

wwPDB EM Validation Summary Report (i)

Nov 10, 2024 - 01:21 pm GMT

PDB ID : 70BR EMDB ID EMD-12801 : Title : RNC-SRP early complex Authors Jomaa, A.; Ban, N. : Deposited on 2021-04-23 : Resolution 2.80 Å(reported) : Based on initial model 6FRK ·

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures		
	$(\# {\it Entries})$	$(\# { m Entries})$		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		
RNA backbone	6643	2191		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	1	249	98% 79%	20% •
2	5	3493	78%	21%
3	7	120	89%	11%
4	8	156	10%	21%
5	А	245	98%	<mark>.</mark>
6	В	402	96%	
7	С	413	⊷ 86%	• 12%
8	D	297	96%	

Mol	Chain	Length	Quality of chain	
9	Е	248	92%	5%
10	F	225	99%	
11	G	319	14% 74% · 24%	
12	Н	192	7%	.
13	T	214	0.49/	E 9/
14	T	179	29%	5 270
14	J	210	12%	5%
15	L	210	99%	•
16	М	218	61% • 37%	_
17	Ν	204	98%	<mark>.</mark>
18	0	199	98%	•
19	Р	153	99%	- .
20	Q	187	• 99%	<u> </u>
21	R	180	99%	
22	S	175	97%	
22	Т	160	9%	
20	1	100	27%	
24	U	99	98%	•
25	V	140	91%	6%
26	W	63	100%	
27	Х	156	76% 24%	_
28	Y	145	91%	8%
29	Z	136	9%	
30	a	147	<u>5%</u> 99%	
31	b	223	10% 33% • 66%	_
32	C	0/	6% 	
02	1	105	98% 10%	
აა	a	125	82% • 14%	

Mol	Chain	Length	Quality of chain	
34	е	157	82%	18%
35	f	110	• 97%	•••
36	g	129	8%	• 12%
37	h	123	97%	
38	i	102	99%	
39	j	97	88%	• 11%
40	k	69	30%	
41	1	51	96%	
42	m	52	6%	
43	n	25	92%	8%
44	О	105	99%	
45	р	92	<u>5%</u> 97%	
46	q	144	73%	27%
47	r	137	86%	5% 9%
48	s	67	90%	9% •
49	t	110	69% 68%	31%
50	u	622	31% 31% 69%	
51	w	86	86%	14%
52	x	504	90%	6% •
53	Z	671	6% 6% 94%	

2 Entry composition (i)

There are 56 unique types of molecules in this entry. The entry contains 146701 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called SRP RNA.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1	1	249	Total 5341	C 2377	N 977	0 1738	Р 249	0	0

• Molecule 2 is a RNA chain called 28S rRNA.

Mol	Chain	Residues			AltConf	Trace			
2	5	3493	Total 74854	C 33335	N 13681	O 24346	Р 3492	0	0

• Molecule 3 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	7	120	Total 2558	C 1141	N 456	0 842	Р 119	0	0

• Molecule 4 is a RNA chain called 5.8S ribosomal RNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	8	156	Total 3314	C 1480	N 585	0 1094	Р 155	0	0

• Molecule 5 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	А	244	Total 1868	C 1171	N 382	O 309	S 6	0	0

There are 24 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	46	LYS	-	insertion	UNP A0A5F9D5B2
А	47	ASP	-	insertion	UNP A0A5F9D5B2
А	48	ILE	-	insertion	UNP A0A5F9D5B2

Chain	Residue	Modelled	Actual	Comment	Reference
А	49	ILE	-	insertion	UNP A0A5F9D5B2
А	50	HIS	-	insertion	UNP A0A5F9D5B2
А	51	ASP	-	insertion	UNP A0A5F9D5B2
А	52	PRO	-	insertion	UNP A0A5F9D5B2
А	53	GLY	-	insertion	UNP A0A5F9D5B2
А	54	ARG	-	insertion	UNP A0A5F9D5B2
А	55	GLY	-	insertion	UNP A0A5F9D5B2
A	56	ALA	-	insertion	UNP A0A5F9D5B2
А	57	PRO	-	insertion	UNP A0A5F9D5B2
A	58	LEU	-	insertion	UNP A0A5F9D5B2
А	59	ALA	-	insertion	UNP A0A5F9D5B2
A	60	LYS	-	insertion	UNP A0A5F9D5B2
A	61	VAL	-	insertion	UNP A0A5F9D5B2
A	62	VAL	-	insertion	UNP A0A5F9D5B2
A	63	PHE	-	insertion	UNP A0A5F9D5B2
А	64	ARG	-	insertion	UNP A0A5F9D5B2
A	65	ASP	-	insertion	UNP A0A5F9D5B2
A	66	PRO	-	insertion	UNP A0A5F9D5B2
A	67	TYR	-	insertion	UNP A0A5F9D5B2
A	68	ARG	-	insertion	UNP A0A5F9D5B2
A	69	PHE	-	insertion	UNP A0A5F9D5B2

• Molecule 6 is a protein called uL3.

Mol	Chain	Residues		At	AltConf	Trace			
6	В	394	Total 3148	C 2007	N 591	O 537	S 13	0	0

• Molecule 7 is a protein called 60S ribosomal protein L4.

