	172	Total 1410	C 899	N 229	0 274	S 8	0	0

• Molecule 20 is a protein called eS4.

Mol	Chain	Residues		At	AltConf	Trace			
20	SE0	256	Total 2056	C 1320	N 343	O 386	S 7	0	0

• Molecule 21 is a protein called eL32.



Mol	Chain	Residues		At	oms			AltConf	Trace
21	LEE	123	Total 1010	C 643	N 200	0 164	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called eS30.

Mol	Chain	Residues		Ato	$\mathbf{ms}$	AltConf	Trace		
22	SEE	56	Total 454	C 281	N 92	O 77	${S \over 4}$	0	0

• Molecule 23 is a protein called uL30.

Mol	Chain	Residues		Ate	AltConf	Trace			
23	LF0	230	Total 1884	C 1209	N 327	0 342	S 6	0	0

• Molecule 24 is a protein called uS7.

Mol	Chain	Residues	Atoms					AltConf	Trace
24	SF0	188	Total 1457	C 897	N 277	0 277	S 6	0	0

• Molecule 25 is a protein called eL33.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	LFF	96	Total 771	C 486	N 154	O 129	$\frac{S}{2}$	0	0

• Molecule 26 is a protein called eS31.

Mol	Chain	Residues	A	toms		AltConf	Trace
26	SFF	68	Total 266	C 198	N 68	0	0

• Molecule 27 is a protein called eL8.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
27	LG0	195	Total 1573	C 1010	N 272	O 283	S 8	0	0

• Molecule 28 is a protein called eS6.



Mol	Chain	Residues		At	AltConf	Trace			
28	SG0	201	Total 1587	C 990	N 305	0 286	S 6	0	0

• Molecule 29 is a protein called eL34.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	LGG	100	Total 814	C 506	N 170	0 133	${ m S}{ m 5}$	0	0

• Molecule 30 is a protein called RACK1.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	SGG	330	Total 2499	C 1575	N 414	O 497	S 13	0	0

• Molecule 31 is a protein called uL6.

Mol	Chain	Residues		A	toms	AltConf	Trace		
31	LH0	184	Total 1452	C 930	N 253	O 258	S 11	0	0

• Molecule 32 is a protein called eS7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
32	SH0	155	Total 1265	C 812	N 208	O 239	S 6	0	0

• Molecule 33 is a protein called uL29.

Mol	Chain	Residues	Atoms					AltConf	Trace
33	LHH	120	Total 1017	C 640	N 194	0 179	${\operatorname{S}}_{4}$	0	0
	131111	120	1017	640	194	179	4	, v	

• Molecule 34 is a protein called uL16.

Mol	Chain	Residues		At	AltConf	Trace			
34	LIO	216	Total 1743	C 1102	N 332	O 298	S 11	0	0

• Molecule 35 is a protein called eS8.



Mol	Chain	Residues		At	AltConf	Trace			
35	SI0	158	Total 1259	C 784	N 238	0 234	${ m S} { m 3}$	0	0

• Molecule 36 is a protein called eL36.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	LII	93	Total 765	C 489	N 148	O 126	${S \over 2}$	0	0

• Molecule 37 is a protein called uL5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	LJ0	168	Total 1348	C 854	N 246	0 241	${f S}{7}$	0	0

• Molecule 38 is a protein called uS4.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	SJ0	171	Total 1382	C 877	N 245	0 258	${S \over 2}$	0	0

• Molecule 39 is a protein called eL37.

Mol	Chain	Residues		At	AltConf	Trace			
39	LJJ	90	Total 719	C 450	N 152	0 110	S 7	0	0

• Molecule 40 is a protein called eL13.

Mol	Chain	Residues		At	AltConf	Trace			
40	LL0	162	Total 1328	C 831	N 265	O 225	${ m S} 7$	0	0

• Molecule 41 is a protein called uS17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	SL0	157	Total 1269	C 805	N 227	0 231	S 6	0	0

• Molecule 42 is a protein called eL39.



Mol	Chain	Residues		Atc	$\mathbf{ms}$	AltConf	Trace		
42	LLL	51	Total 445	C 283	N 93	O 68	S 1	0	0

• Molecule 43 is a protein called eL14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	LM0	91	Total 731	C 471	N 122	0 137	S 1	0	0

• Molecule 44 is a protein called eL40.

Mol	Chain	Residues		Ato	$\mathbf{ms}$	AltConf	Trace		
44	LMM	50	Total 402	C 241	N 87	O 70	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 45 is a protein called eS12.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	SMO	110	Total	С	Ν	0	S	0	0
40	SMU	119	929	582	168	174	5	0	0

• Molecule 46 is a protein called eL15.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
46	LN0	203	Total 1677	C 1046	N 342	0 280	S 9	0	0

• Molecule 47 is a protein called uS15.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	SN0	147	Total 1177	C 748	N 212	0 211	S 6	0	0

• Molecule 48 is a protein called MDF2.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
48	LNN	80	Total 577	C 345	N 125	O 107	0	0

• Molecule 49 is a protein called MDF1.



Mol	Chain	Residues		$\mathbf{A}^{\dagger}$	AltConf	Trace			
49	SNN	167	Total 1336	C 844	N 221	O 261	S 10	0	0

• Molecule 50 is a protein called uL13.

Mol	Chain	Residues		$\mathbf{A}$	AltConf	Trace			
50	LO0	173	Total 1371	C 885	N 249	O 226	S 11	0	0

• Molecule 51 is a protein called uS11.

Mol	Chain	Residues		At	$\mathbf{oms}$	AltConf	Trace		
51	SO0	131	Total 977	C 602	N 191	0 177	${f S}{7}$	0	0

• Molecule 52 is a protein called eL42.

Mol	Chain	Residues		At	oms			AltConf	Trace
52	LOO	98	Total 792	C 497	N 162	0 126	${ m S} 7$	0	0

• Molecule 53 is a protein called uL22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
53	LP0	154	Total 1235	C 778	N 242	0 210	$\frac{S}{5}$	0	0

• Molecule 54 is a protein called uS19.

Mol	Chain	Residues		At	oms			AltConf	Trace
54	SP0	118	Total 942	C 601	N 174	O 160	${f S}7$	0	0

• Molecule 55 is a protein called eL43.

Mol	Chain	Residues		At	oms	AltConf	Trace		
55	LPP	83	Total 642	C 403	N 122	0 111	S 6	0	0

• Molecule 56 is a protein called eL18.



Mol	Chain	Residues		At	oms			AltConf	Trace
56	LQ0	184	Total 1460	C 920	N 273	O 260	${ m S} 7$	0	0

• Molecule 57 is a protein called uS9.

Mol	Chain	Residues		At	oms			AltConf	Trace
57	SQ0	152	Total 1205	С 773	N 208	0 215	S 9	0	0

• Molecule 58 is a protein called eL19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
58	LR0	165	Total 1342	C 840	N 263	0 232	${f S}{7}$	0	0

• Molecule 59 is a protein called eS17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
59	SR0	117	Total 958	C 604	N 173	0 176	${ m S}{ m 5}$	0	0

• Molecule 60 is a protein called eL20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
60	LS0	179	Total 1472	C 952	N 251	O 265	$\frac{S}{4}$	0	0

• Molecule 61 is a protein called uS13.

Mol	Chain	Residues		At	oms			AltConf	Trace
61	SS0	151	Total 1186	C 731	N 237	O 209	S 9	0	0

• Molecule 62 is a protein called eL21.

Mol	Chain	Residues		At	oms			AltConf	Trace
62	LT0	159	Total 1310	C 844	N 242	0 223	S 1	0	0

• Molecule 63 is a protein called eS19.



Mol	Chain	Residues		At	oms			AltConf	Trace
63	ST0	131	Total 1048	C 663	N 173	O 204	S 8	0	0

• Molecule 64 is a protein called eL22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
64	LU0	97	Total 790	C 502	N 138	0 148	${S \over 2}$	0	0

• Molecule 65 is a protein called uS10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
65	SU0	96	Total 764	C 495	N 126	0 141	$\frac{S}{2}$	0	0

• Molecule 66 is a protein called uL14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
66	LV0	135	Total 1040	C 650	N 203	O 180	${ m S} 7$	0	0

• Molecule 67 is a protein called eS21.

Mol	Chain	Residues		Ato	$\mathbf{ms}$	AltConf	Trace		
67	SV0	63	Total 491	C 304	N 88	O 97	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 68 is a protein called eL24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
68	LW0	90	Total 667	C 415	N 131	O 120	S 1	0	0

• Molecule 69 is a protein called uS8.

Mol	Chain	Residues		At	oms			AltConf	Trace
69	SW0	127	Total 1018	C 645	N 188	0 179	S 6	0	0

• Molecule 70 is a protein called uL23.



Mol	Chain	Residues		At	oms	AltConf	Trace		
70	LX0	93	Total 734	C 466	N 137	0 127	${f S}$ $4$	0	0

• Molecule 71 is a protein called uS12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
71	SX0	138	Total 1069	C 687	N 193	0 187	${ m S}_2$	0	0

• Molecule 72 is a protein called msL1.

Mol	Chain	Residues		Ato	$\mathbf{ms}$	AltConf	Trace		
72	LXX	55	Total 462	C 297	N 84	O 80	S 1	0	0

• Molecule 73 is a protein called uL24.

Mol	Chain	Residues		At	oms			AltConf	Trace
73	LY0	134	Total	С	Ν	0	S	0	0
	210	101	1088	682	203	198	5	Ŭ	Ŭ

• Molecule 74 is a protein called eS24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
74	SY0	125	Total 1025	C 637	N 198	0 186	S 4	0	0

• Molecule 75 is a protein called eL27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
75	LZ0	125	Total 1006	C 647	N 178	0 176	${ m S}{ m 5}$	0	0

• Molecule 76 is a protein called eS25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
76	SZ0	91	Total 724	C 462	N 128	0 131	${ m S} { m 3}$	0	0

• Molecule 77 is a protein called eS10.



Mol	Chain	Residues		At	oms	AltConf	Trace		
77	SK0	85	Total 712	$\begin{array}{c} \mathrm{C} \\ 456 \end{array}$	N 118	O 135	${ m S} { m 3}$	0	0

• Molecule 78 is a RNA chain called 23S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
78	L50	2313	Total 49259	C 22082	N 8715	O 16149	Р 2313	0	0

• Molecule 79 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
79	$\mathbf{S60}$	49	TotalMg4949	0
79	L70	1	Total Mg 1 1	0
79	LJJ	1	Total Mg 1 1	0
79	LV0	1	Total Mg 1 1	0
79	L50	122	Total         Mg           122         122	0