Mol	Chain	Residues		At	AltConf	Trace			
7	С	362	Total 2883	C 1812	N 577	0 480	S 14	0	0

• Molecule 8 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues		At	AltConf	Trace			
8	D	292	Total 2386	C 1509	N 437	0 426	S 14	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
D	1	MET	-	initiating methionine	UNP G1SYJ6

• Molecule 9 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	Е	236	Total 1898	C 1215	N 362	0 318	$\frac{S}{3}$	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Е	126	ARG	LYS	conflict	UNP G1SKF7
Е	217	GLN	LYS	conflict	UNP G1SKF7

• Molecule 10 is a protein called uL30.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	F	225	Total 1870	C 1202	N 358	0 301	S 9	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
F	175	ALA	THR	conflict	UNP G1SV32
F	185	GLY	ASN	conflict	UNP G1SV32
F	202	ARG	HIS	conflict	UNP G1SV32
F	233	GLU	GLY	conflict	UNP G1SV32

• Molecule 11 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues		At	AltConf	Trace			
11	G	241	Total 1934	C 1233	N 371	O 326	$\frac{S}{4}$	0	0

• Molecule 12 is a protein called 60S ribosomal protein L9.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	Н	190	Total 1516	C 954	N 284	0 272	S 6	0	0

• Molecule 13 is a protein called 60S ribosomal protein L10.

Mol	Chain	Residues		At	AltConf	Trace			
13	Ι	204	Total 1655	C 1051	N 319	O 272	S 13	0	0

• Molecule 14 is a protein called Ribosomal protein L11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	J	169	Total 1353	C 855	N 252	0 240	S 6	0	0

• Molecule 15 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		Ate	AltConf	Trace			
15	L	210	Total 1703	C 1065	N 354	O 280	$\frac{S}{4}$	0	0

There are 9 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
L	47	ALA	-	insertion	UNP G1TPV0
L	48	PRO	-	insertion	UNP G1TPV0
L	49	ARG	-	insertion	UNP G1TPV0
L	50	PRO	-	insertion	UNP G1TPV0
L	51	ALA	-	insertion	UNP G1TPV0
L	52	SER	-	insertion	UNP G1TPV0
L	53	GLY	-	insertion	UNP G1TPV0
L	54	PRO	-	insertion	UNP G1TPV0
L	55	LEU	-	insertion	UNP G1TPV0

• Molecule 16 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	М	138	Total 1137	С 727	N 221	O 182	S 7	0	0

• Molecule 17 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		At	AltConf	Trace			
17	Ν	203	Total 1701	C 1072	N 359	O 266	${f S}$ 4	0	0

• Molecule 18 is a protein called 60S ribosomal protein L13a.

Mol	Chain	Residues		At	AltConf	Trace			
18	О	199	Total 1638	C 1056	N 321	O 256	${ m S}{ m 5}$	0	0

• Molecule 19 is a protein called uL22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	Р	153	Total 1242	C 777	N 241	O 215	S 9	0	0

• Molecule 20 is a protein called eL18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	Q	187	Total 1506	C 941	N 311	0 249	${ m S}{ m 5}$	0	0

There are 18 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Q	6	ARG	LEU	conflict	UNP G1TX70
Q	14	ARG	TRP	conflict	UNP G1TX70
Q	23	ILE	MET	conflict	UNP G1TX70
Q	24	TYR	CYS	conflict	UNP G1TX70
Q	38	ARG	HIS	conflict	UNP G1TX70
Q	57	ASN	LYS	conflict	UNP G1TX70
Q	66	MET	VAL	conflict	UNP G1TX70
Q	74	GLY	ASP	conflict	UNP G1TX70
Q	75	ARG	PRO	conflict	UNP G1TX70
Q	77	GLY	ASN	conflict	UNP G1TX70
Q	106	SER	THR	conflict	UNP G1TX70
Q	110	ARG	HIS	conflict	UNP G1TX70
Q	117	GLY	GLU	conflict	UNP G1TX70
Q	124	ASP	HIS	conflict	UNP G1TX70
Q	134	CYS	ARG	conflict	UNP G1TX70
Q	150	ARG	GLN	conflict	UNP G1TX70
Q	172	ARG	GLY	conflict	UNP G1TX70
Q	184	ARG	TRP	conflict	UNP G1TX70

• Molecule 21 is a protein called 60S RIBOSOMAL PROTEIN EL19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	R	180	Total 1508	C 033	N 328	0 238	S q	0	0

• Molecule 22 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
22	S	175	Total 1454	C 925	N 284	O 235	S 10	0	0

There are 22 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
S	18	PRO	-	insertion	UNP G1TTY7
S	19	THR	-	insertion	UNP G1TTY7
S	20	PRO	SER	conflict	UNP G1TTY7
S	22	CYS	SER	conflict	UNP G1TTY7
S	23	ARG	PRO	conflict	UNP G1TTY7
S	24	THR	ALA	conflict	UNP G1TTY7
S	49	SER	LEU	conflict	UNP G1TTY7
S	50	GLN	GLU	conflict	UNP G1TTY7
S	95	ARG	HIS	conflict	UNP G1TTY7
S	101	THR	ILE	conflict	UNP G1TTY7
S	102	THR	MET	conflict	UNP G1TTY7
S	104	GLY	SER	conflict	UNP G1TTY7
S	126	ILE	VAL	conflict	UNP G1TTY7
S	132	ILE	MET	conflict	UNP G1TTY7
S	135	SER	ALA	conflict	UNP G1TTY7
S	136	LYS	ARG	conflict	UNP G1TTY7
S	138	ARG	PRO	conflict	UNP G1TTY7
S	149	LYS	ARG	conflict	UNP G1TTY7
S	151	LYS	ARG	conflict	UNP G1TTY7
S	168	THR	TYR	conflict	UNP G1TTY7
S	169	THR	ALA	conflict	UNP G1TTY7
S	176	PHE	-	insertion	UNP G1TTY7

• Molecule 23 is a protein called eL21.

Mol	Chain	Residues	Atoms					AltConf	Trace
23	Т	159	Total 1298	C 823	N 252	0 217	S 6	0	0

• Molecule 24 is a protein called Ribosomal protein L22.

Mol	Chain	Residues	Atoms					AltConf	Trace
24	U	99	Total 808	C 518	N 141	0 147	${S \over 2}$	0	0

Chain	Residue	Modelled	Actual	Comment	Reference
U	32	GLY	ARG	variant	UNP G1TSG1
U	36	ALA	GLU	variant	UNP G1TSG1
U	39	PHE	SER	variant	UNP G1TSG1
U	54	GLY	ARG	variant	UNP G1TSG1
U	60	VAL	ALA	variant	UNP G1TSG1
U	97	ARG	HIS	variant	UNP G1TSG1

There are 6 discrepancies between the modelled and reference sequences:

• Molecule 25 is a protein called Ribosomal protein L23.

Mol	Chain	Residues	Atoms					AltConf	Trace
25	V	131	Total 979	C 618	N 184	0 172	${ m S}{ m 5}$	0	0

• Molecule 26 is a protein called Ribosomal protein L24.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
26	W	63	Total 528	C 337	N 103	O 85	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called uL23.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	Х	119	Total 976	C 624	N 183	O 168	S 1	0	0

• Molecule 28 is a protein called Ribosomal protein L26.

Mol	Chain	Residues	Atoms					AltConf	Trace
28	Y	134	Total 1115	C 700	N 226	0 186	${ m S} { m 3}$	0	0

• Molecule 29 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues	Atoms					AltConf	Trace
29	Ζ	135	Total 1107	C 714	N 208	0 182	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called uL15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	a	147	Total 1162	С 734	N 239	0 185	$\frac{S}{4}$	0	0

• Molecule 31 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues	Atoms					AltConf	Trace
31	b	75	Total 609	C 378	N 130	O 98	${ m S} { m 3}$	0	0

• Molecule 32 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues	Atoms					AltConf	Trace
32	С	94	Total 732	C 465	N 130	0 131	S 6	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
с	34	THR	SER	conflict	UNP G1TDL2
с	95	ALA	SER	conflict	UNP G1TDL2

• Molecule 33 is a protein called eL31.

Mol	Chain	Residues	Atoms					AltConf	Trace
33	d	107	Total 888	C 560	N 171	0 155	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 34 is a protein called eL32.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	е	128	Total 1053	C 667	N 216	0 165	${ m S}{ m 5}$	0	0

• Molecule 35 is a protein called eL33.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	f	109	Total 876	C 555	N 174	0 143	${S \atop 4}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	g	114	Total 906	$ m C \ 566$	N 187	0 147	S 6	0	0

• Molecule 37 is a protein called uL29.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	h	122	Total 1013	C 640	N 204	0 168	S 1	0	0

• Molecule 38 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		At	oms	AltConf	Trace		
38	i	102	Total 830	C 520	N 176	0 129	${f S}{5}$	0	0

• Molecule 39 is a protein called Ribosomal protein L37.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	j	86	Total 705	C 434	N 155	0 111	${f S}{5}$	0	0

• Molecule 40 is a protein called eL38.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
40	k	69	Total 569	C 366	N 103	O 99	S 1	0	0

• Molecule 41 is a protein called eL39.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
41	1	50	Total	С	Ν	Ο	\mathbf{S}	0	0
41	1	50	444	281	98	64	1	0	0

• Molecule 42 is a protein called 60S RIBOSOMAL PROTEIN EL40.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
42	m	52	Total 429	C 266	N 90	O 67	S 6	0	0

• Molecule 43 is a protein called 60s ribosomal protein l41.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
43	n	23	Total	C 124	N 61	0 25	S 2	0	0
				134	01	ZO	Z		

• Molecule 44 is a protein called eL42.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	О	104	Total 851	C 533	N 174	0 138	S 6	0	0

• Molecule 45 is a protein called eL43.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	р	91	Total 708	C 445	N 136	O 120	${f S}{7}$	0	0

• Molecule 46 is a protein called Signal recognition particle 19.

Mol	Chain	Residues	Atoms			AltConf	Trace		
46	q	105	Total 844	C 534	N 152	0 152	S 6	0	0

• Molecule 47 is a protein called eL28.

Mol	Chain	Residues	Atoms				AltConf	Trace	
47	r	125	Total 1001	C 621	N 206	O 168	$\frac{S}{6}$	0	0

• Molecule 48 is a protein called Dipeptidyl aminopeptidase B.

Mol	Chain	Residues	Atoms			AltConf	Trace	
48	s	67	Total	C	N 01	0	0	0
			502	529	91	82		

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
s	83	HIS	GLN	conflict	UNP P18962
S	90	HIS	GLN	conflict	UNP P18962

• Molecule 49 is a protein called Signal recognition particle 14 kDa protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
49	t	76	Total 604	C 384	N 105	0 111	$\frac{S}{4}$	0	0

• Molecule 50 is a protein called Signal recognition particle subunit SRP68.

Mol	Chain	Residues	Atoms				AltConf	Trace	
50	u	194	Total 1626	C 1022	N 305	O 291	S 8	0	0

• Molecule 51 is a protein called Signal recognition particle 9 kDa protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
51	W	74	Total 607	C 386	N 106	0 110	${f S}{5}$	0	0

• Molecule 52 is a protein called Signal recognition particle 54 kDa protein.

Mol	Chain	Residues	Atoms				AltConf	Trace	
52	х	488	Total 3773	C 2377	N 650	0 713	S 33	0	0

• Molecule 53 is a protein called Signal recognition particle subunit SRP72.