• Molecule 80 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
80	SAA	1	Total Zn 1 1	0
80	SBB	1	Total Zn 1 1	0
80	SDD	1	Total Zn 1 1	0
80	LGG	1	Total Zn 1 1	0
80	LJJ	1	Total Zn 1 1	0
80	LMM	1	Total Zn 1 1	0
80	SNN	1	Total Zn 1 1	0
80	LOO	1	Total Zn 1 1	0



Mol	Chain	Residues	Atoms	AltConf
80	LPP	1	Total Zn 1 1	0



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain S60: 61% 31% 6% <u>1819</u>
- Molecule 1: 16S rRNA





#### 

 $\bullet$  Molecule 5: uL15



 $\bullet$  Molecule 9: eL29











 $\bullet$  Molecule 23: uL30





![](_page_24_Picture_4.jpeg)

![](_page_25_Figure_3.jpeg)

![](_page_25_Picture_4.jpeg)

![](_page_26_Figure_3.jpeg)

![](_page_26_Picture_4.jpeg)

![](_page_27_Figure_3.jpeg)

![](_page_28_Figure_3.jpeg)

![](_page_28_Picture_4.jpeg)

![](_page_29_Figure_3.jpeg)

 $\bullet$  Molecule 50: uL13

![](_page_30_Figure_3.jpeg)

![](_page_30_Picture_4.jpeg)

![](_page_31_Figure_3.jpeg)

![](_page_31_Picture_4.jpeg)

![](_page_32_Figure_3.jpeg)

![](_page_32_Picture_4.jpeg)

![](_page_33_Figure_3.jpeg)

![](_page_33_Picture_4.jpeg)

![](_page_34_Figure_3.jpeg)

![](_page_34_Picture_4.jpeg)

![](_page_35_Figure_3.jpeg)

![](_page_36_Figure_3.jpeg)

![](_page_37_Picture_3.jpeg)

![](_page_37_Picture_4.jpeg)

# 4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	185445	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TALOS ARCTICA	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	5.55	Depositor
Minimum defocus (nm)	4000	Depositor
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.126	Depositor
Minimum map value	-0.072	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.005	Depositor
Recommended contour level	0.0199	Depositor
Map size (Å)	408.00003, 408.00003, 408.00003	wwPDB
Map dimensions	340, 340, 340	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.2, 1.2, 1.2	Depositor

![](_page_38_Picture_5.jpeg)

# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Ullalli	RMSZ	# Z  > 5	RMSZ	# Z  > 5	
1	S60	0.53	0/29436	1.13	233/45858~(0.5%)	
2	L70	0.61	0/2824	1.25	32/4400~(0.7%)	
3	LA0	0.35	0/1828	0.53	0/2465	
4	SA0	0.30	0/1590	0.48	0/2152	
5	LAA	0.34	0/1253	0.48	0/1676	
6	SAA	0.31	0/788	0.46	0/1049	
7	LB0	0.33	0/2966	0.49	0/3977	
8	SB0	0.27	0/1687	0.48	0/2259	
9	LBB	0.33	0/420	0.50	0/552	
10	SBB	0.28	0/649	0.49	0/868	
11	LC0	0.31	0/2669	0.49	0/3579	
12	SC0	0.28	0/1668	0.48	0/2251	
13	LCC	0.30	0/808	0.46	0/1087	
14	SCC	0.26	0/497	0.50	0/663	
15	LD0	0.32	0/2357	0.47	0/3141	
16	SD0	0.28	0/1648	0.52	0/2220	
17	LDD	0.31	0/829	0.49	0/1102	
18	SDD	0.30	0/552	0.47	0/739	
19	LE0	0.28	0/1428	0.49	0/1916	
20	SE0	0.30	0/2092	0.52	0/2817	
21	LEE	0.34	0/1032	0.50	0/1383	
22	SEE	0.28	0/457	0.46	0/600	
23	LF0	0.33	0/1914	0.46	0/2557	
24	SF0	0.27	0/1470	0.47	0/1971	
25	LFF	0.35	0/781	0.56	0/1048	
26	SFF	0.25	0/265	0.49	0/326	
27	LG0	0.29	0/1599	0.51	1/2142~(0.0%)	
28	SG0	0.28	0/1611	0.48	1/2152~(0.0%)	
29	LGG	0.31	0/825	0.49	0/1096	
30	SGG	0.28	0/2538	0.56	0/3434	
31	LH0	0.30	0/1476	0.52	0/1982	
32	SH0	0.29	0/1282	0.49	0/1721	

![](_page_39_Picture_8.jpeg)