Mol	Chain	Residues	Atoms				AltConf	Trace	
53	Z	40	Total 339	C 215	N 66	O 57	S 1	0	0

• Molecule 54 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
54	5	97	Total Mg 97 97	0

• Molecule 55 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
55	g	1	Total Zn 1 1	0
55	j	1	Total Zn 1 1	0
55	m	1	Total Zn 1 1	0

Mol	Chain	Residues	Atoms	AltConf
55	О	1	Total Zn 1 1	0
55	р	1	Total Zn 1 1	0

• Molecule 56 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula: $C_{10}H_{15}N_5O_{11}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms					AltConf
56	х	1	Total 28	C 10	N 5	0 11	Р 2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: SRP RNA

	A470	G483 U484	C485 C486	G487	G491 U492	G493 U494	C495 🔶 G496	G497 C498	G500	C654	C655	C657	G659		C662	G664	C665	A667 C668 C669	Ce S3	G684 C685	A686	C691 🔶 A692	C693 C694	G695 C696	609/ 14/03	C704	C707	G729 G730	
CT37	C741	G745 A746 A747	67 49 67 49	U750 G751	G752 C753	U754 C755	G756	C906	G910	1911	G912 U913	U914 A915	C916 4 A917	G918 C919	C920	C925 G926	G927 C928	6929 6930 1931	6933 6933	C934 A935	C936 U937	C938 G939	C940 C941 G942	A943 A944	0945 C946	<mark>6957</mark> 6958	6959 A960 G961		
C962 G963	A964 G965	A966 C967	C969 C969	69/0 0971 C972	G973	G976 C977	6978 11982	C984	C985 C986	C987	0389 0389	C990 G1064	G1065 G1066	G1067	G1070 C1071	C1072	C1076 C1077	A1078	C1080	C1081 C1082	U1083	C1093 G1094	A1095 C1096	C1097 G1098	C1099 U1100	C1167 G1168	G1169 G1170	G1171 C1172 C1172	G1174 G1174
A1175	G1178 U1179	C1180 C1181	C1182 C1183	♦ A1184 €1185	U1186 G1187	C1188 G1189	C1190	C1192 C1192	G1194 G1194	G1195 G1196	C1197 G1198	G1199 G1200	U1201	C1202	C1210 G1211	G1212 G1213	C1214 C1215	C1216 G1217	G1218	G1220 G1220	G1221 A1222	G1232 G1233	C1236 C1237	A1238 C1239	G1240	G1242 G1271	C1272 G1273	A1274 G1276 C1276	G1277 C1278 A1279
C1280	U1285	C1286 C1286 C1288 C1288	G1293	C1295	U1297	C1301	A1303 C1304	A1326	G1329 61329 A1330	A1354	C1357	G1358	C1365	G1366	A1368	G1370 A1371	G1377 G1377	C1379 C1379	U1381	A1387	G1394	A1398 A1398 A1398	G1400 G1400	C1401 C1402 C1403	G1404	G1406 G1406 G1406	61408 61408		
64 C1408 65 I11410	66 C1411	78 78 71415 71415	61415 61415	96 C1417	12 G1415 G1415 G1415	13 24 21 21 21 21 21 21 21 21 21 21 21 21 21	25 G1435	31 C1436 32 C1437	33 34 C1436	38 U1440	54 C1441	61 A1445 G1444	77 U1445 77 C1446	01 C1447	94 01446 95 01446			18 C1458		21 C1478	25 25 21481	41 42 61483	50 A1497 G1496		55 0 G1516		A1547	A1563	
1758 A15 A15 A15			1764 U15	1766 U15		1770		1773 A16		1777 🕈 A16	1787 G16	1804 C16	1805 016	1 <mark>815</mark> 616	1819 1820 U16	1821 1822 616	1828 C16	1833 1834	1835 A17 1836 C17	1840 617 617	1848 U17	1855 G17 A17	1869 617 1882	1897 G17	1918 C17 U17	1920 U17	1922 1923		
01930	C1931	G1940	G1951	A1956 U1957	A1958			C2022	G2024 A A2025 A A	A2026	G2046 A2047 		G2056	C2062 G2063	G2064 C	C2068 A2069	C2083	G2089		G2092	62094 G2094	A2095 G2096	02097	G2099		G2103	A2105	C2107	
C2243	G2245	C2247 C2247 C2248	C2249	G2251	A2253	C2255	C2257	C2258 G2259	C2260 G2261	G2262 A2263	C2264 G2265 ♦	C2266 U2267 A 2268	A2269 C2269 C2270	62275 G2275	C2289	G2299	A2300 G2301	<mark>G2306</mark>	A2313	62331 A2332 G2333	G2348	C2351	A2360	A 2395 A 2396	A2417	C2422	U2425		
G2433	C2441 G2442 C2443	C2465	G2471	G2475	C2478 G2479 C2479	G2481	G2482 G2483	A2484 U2485	G2486 G2487	C2488	U2490		G2493 U2494	U2495	C2497		(2502 (2502 (2503	c2504	G2506 A2507	A2512 A2513	U2530	A2537	G2544	U2545 G2546		G2555	C2560	20025	
C2563	A2565	G2567	C2571	C2572	C2583	G2586 A2587	C2589 C2589	A2601	G2618 G2619	G2620	C2627	62030 U2639 G2640	U2661	G2662	C2669	G2686 U2687	A2695 A2696	G2706	U2707	C2709	G2711 62711	62712 C2713 G2714	G2715 C2716	A2725 G2726	G2735	U2740			
A2743	A2744	G2754	G2762	U2767	C2768 U2769	62771 62772 62772	A2787	U2788 A2789 U2790	A2798	A2806	A2807	U2826	G2827 U2828	G2838	62 <mark>842</mark>	G2855	<mark>G2898</mark> C2899	U2900 G2901	G2902	U2904	G2906	G2907 U2908	C2909 G2910	U3583 C3584	G3585	C3587 C3588	G3589		