Mal	Chain	Bond lengths		Bond angles		
	Chain	RMSZ	# Z  > 5	RMSZ	# Z  > 5	
33	LHH	0.29	0/1030	0.47	0/1371	
34	LI0	0.33	0/1777	0.47	0/2376	
35	SI0	0.30	0/1275	0.50	0/1695	
36	LII	0.28	0/774	0.44	0/1025	
37	LJ0	0.30	0/1367	0.48	0/1823	
38	SJ0	0.28	0/1403	0.46	0/1888	
39	LJJ	0.34	0/734	0.49	0/973	
40	LL0	0.31	0/1350	0.48	1/1803~(0.1%)	
41	SL0	0.31	0/1291	0.49	0/1731	
42	LLL	0.32	0/454	0.46	0/602	
43	LM0	0.30	0/736	0.46	0/984	
44	LMM	0.26	0/403	0.45	0/532	
45	SM0	0.27	0/937	0.49	0/1255	
46	LN0	0.34	0/1708	0.48	0/2289	
47	SN0	0.27	0/1197	0.46	0/1603	
48	LNN	0.27	0/578	0.50	1/770~(0.1%)	
49	SNN	0.29	0/1357	0.53	0/1835	
50	LO0	0.33	0/1400	0.44	0/1871	
51	SO0	0.27	0/987	0.49	0/1322	
52	LOO	0.30	0/801	0.49	0/1058	
53	LP0	0.33	0/1255	0.47	0/1686	
54	SP0	0.28	0/963	0.45	0/1294	
55	LPP	0.34	0/651	0.50	0/866	
56	LQ0	0.34	0/1478	0.48	0/1975	
57	SQ0	0.26	0/1222	0.50	0/1633	
58	LR0	0.31	0/1353	0.43	0/1787	
59	SR0	0.26	0/969	0.45	0/1297	
60	LS0	0.34	0/1504	0.47	1/2024~(0.0%)	
61	SS0	0.27	0/1202	0.51	0/1609	
62	LT0	0.36	0/1339	0.49	0/1795	
63	ST0	0.27	0/1063	0.49	0/1428	
64	LU0	0.30	0/802	0.48	0/1074	
65	SU0	0.28	0/779	0.50	0/1055	
66	LV0	0.33	0/1056	0.51	0/1412	
67	SV0	0.29	0/496	0.54	0/667	
68	LW0	0.33	0/674	0.58	2/905~(0.2%)	
69	SW0	0.27	0/1037	0.45	0/1389	
70	LX0	0.31	0/743	0.47	0/994	
71	SX0	0.31	0/1086	0.48	0/1450	
72	LXX	0.29	0/464	0.40	0/609	
73	LY0	0.31	0/1104	0.46	0/1470	
74	SY0	0.27	0/1036	0.46	0/1379	
75	LZ0	0.29	$0/10\overline{19}$	0.53	0/1358	

![](_page_40_Picture_4.jpeg)

Mal	Chain	Bond lengths		Bond angles		
		RMSZ	# Z  > 5	RMSZ	# Z  > 5	
76	SZ0	0.26	0/730	0.50	0/969	
77	SK0	0.28	0/725	0.56	0/973	
78	L50	0.65	0/55133	1.14	371/85837~(0.4%)	
All	All	0.48	0/174681	0.90	643/252924~(0.3%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
25	LFF	0	1

There are no bond length outliers.

The worst 5 of 643 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	S60	928	С	N1-C2-O2	11.63	125.88	118.90
1	S60	1025	U	N1-C2-O2	11.18	130.62	122.80
78	L50	1870	U	C2-N1-C1'	10.98	130.88	117.70
78	L50	2253	С	C2-N1-C1'	10.92	130.81	118.80
78	L50	1217	U	C2-N1-C1'	10.88	130.75	117.70

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
25	LFF	12	ARG	Peptide

#### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	S60	26291	0	13176	105	0
2	L70	2523	0	1273	7	0
3	LA0	1789	0	1824	15	0

![](_page_41_Picture_16.jpeg)

		i previous		<b>TT</b> (111)		Q Q1 1
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
4	SAU	1558	0	1596	12	0
5	LAA	1219	0	1247	4	0
6	SAA	776	0	814	6	0
7	LB0	2912	0	3040	16	0
8	SB0	1664	0	1734	22	0
9	LBB	416	0	458	2	0
10	SBB	637	0	632	3	0
11	LC0	2624	0	2709	18	0
12	SC0	1642	0	1717	21	0
13	LCC	797	0	844	3	0
14	SCC	495	0	517	9	0
15	LD0	2320	0	2370	14	0
16	SD0	1624	0	1769	10	0
17	LDD	821	0	911	6	0
18	SDD	541	0	532	5	0
19	LE0	1410	0	1449	8	0
20	SE0	2056	0	2113	10	0
21	LEE	1010	0	1072	4	0
22	SEE	454	0	492	2	0
23	LF0	1884	0	1972	13	0
24	SF0	1457	0	1510	13	0
25	LFF	771	0	830	5	0
26	SFF	266	0	145	0	0
27	LG0	1573	0	1679	7	0
28	SG0	1587	0	1605	22	0
29	LGG	814	0	878	8	0
30	SGG	2499	0	2465	31	0
31	LH0	1452	0	1531	8	0
32	SH0	1265	0	1313	18	0
33	LHH	1017	0	1096	5	0
34	LIO	1743	0	1792	12	0
35	SI0	1259	0	1305	13	0
36	LII	765	0	860	7	0
37	LJ0	1348	0	1406	13	0
38	SJ0	1382	0	1431	10	0
39	LJJ	719	0	771	0	0
40	LLO	1328	0	1417	9	0
41	SL0	1269	0	1311	17	0
42	LLL	445	0	482	2	0
43	LM0	731	0	785	3	0
44	LMM	402	0	433	5	0
45	SM0	929	0	967	7	0

 $\alpha$ ntia 1 [

![](_page_42_Picture_6.jpeg)

Conti	nuea fron	<i>previous</i>		<b>TT</b> (111)		a al l
MOI	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clasnes
46	LNO	1677	0	1726	13	0
47	SNO	1177	0	1237	16	0
48	LNN	577	0	496	4	0
49	SNN	1336	0	1349	12	0
50	LOO	1371	0	1424	5	0
51	SO0	977	0	1032	16	0
52	LOO	792	0	889	6	0
53	LP0	1235	0	1300	6	0
54	SP0	942	0	975	12	0
55	LPP	642	0	673	4	0
56	LQ0	1460	0	1579	7	0
57	SQ0	1205	0	1285	9	0
58	LR0	1342	0	1462	11	0
59	SR0	958	0	1002	13	0
60	LS0	1472	0	1503	9	0
61	SS0	1186	0	1224	10	0
62	LT0	1310	0	1368	9	0
63	ST0	1048	0	1062	14	0
64	LU0	790	0	814	4	0
65	SU0	764	0	788	8	0
66	LV0	1040	0	1102	3	0
67	SV0	491	0	492	3	0
68	LW0	667	0	676	7	0
69	SW0	1018	0	1041	5	0
70	LX0	734	0	796	2	0
71	SX0	1069	0	1154	3	0
72	LXX	462	0	518	3	0
73	LY0	1088	0	1124	8	0
74	SY0	1025	0	1090	13	0
75	LZ0	1006	0	1080	9	0
76	SZ0	724	0	800	7	0
77	SK0	712	0	709	5	0
78	L50	49259	0	24706	110	0
79	L50	122	0	0	0	0
79	L70	1	0	0	0	0
79	LJJ	1	0	0	0	0
79	LV0	1	0	0	0	0
79	S60	49	0	0	0	0
80	LGG	1	0	0	0	0
80	LJJ	1	0	0	0	0
80	LMM	1	0	0	0	0
80	LOO	1	0	0	0	0

 $\alpha$ 1 0 *,* ·

![](_page_43_Picture_6.jpeg)

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
80	LPP	1	0	0	0	0
80	SAA	1	0	0	0	0
80	SBB	1	0	0	0	0
80	SDD	1	0	0	0	0
80	SNN	1	0	0	0	0
All	All	164223	0	128749	749	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

The worst 5 of 749 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:S60:500:G:H1	1:S60:526:U:H3	1.11	0.98
1:S60:124:G:H22	1:S60:135:U:H3	1.40	0.69
7:LB0:283:HIS:HD2	7:LB0:314:GLU:HG3	1.61	0.65
16:SD0:40:ARG:HB2	16:SD0:47:LYS:HB2	1.78	0.65
1:S60:647:U:H3'	1:S60:648:G:H21	1.62	0.65

There are no symmetry-related clashes.

## 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	LA0	230/237~(97%)	216~(94%)	14 (6%)	0	100	100
4	SA0	195/264~(74%)	189~(97%)	6 (3%)	0	100	100
5	LAA	146/148~(99%)	135~(92%)	11 (8%)	0	100	100
6	SAA	95/104~(91%)	89~(94%)	6 (6%)	0	100	100
7	LB0	364/384~(95%)	353~(97%)	11 (3%)	0	100	100

![](_page_44_Picture_15.jpeg)

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
8	SB0	206/237~(87%)	195 (95%)	11 (5%)	0	100	100
9	LBB	49/55~(89%)	45 (92%)	4 (8%)	0	100	100
10	SBB	80/94~(85%)	76~(95%)	4(5%)	0	100	100
11	LC0	327/334~(98%)	312 (95%)	15 (5%)	0	100	100
12	SC0	215/237~(91%)	206~(96%)	9 (4%)	0	100	100
13	LCC	102/108~(94%)	101 (99%)	1 (1%)	0	100	100
14	SCC	61/67~(91%)	58 (95%)	3 (5%)	0	100	100
15	LD0	280/295~(95%)	273 (98%)	7 (2%)	0	100	100
16	SD0	208/215~(97%)	203 (98%)	5 (2%)	0	100	100
17	LDD	100/111~(90%)	91 (91%)	9 (9%)	0	100	100
18	SDD	65/68~(96%)	59 (91%)	6 (9%)	0	100	100
19	LE0	170/172~(99%)	163 (96%)	7 (4%)	0	100	100
20	SE0	254/262~(97%)	242 (95%)	11 (4%)	1 (0%)	34	67
21	LEE	121/139~(87%)	118 (98%)	3 (2%)	0	100	100
22	SEE	54/60~(90%)	52 (96%)	2 (4%)	0	100	100
23	LF0	228/239~(95%)	216 (95%)	12 (5%)	0	100	100
24	SF0	186/189~(98%)	182 (98%)	4 (2%)	0	100	100
25	LFF	94/98~(96%)	90 (96%)	4 (4%)	0	100	100
26	SFF	66/151~(44%)	65~(98%)	1 (2%)	0	100	100
27	LG0	193/200~(96%)	186 (96%)	7 (4%)	0	100	100
28	SG0	197/217~(91%)	188 (95%)	9 (5%)	0	100	100
29	LGG	98/106~(92%)	94 (96%)	4 (4%)	0	100	100
30	SGG	328/337~(97%)	314 (96%)	14 (4%)	0	100	100
31	LH0	182/186~(98%)	172 (94%)	10 (6%)	0	100	100
32	SH0	153/161~(95%)	145 (95%)	8 (5%)	0	100	100
33	LHH	118/122~(97%)	113 (96%)	5 (4%)	0	100	100
34	LIO	214/217~(99%)	199 (93%)	15 (7%)	0	100	100
35	SIO	$\overline{156/166}~(94\%)$	150 (96%)	6 (4%)	0	100	100
36	LII	91/95~(96%)	88 (97%)	3 (3%)	0	100	100
37	LJ0	166/171~(97%)	159 (96%)	7 (4%)	0	100	100
38	SJ0	169/189~(89%)	162 (96%)	7 (4%)	0	100	100

![](_page_45_Picture_6.jpeg)