wwPDB EM Validation Summary Report

• Molecule 5: 60S ribosomal protein L8

Chain A:	98%	·
MET C2 C3 C3 C4 C4 C4 C4 C4 C4 C4 C4 C4 C4 C		
• Molecule 6: uL3		
Chain B:	96%	-
22 117 117 117 117 112 112 112 1	C256 N301 N301 AB355 AB	
• Molecule 7: 60S ribosomal pr	rotein L4	
Chain C:	86% · 12%	
MET A2 C3 A4 E145 E145 P214 V232 V232 R300 R300	Ra53 A555 A555 A555 A355 A355 A355 A355 A	VAL GLY ARG ALA ALA ALA ALA ALA ALA LYS LYS
PRO ALA ALA ALA ALA ASP LYS ALA ALA ALA CUV CUV CUV CUV CUV ASP CUV ALA ALA ALA ALA		
• Molecule 8: 60S ribosomal pr	rotein L5	
Chain D:	96% .	-
MET F3 F3 F3 F3 F3 F112 F112 F112 F112 F112 F112 F112 F112 F112 F112 F123 F123 F125 F135	q138 1177 1177 1177 1177 1177 1177 1177 1177 1157 116 1211 1212 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 1213 <	K255 K256 K256 K258 K258 K258 K258 K269 K261 K263 K263 K263 K263 K263 K263
A290		
• Molecule 9: 60S ribosomal pr	rotein L6	
Chain E:	92% • 5%	6
P38 G51 F52 F52 F52 F52 F52 F73 F70 F71 F72 F72 F72 F72 F72 F72 F72 F72 F72 F72	L155 V84 A86 A86 A86 P91 P91 P91 P91 P92 P92 P95 P95 P95 P95 P95 P95 P95 P95 P95 P100 R100 R100 R100 R105 F115 R106	L122 S123 H124 H124 V171 R184 R184 B198
(2201 ↓ (221) (221) (221) (221) (221) (222) (22	E232 K233 K235 K235 F236 E237 E236 E240 F239 F234 F234	
• Molecule 10: uL30		
Chain F:	99%	-

• Molecule 11: 60S ribosomal protein L7a

• Molecule 16: 6	0S ribosomal protein L14		
Chain M:	61%	• 37%	-
ALA V2 033 161 161 162 162 869	A133 A134 L135 L135 K137 A138 A138 S139 P10 L175 ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA ALA ALA ALA ALA ALA ALA ALA PLYS ALA ALA ALA ALA ALA ALA ALA ALA	ALA ALA CLN CLN ALA PRO ALA CLN CLN LYS
ALA PRO GLN GLN LYS ALA ALA GLY GLN ALA ALA ALA	PRD PRD LYS CLN CLN CLN CLN CLN CLN PRD PRD PRD PRD PRD PRD CLN SER PRD CLN SCN CLN CLN CLN CLN CLN CCN CLN CCN CCN C	LYS ALA	
• Molecule 17: R	Libosomal protein L15		
Chain N:	98%		
MET 02 017 017 8195 8195 81204			
• Molecule 18: 6	0S ribosomal protein L13a		
Chain O:	98%		•
45 V27 V36 D113 D113 A181 ▲181	. • • • • • • • • • • • • • • • • • • •		
• Molecule 19: u	L22		
Chain P:	99%		
22 89 8154 ◆			
• Molecule 20: el	L18		
Chain Q:	99%		•
C2 N8 L48 E94 M188			
• Molecule 21: 6	0S RIBOSOMAL PROTEIN E	EL19	
Chain R:	99%		•
S2 E111 K149 K152 K155 L155 L155 A156	A159 E160 A161 A161 A161 A161 K165 K165 K165 A169 A169 A169 A169 K171 K171 K171 K172 K172 K172 K172 K172	R176 L177 Q178 K180 K181	
• Molecule 22: 6	0S ribosomal protein L18a		
Chain S:	97%		•
	VORI PROTEIN		

Chain Z:	9%	
MET G2 D31 G32 T33 S34	D35 456 456 M57 668 K89 D88 K84 F136 D922 K93 F136 F136	
• Molecule	30: uL15	
Chain a:	99%	!
P2 D76 ■ E84 ■	A90 A91 K94 A97 A148	
• Molecule	31: 60S ribosomal protein L29	
Chain b:	10% 33% 66%	
MET A2 G20 R25 S26	L40 L40 L54 M57 L54 M57 A65 A65 A65 A65 A65 A65 A65 A65 A65 A65	ASP ASP ASC ALEU ALEU ALEU ALEU LYS LEU LEU
GLY ARG ARG ALA ALA ALA ALA ARG ARG	ALA GLY LEU LEU ARG ARG ARG ARG ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	GLU THR LYS PRO LYS
ALA GLN ALA GLN GLN ALA LYS PRO	ALA ALA ALA ALA ALA ALA ALA CUN CUN CUN CUN CUN CUN CUN CUN CUN CUN	SER ALA TRP GLY
• Molecule	32: 60S ribosomal protein L30	
Chain c:	98%	
813 R90 193 D98		
• Molecule	33: eL31	
Chain d:	10% • 14%	
MET ALA PRO ALA LYS LYS GLY GLY	CLU LYS LYS CLY ARG ARG ARA ARA ARA ARA ARA ARA ARA ARA	
• Molecule	34: eL32	
Chain e:	82% 18%	
MET CYS LEU LEU LEU LEU SER PHE	LEU LLYS CLYS CLYS CLYS CLY CLY CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	