Chain Favoured Percentiles Mol Analysed Allowed Outliers 100 100 39 LJJ 88/93 (95%) 84 (96%) 4(4%)0 100 160/162 (99%) 100 40 LL0 150(94%)10(6%)0 100 SL0 155/158 (98%) 147 (95%)8 (5%) 0 100 41 42LLL49/52 (94%)46 (94%) 3(6%)0 100 100 100 LM0 100 4387/105 (83%) 83 (95%) 4(5%)0 44 LMM 48/127 (38%) 45 (94%) 3(6%)0 100 100 100 100 45SM0117/131 (89%) 113(97%)4(3%)0 LN0 201/204 (98%) 10(5%)100 100 46 191 (95%)0 47 SN0 145/149 (97%) 139(96%)6(4%)0 100 100 100 100 48LNN 74/160 (46%) 67 (90%) 7(10%)0 100 100 49SNN 165/168 (98%) 152(92%)13(8%)0 50LO0 169/192 (88%) 165(98%)4(2%)0 100 100 100 SO0124 (96%)0 100 51129/135 (96%)5(4%)100 100 52LOO 96/103~(93%)94 (98%) 2(2%)0 LP0152/169 (90%) 147 (97%) 5(3%)100 100 530 SP0100 100 54116/143 (81%) 112(97%)4(3%)0 LPP 0 5581/89 (91%) 76 (94%) 5(6%)100 100 182/193 (94%) 169(93%)13(7%)100 100 56LQ0 0 100 100 57SQ0 150/155 (97%) 143 (95%)7(5%)0 100 100 58LR0 163/175 (93%) 160(98%)3(2%)0 59SR0115/119 (97%) 112(97%)3(3%)0 100 100 100 167 (94%) 100 60 LS0 177/180 (98%) 10(6%)0 SS0100 61149/160 (93%) 142(95%)7(5%)0 100 62 LT0 157/160 (98%) 151 (96%) 6(4%)0 100 100 100 100 63 ST0 129/133 (97%) 124 (96%) 5(4%)0 64 LU0 95/107 (89%) 91 (96%) 4(4%)0 100 100 SU0100 100 6594/101 (93%) 86 (92%) 8 (8%) 0 LV0 133/146 (91%) 126 (95%)7(5%)0 100 100 66 67 SV0 61/67 (91%) 56(92%)5(8%)0 100 100 LW0 1(1%)68 88/91 (97%)84 (96%) 3(3%)1444

Continued from previous page...

SW0

125/127 (98%)

69

Continued on next page...

100

100

0

![](_page_46_Picture_6.jpeg)

4(3%)

121 (97%)

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
70	LX0	91/102~(89%)	84 (92%)	7 (8%)	0	100	100
71	SX0	136/140~(97%)	134 (98%)	2 (2%)	0	100	100
72	LXX	53/73~(73%)	53~(100%)	0	0	100	100
73	LY0	132/139~(95%)	126~(96%)	6 (4%)	0	100	100
74	SY0	121/133~(91%)	115~(95%)	6 (5%)	0	100	100
75	LZ0	123/126~(98%)	114 (93%)	9~(7%)	0	100	100
76	SZ0	89/123~(72%)	84 (94%)	5~(6%)	0	100	100
77	SK0	83/99~(84%)	82 (99%)	1 (1%)	0	100	100
All	All	10639/11624~(92%)	10158 (96%)	479 (4%)	2(0%)	100	100

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
68	LW0	73	PRO
20	SE0	23	ILE

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
3	LA0	193/197~(98%)	190~(98%)	3~(2%)	62	81
4	SA0	179/237~(76%)	179~(100%)	0	100	100
5	LAA	126/126~(100%)	125~(99%)	1 (1%)	81	91
6	SAA	86/93~(92%)	84~(98%)	2(2%)	50	74
7	LB0	318/334~(95%)	317~(100%)	1 (0%)	92	97
8	SB0	186/210~(89%)	186 (100%)	0	100	100
9	LBB	43/47~(92%)	43 (100%)	0	100	100
10	SBB	70/82~(85%)	69~(99%)	1 (1%)	67	83
11	LC0	287/292 (98%)	286 (100%)	1 (0%)	92	97
12	SC0	179/198~(90%)	178~(99%)	1 (1%)	86	94

![](_page_47_Picture_12.jpeg)

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
13	LCC	88/92~(96%)	88 (100%)	0	100	100
14	SCC	52/56~(93%)	52~(100%)	0	100	100
15	LD0	247/256~(96%)	247 (100%)	0	100	100
16	SD0	185/189~(98%)	183~(99%)	2 (1%)	73	86
17	LDD	93/101~(92%)	93~(100%)	0	100	100
18	SDD	58/59~(98%)	58 (100%)	0	100	100
19	LE0	162/163~(99%)	160 (99%)	2 (1%)	71	85
20	SE0	231/237~(98%)	230 (100%)	1 (0%)	91	95
21	LEE	109/122~(89%)	109 (100%)	0	100	100
22	SEE	47/49~(96%)	46 (98%)	1 (2%)	53	76
23	LF0	208/216~(96%)	208 (100%)	0	100	100
24	SF0	162/163~(99%)	162 (100%)	0	100	100
25	LFF	86/88~(98%)	86 (100%)	0	100	100
27	LG0	175/180~(97%)	175 (100%)	0	100	100
28	SG0	163/189~(86%)	163 (100%)	0	100	100
29	LGG	90/94~(96%)	89 (99%)	1 (1%)	73	86
30	SGG	280/295~(95%)	277 (99%)	3 (1%)	73	86
31	LH0	162/164~(99%)	161 (99%)	1 (1%)	86	94
32	SH0	148/153~(97%)	148 (100%)	0	100	100
33	LHH	114/116~(98%)	114 (100%)	0	100	100
34	LI0	183/184~(100%)	182 (100%)	1 (0%)	88	94
35	SI0	136/144~(94%)	135~(99%)	1 (1%)	84	92
36	LII	83/85~(98%)	83 (100%)	0	100	100
37	LJ0	148/151~(98%)	148 (100%)	0	100	100
38	SJ0	157/173~(91%)	157 (100%)	0	100	100
39	LJJ	76/79~(96%)	76 (100%)	0	100	100
40	LL0	144/144~(100%)	144 (100%)	0	100	100
41	SL0	141/142~(99%)	141 (100%)	0	100	100
42	LLL	46/47~(98%)	46 (100%)	0	100	100
43	LM0	85/96~(88%)	85 (100%)	0	100	100
44	LMM	46/112 (41%)	46 (100%)	0	100	100

![](_page_48_Picture_6.jpeg)

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
45	SM0	100/112~(89%)	100 (100%)	0	100	100
46	LN0	176/177~(99%)	$176\ (100\%)$	0	100	100
47	SN0	134/136~(98%)	134~(100%)	0	100	100
48	LNN	46/153~(30%)	46 (100%)	0	100	100
49	SNN	158/159~(99%)	158 (100%)	0	100	100
50	LO0	148/177~(84%)	148 (100%)	0	100	100
51	SO0	102/105~(97%)	101 (99%)	1 (1%)	76	88
52	LOO	89/93~(96%)	89 (100%)	0	100	100
53	LP0	133/148~(90%)	133 (100%)	0	100	100
54	SP0	103/122~(84%)	103 (100%)	0	100	100
55	LPP	67/72~(93%)	67~(100%)	0	100	100
56	LQ0	166/174~(95%)	166 (100%)	0	100	100
57	SQ0	132/134~(98%)	132 (100%)	0	100	100
58	LR0	141/151~(93%)	140 (99%)	1 (1%)	84	92
59	SR0	108/110~(98%)	106 (98%)	2(2%)	57	78
60	LS0	162/163~(99%)	161 (99%)	1 (1%)	86	94
61	SS0	129/137~(94%)	129 (100%)	0	100	100
62	LT0	141/142~(99%)	141 (100%)	0	100	100
63	ST0	119/121~(98%)	119 (100%)	0	100	100
64	LU0	90/99~(91%)	90 (100%)	0	100	100
65	SU0	87/92~(95%)	87~(100%)	0	100	100
66	LV0	110/118~(93%)	110 (100%)	0	100	100
67	SV0	56/60~(93%)	56 (100%)	0	100	100
68	LW0	67/82~(82%)	67~(100%)	0	100	100
69	SW0	111/111 (100%)	111 (100%)	0	100	100
70	LX0	81/90 (90%)	81 (100%)	0	100	100
71	SX0	116/119 (98%)	116 (100%)	0	100	100
72	LXX	49/66~(74%)	49 (100%)	0	100	100
73	LY0	119/124 (96%)	119 (100%)	0	100	100
74	SY0	116/123~(94%)	116 (100%)	0	100	100
75	LZ0	110/111 (99%)	108 (98%)	2 (2%)	59	79

![](_page_49_Picture_6.jpeg)

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
76	SZ0	84/114~(74%)	84 (100%)	0	100	100
77	SK0	80/92~(87%)	80 (100%)	0	100	100
All	All	9402/10142~(93%)	9372 (100%)	30~(0%)	92	97

5 of 30 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
20	SE0	5	ARG
60	LS0	117	ARG
30	SGG	152	ASN
75	LZ0	48	MET
58	LR0	68	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. There are no such side chains identified.

### 5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	S60	1224/1244~(98%)	311~(25%)	11 (0%)
2	L70	117/119~(98%)	24 (20%)	2(1%)
78	L50	2296/2484~(92%)	483 (21%)	17~(0%)
All	All	3637/3847~(94%)	818 (22%)	30~(0%)

5 of 818 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	S60	10	А
1	S60	16	С
1	S60	32	U
1	S60	33	U
1	S60	40	G

5 of 30 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
78	L50	308	G
78	L50	2353	А
78	L50	636	G
78	L50	2481	G

![](_page_50_Picture_15.jpeg)

Mol	Chain	$\mathbf{Res}$	Type
78	L50	1337	А

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

## 5.6 Ligand geometry (i)

Of 183 ligands modelled in this entry, 183 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

![](_page_51_Picture_21.jpeg)

# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-4935. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

## 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map

![](_page_52_Picture_8.jpeg)

The images above show the map projected in three orthogonal directions.

## 6.2 Central slices (i)

#### 6.2.1 Primary map

![](_page_52_Picture_12.jpeg)

X Index: 170

![](_page_52_Figure_14.jpeg)

![](_page_52_Picture_15.jpeg)

Z Index: 170

The images above show central slices of the map in three orthogonal directions.

## 6.3 Largest variance slices (i)

#### 6.3.1 Primary map

![](_page_53_Picture_6.jpeg)

X Index: 192

Y Index: 178

Z Index: 136

The images above show the largest variance slices of the map in three orthogonal directions.