 \bullet Molecule 35: eL33

Chain f:	97%	•••
MET S2 V103 V103 1110		
• Molecule 36: 6	60S ribosomal protein L34	
Chain g:	960/	12%
Chain g.	0070	• 1270
MET SER LEU LEU PRO CYS CYS CYS CYS CYS CYS CYS ALA ALA ALA	MET V2 V2 V32 V32 V105 V105 V106 V106 V106 V106 V106 V107 V107 V107 V107 V107 V107 V107 V107	
• Molecule 37: u	uL29	
Chain h:	97%	••
• • ••• •	•••	
MET A2 B8 K13 K14 E15 G38 G38	188 100 1102 1102 123	
• Molecule 38: 6	60S ribosomal protein L36	
Chain i:	99%	•
*** * ** *	****	
A2 L3 R4 N20 V21 S22 K23 R23 R98	A 101 A 101 K 103	
• Molecule 39: I	Bibosomal protein L37	
• Molecule 55. 1		
Chain j:	88%	• 11%
MET 12 N13 ARG ALA ALA ALA ALA ALA		
• Molecule 40: e	eL38	
Chain k:	30%	
	5770	•
P2 I8 K9 V23 K27 K27 K27	N31 D49 K50 E51 E51 E54 E55 K57 C55 C55 C55 C65 C63 C63 C63 C63 C63 C63 C63 C63 C63 C63	
• Molecule 41: e	eL39	
Chain l:	96%	• •
•		
MET S2 R46 G50 L51		

• Molecule 42: 60S RIBOSOMAL	PROTEIN EL40			
Chain m:	100%		•	
177 178 178 178 178				
• Molecule 43: 60s ribosomal prot	ein l41			
Chain n:	92%	8%		
MET R2 LYS LYS				
• Molecule 44: eL42				
Chain o:	99%			
MET V2 D31 532 832 832 832 832 832 832 832 832 832 8				
• Molecule 45: eL43				
Chain p:	97%	•••		
MET A2 T16 V52 V52 K30 K30 K30 K30 K30 K30 K30 K30 K30 K30				
• Molecule 46: Signal recognition	particle 19			
Chain q: 739	% •	27%		
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	123 • 123 • 123 • 123 • 124 • 125 • 125 • 125 • 125 • 129 • 129 • 129 • 129 • 129 • 123 • 133 • 133 • 135 •	S38 K39 A40 V41 E42 N43 P44 P44	1415 1417 1417 1419 1510 1511 152 153	A55 V56 G57 M59 N59 V60
F61 L62 E63 K64 N65 K66 M67 K68 K70 K70 K70 K74 V76 V76 V76 V77 V76 V77	680 R81 V82 R83 V82 R83 V83 V83 V83 V83 C85 C94 C94 C94	L95 v96 q97 F99 F109 R101 K102 S103	V104 M105 L106 Y107 A108 E110 E110	1112 P113 K114 L115 K116 T117 T117 THR THR
LYS THR GLY GLY GLY GLN GLN GLN GLN CLY CLYS CLY CLYS CLY CLYS CLY CLYS CLY CLYS CLY				
• Molecule 47: eL28				
Chain r:	86%	5% 9%		
MET S2 N21 E28 E28 E28 E28 E28 E28 E28 E28	THR ARG PRO THR ITYS SER SER SER			

• Molecule 48: Dipeptidyl aminopeptidase B 70% Chain s: 90% ۹% L27 L26 V30 V30 331 • Molecule 49: Signal recognition particle 14 kDa protein 69% Chain t: 68% 31% D34 G35 C THR LLYS PPRO PPRO ARG GLY SER VAL GLY GLY GLY PHE GLU GLU PHE GLU SER ASP E5 E7 E7 E7 E10 E10 E12 E12 r14 815 216 717 718 719 719 719 720 720 G24 S25 F27 F27 F27 F27 L30 K31 K31 K32 K33 Y33 • Molecule 50: Signal recognition particle subunit SRP68 31% Chain u: 31% 69%

 119

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 111

 1 147 4 4 V70 L71 M72 D73 A74 E75 E75 R76 A77 M78 W78 S79 S79 R93 K94 R95 F96 Н97 L98 L99 78 18 18 PPROPRIATE CONTRACTOR OF CONTR

LYS LEU GGLU GLU SCALN S

• Molecule 51: Signal recognition particle 9 kDa protein

 86%

 Chain w:
 86%

 14%

 14%

 14%

 14%

• Molecule 52: Signal recognition particle 54 kDa protein

GLN LYS LYS LYS GLY GLY GLY TRP

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	43135	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.184	Depositor
Minimum map value	-0.080	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.006	Depositor
Recommended contour level	0.0195	Depositor
Map size (Å)	479.36002, 479.36002, 479.36002	wwPDB
Map dimensions	448, 448, 448	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.07, 1.07, 1.07	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, GDP, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.16	0/5971	0.78	8/9308~(0.1%)	
2	5	0.19	0/83726	0.78	48/130593~(0.0%)	
3	7	0.16	0/2858	0.73	1/4455~(0.0%)	
4	8	0.18	0/3701	0.74	0/5766	
5	А	0.24	0/1906	0.43	0/2556	
6	В	0.24	0/3216	0.43	0/4311	
7	С	0.23	0/2937	0.39	0/3946	
8	D	0.24	0/2432	0.40	0/3257	
9	Е	0.24	0/1936	0.46	0/2600	
10	F	0.24	0/1905	0.38	0/2539	
11	G	0.24	0/1967	0.41	0/2647	
12	Н	0.23	0/1535	0.42	0/2063	
13	Ι	0.24	0/1693	0.40	0/2260	
14	J	0.23	0/1376	0.42	0/1841	
15	L	0.23	0/1734	0.41	0/2317	
16	М	0.24	0/1158	0.37	0/1547	
17	Ν	0.23	0/1746	0.40	0/2338	
18	0	0.24	0/1671	0.38	0/2234	
19	Р	0.22	0/1268	0.41	0/1700	
20	Q	0.23	0/1530	0.42	0/2041	
21	R	0.22	0/1524	0.39	0/2013	
22	S	0.24	0/1493	0.41	0/2002	
23	Т	0.24	0/1326	0.40	0/1770	
24	U	0.24	0/822	0.41	0/1103	
25	V	0.25	0/993	0.42	0/1332	
26	W	0.24	0/541	0.39	0/720	
27	Х	0.23	0/993	0.39	0/1334	
28	Y	0.23	0/1132	0.39	0/1504	
29	Z	0.24	0/1130	0.43	0/1507	
30	a	0.23	0/1191	0.41	0/1590	
31	b	0.23	0/619	0.35	0/818	
32	с	0.24	0/742	0.39	0/996	

Mal	Chain	Bond	lengths	E	Bond angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	d	0.23	0/903	0.42	0/1216
34	е	0.23	0/1071	0.39	0/1429
35	f	0.24	0/895	0.44	0/1198
36	g	0.23	0/916	0.40	0/1220
37	h	0.23	0/1021	0.37	0/1348
38	i	0.23	0/841	0.38	0/1112
39	j	0.23	0/720	0.42	0/952
40	k	0.24	0/575	0.44	0/761
41	1	0.22	0/454	0.39	0/599
42	m	0.23	0/435	0.41	0/575
43	n	0.21	0/223	0.31	0/284
44	0	0.23	0/864	0.43	0/1140
45	р	0.23	0/718	0.41	0/953
46	q	0.23	0/858	0.43	0/1156
47	r	0.23	0/1017	0.44	0/1364
48	s	0.25	0/514	0.51	1/702~(0.1%)
49	t	0.23	0/608	0.39	0/808
50	u	0.24	0/1654	0.40	0/2215
51	W	0.23	0/617	0.41	0/829
52	Х	0.24	0/3825	0.40	0/5124
53	Z	0.23	0/348	0.39	0/463
All	All	0.21	0/157849	0.67	58/232456 (0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
6	В	0	1
22	S	0	1
35	f	0	1
All	All	0	3

There are no bond length outliers.

The worst 5 of 58 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
1	1	37	С	N1-C2-O2	10.08	124.95	118.90
1	1	37	С	N3-C2-O2	-9.31	115.38	121.90
2	5	931	С	C2-N1-C1'	8.92	128.61	118.80
2	5	931	С	N1-C2-O2	8.76	124.16	118.90

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	37	С	C2-N1-C1'	8.34	127.98	118.80

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
6	В	17	LEU	Peptide
22	S	164	LYS	Peptide
35	f	106	TYR	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
5	А	242/245~(99%)	227~(94%)	15 (6%)	0	100	100
6	В	392/402~(98%)	384 (98%)	8 (2%)	0	100	100
7	С	360/413~(87%)	348~(97%)	12 (3%)	0	100	100
8	D	290/297~(98%)	275~(95%)	15 (5%)	0	100	100
9	Е	232/248~(94%)	199 (86%)	33 (14%)	0	100	100
10	F	223/225~(99%)	216 (97%)	7 (3%)	0	100	100
11	G	239/319~(75%)	223~(93%)	16 (7%)	0	100	100
12	Н	188/192~(98%)	181 (96%)	7 (4%)	0	100	100
13	Ι	200/214~(94%)	195~(98%)	5 (2%)	0	100	100
14	J	167/178~(94%)	154 (92%)	13 (8%)	0	100	100
15	L	$20\overline{8/210}~(99\%)$	191 (92%)	16 (8%)	1 (0%)	25	56

α \cdot \cdot \cdot	C	•	
Continued	trom	nremous	naae
contentaca	<i>J</i> · <i>O</i> · · · <i>O</i>	proceed ac	pago

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
16	М	136/218~(62%)	133~(98%)	3~(2%)	0	100	100
17	Ν	201/204~(98%)	192 (96%)	9~(4%)	0	100	100
18	Ο	197/199~(99%)	195~(99%)	2(1%)	0	100	100
19	Р	151/153~(99%)	149 (99%)	2(1%)	0	100	100
20	Q	185/187~(99%)	180 (97%)	5(3%)	0	100	100
21	R	178/180~(99%)	173~(97%)	5(3%)	0	100	100
22	S	173/175~(99%)	166 (96%)	7 (4%)	0	100	100
23	Т	157/160~(98%)	148 (94%)	9 (6%)	0	100	100
24	U	97/99~(98%)	92~(95%)	5 (5%)	0	100	100
25	V	129/140~(92%)	126 (98%)	3 (2%)	0	100	100
26	W	61/63~(97%)	61 (100%)	0	0	100	100
27	Х	117/156~(75%)	112 (96%)	5 (4%)	0	100	100
28	Y	132/145~(91%)	130 (98%)	2 (2%)	0	100	100
29	Ζ	133/136~(98%)	123 (92%)	10 (8%)	0	100	100
30	a	145/147~(99%)	135 (93%)	10 (7%)	0	100	100
31	b	73/223~(33%)	70 (96%)	3 (4%)	0	100	100
32	с	92/94~(98%)	91 (99%)	1 (1%)	0	100	100
33	d	105/125~(84%)	104 (99%)	1 (1%)	0	100	100
34	е	126/157~(80%)	121 (96%)	5 (4%)	0	100	100
35	f	107/110~(97%)	101 (94%)	6 (6%)	0	100	100
36	g	112/129~(87%)	112 (100%)	0	0	100	100
37	h	120/123~(98%)	118 (98%)	2 (2%)	0	100	100
38	i	100/102~(98%)	95~(95%)	5 (5%)	0	100	100
39	j	84/97~(87%)	82 (98%)	2 (2%)	0	100	100
40	k	67/69~(97%)	60 (90%)	7 (10%)	0	100	100
41	1	48/51~(94%)	41 (85%)	7 (15%)	0	100	100
42	m	50/52~(96%)	48 (96%)	2 (4%)	0	100	100
43	n	21/25~(84%)	21 (100%)	0	0	100	100
44	0	102/105~(97%)	94 (92%)	8 (8%)	0	100	100
45	р	89/92~(97%)	83 (93%)	6 (7%)	0	100	100
46	q	103/144~(72%)	100 (97%)	3 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
47	r	123/137~(90%)	111 (90%)	11 (9%)	1 (1%)	16	44
48	S	65/67~(97%)	53~(82%)	11 (17%)	1 (2%)	8	29
49	t	72/110~(66%)	72 (100%)	0	0	100	100
50	u	192/622~(31%)	189 (98%)	3~(2%)	0	100	100
51	W	72/86~(84%)	65~(90%)	7 (10%)	0	100	100
52	х	486/504~(96%)	463 (95%)	23~(5%)	0	100	100
53	Z	38/671~(6%)	32 (84%)	6 (16%)	0	100	100
All	All	7380/9200~(80%)	7034 (95%)	343 (5%)	3 (0%)	100	100