### 6.4 Orthogonal standard-deviation projections (False-color) (i)

#### 6.4.1 Primary map

![](_page_53_Picture_13.jpeg)

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

![](_page_53_Picture_15.jpeg)

## 6.5 Orthogonal surface views (i)

6.5.1 Primary map

![](_page_54_Picture_5.jpeg)

The images above show the 3D surface view of the map at the recommended contour level 0.0199. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

## 6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

![](_page_54_Picture_9.jpeg)

## 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

## 7.1 Map-value distribution (i)

![](_page_55_Figure_6.jpeg)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

![](_page_55_Picture_8.jpeg)

## 7.2 Volume estimate (i)

![](_page_56_Figure_4.jpeg)

The volume at the recommended contour level is 750  $\rm nm^3;$  this corresponds to an approximate mass of 678 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

![](_page_56_Picture_7.jpeg)

## 7.3 Rotationally averaged power spectrum (i)

![](_page_57_Figure_4.jpeg)

*Reported resolution corresponds to spatial frequency of 0.294  $\text{\AA}^{-1}$ 

![](_page_57_Picture_6.jpeg)

## 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

### 8.1 FSC (i)

![](_page_58_Figure_6.jpeg)

*Reported resolution corresponds to spatial frequency of 0.294  $\text{\AA}^{-1}$ 

![](_page_58_Picture_8.jpeg)

## 8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.40	-	-
Author-provided FSC curve	3.38	3.86	3.43
Unmasked-calculated*	-	-	-

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps.

![](_page_59_Picture_6.jpeg)

## 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-4935 and PDB model 6RM3. Per-residue inclusion information can be found in section 3 on page 19.

## 9.1 Map-model overlay (i)

![](_page_60_Picture_6.jpeg)

The images above show the 3D surface view of the map at the recommended contour level 0.0199 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

![](_page_60_Picture_8.jpeg)

### 9.2 Q-score mapped to coordinate model (i)

![](_page_61_Figure_4.jpeg)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

#### 9.3 Atom inclusion mapped to coordinate model (i)

![](_page_61_Figure_7.jpeg)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0199).

![](_page_61_Picture_9.jpeg)

## 9.4 Atom inclusion (i)

![](_page_62_Figure_4.jpeg)

At the recommended contour level, 70% of all backbone atoms, 67% of all non-hydrogen atoms, are inside the map.

![](_page_62_Picture_6.jpeg)

1.0

0.0 <0.0

## 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0199) and Q-score for the entire model and for each chain.

$\mathbf{Chain}$	Atom inclusion	Q-score
All	0.6670	0.4930
L50	0.8710	0.5410
L70	0.8930	0.5290
LA0	0.7610	0.5440
LAA	0.7980	0.5560
LB0	0.7240	0.5410
LBB	0.7190	0.5300
LC0	0.7000	0.5260
LCC	0.5560	0.5070
LD0	0.6750	0.5050
LDD	0.6980	0.5330
LE0	0.2290	0.3880
LEE	0.7640	0.5400
m LF0	0.7150	0.5270
LFF	0.7430	0.5390
LG0	0.4980	0.4720
LGG	0.7080	0.5330
LH0	0.6050	0.4990
LHH	0.6750	0.5190
LIO	0.7180	0.5340
LII	0.6220	0.5210
LJ0	0.5170	0.4740
LJJ	0.8110	0.5590
LL0	0.7100	0.5370
LLL	0.7850	0.5470
LM0	0.4960	0.4610
LMM	0.6450	0.5130
LN0	0.8100	0.5620
LNN	0.3120	0.4670
LO0	0.7140	0.5400
LOO	0.6320	0.5320
LP0	0.7680	0.5570
LPP	0.7210	0.5460
LQ0	0.7310	0.5420
LR0	0.6390	0.5080

![](_page_63_Picture_7.jpeg)

Chain	Atom inclusion	Q-score
LS0	0.7180	0.5300
LT0	0.7190	0.5320
LU0	0.4970	0.4350
LV0	0.7070	0.5410
LW0	0.5640	0.4960
LX0	0.7120	0.5350
LXX	0.5510	0.5010
LY0	0.5960	0.4940
LZ0	0.4350	0.4490
S60	0.7430	0.4810
SA0	0.3490	0.4270
SAA	0.6040	0.4950
SB0	0.3890	0.4220
SBB	0.3750	0.4460
SC0	0.5300	0.4890
SCC	0.2060	0.3790
SD0	0.2330	0.3800
SDD	0.3330	0.4170
SE0	0.4290	0.4410
SEE	0.3480	0.4500
SF0	0.2460	0.3870
SFF	0.0040	0.0910
SG0	0.3750	0.4010
SGG	0.0780	0.2750
SH0	0.2880	0.3830
SI0	0.6460	0.5110
SJ0	0.4880	0.4450
SK0	0.1580	0.3120
SL0	0.5630	0.4950
SM0	0.0190	0.1750
SN0	0.5160	0.4810
SNN	0.1940	0.4290
SO0	0.5120	0.4770
SP0	0.2130	0.3760
SQ0	0.2450	0.3710
SR0	0.1810	0.3510
SS0	0.1700	0.3700
ST0	0.1520	0.3520
SU0	0.1750	0.2840
SV0	0.4260	0.4610
SW0	0.6140	0.5060
SX0	0.6080	0.5150

![](_page_64_Picture_6.jpeg)

Chain	Atom inclusion	Q-score
SY0	0.3510	0.3950
SZ0	0.1030	0.3420

![](_page_65_Picture_5.jpeg)