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
15	L	64	VAL
48	s	86	TYR
47	r	21	ASN

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percenti	les
5	А	187/188~(100%)	183~(98%)	4 (2%)	48 80)
6	В	336/347~(97%)	328~(98%)	8 (2%)	44 77	7
7	С	302/337~(90%)	297~(98%)	5(2%)	56 84	E
8	D	247/250~(99%)	241 (98%)	6(2%)	44 77	7
9	Е	208/221~(94%)	201~(97%)	7 (3%)	32 66	;
10	F	194/195~(100%)	192~(99%)	2(1%)	73 91	
11	G	206/273~(76%)	202~(98%)	4 (2%)	52 82	2
12	Н	169/171~(99%)	166~(98%)	3~(2%)	54 83	;
13	Ι	174/181~(96%)	172 (99%)	2(1%)	70 90)
14	J	142/149~(95%)	142 (100%)	0	100 10	0

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
15	L	176/176~(100%)	173~(98%)	3~(2%)	56	84
16	М	117/160~(73%)	113~(97%)	4(3%)	32	66
17	Ν	171/172~(99%)	168 (98%)	3~(2%)	54	83
18	Ο	$171/171 \ (100\%)$	167 (98%)	4 (2%)	45	78
19	Р	134/134~(100%)	133 (99%)	1 (1%)	81	94
20	Q	163/163~(100%)	161 (99%)	2(1%)	67	89
21	R	159/159~(100%)	157 (99%)	2(1%)	65	88
22	S	156/156~(100%)	152 (97%)	4 (3%)	41	75
23	Т	139/140~(99%)	138 (99%)	1 (1%)	81	94
24	U	89/89~(100%)	87 (98%)	2(2%)	47	79
25	V	101/107~(94%)	98~(97%)	3(3%)	36	70
26	W	55/55~(100%)	55 (100%)	0	100	100
27	Х	107/134~(80%)	107 (100%)	0	100	100
28	Y	124/135~(92%)	122 (98%)	2(2%)	58	85
29	Z	117/118 (99%)	116 (99%)	1 (1%)	75	92
30	a	119/119 (100%)	117 (98%)	2(2%)	56	84
31	b	62/170~(36%)	60 (97%)	2(3%)	34	68
32	с	79/79~(100%)	77 (98%)	2(2%)	42	75
33	d	98/110 (89%)	94 (96%)	4 (4%)	26	59
34	е	114/141 (81%)	114 (100%)	0	100	100
35	f	88/89~(99%)	87 (99%)	1 (1%)	70	90
36	g	98/109 (90%)	95~(97%)	3(3%)	35	69
37	h	109/110~(99%)	106 (97%)	3(3%)	38	72
38	i	86/86~(100%)	85 (99%)	1 (1%)	67	89
39	j	73/80~(91%)	72 (99%)	1 (1%)	62	87
40	k	64/64~(100%)	62 (97%)	2(3%)	35	69
41	1	47/48~(98%)	46 (98%)	1 (2%)	48	80
42	m	48/48 (100%)	48 (100%)	0	100	100
43	n	22/24~(92%)	22 (100%)	0	100	100
44	0	92/93~(99%)	92 (100%)	0	100	100
45	р	74/75~(99%)	72 (97%)	2(3%)	40	74

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
46	q	92/121~(76%)	91~(99%)	1 (1%)	70	90
47	r	109/121~(90%)	103 (94%)	6 (6%)	18	47
48	S	51/64~(80%)	45 (88%)	6 (12%)	4	14
49	t	69/100~(69%)	68~(99%)	1 (1%)	62	87
50	u	171/524~(33%)	169 (99%)	2(1%)	67	89
51	W	66/77~(86%)	66 (100%)	0	100	100
52	х	409/420~(97%)	377~(92%)	32~(8%)	10	31
53	Z	36/570~(6%)	35 (97%)	1 (3%)	38	72
All	All	6420/7823~(82%)	6274 (98%)	146 (2%)	46	78

5 of 146 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
52	Х	11	THR
52	Х	412	VAL
52	Х	23	ILE
52	Х	63	GLU
17	Ν	17	ASP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 19 such side chains are listed below:

Mol	Chain	Res	Type
49	t	90	ASN
52	Х	423	GLN
52	Х	488	GLN
52	Х	101	GLN
20	Q	8	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	245/249~(98%)	49 (20%)	5 (2%)
2	5	3478/3493~(99%)	706 (20%)	84 (2%)
3	7	119/120~(99%)	12 (10%)	0
4	8	155/156~(99%)	32 (20%)	1 (0%)
All	All	3997/4018~(99%)	799 (19%)	90 (2%)

5 of 799 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	1	4	G
1	1	17	С
1	1	28	U
1	1	29	С
1	1	33	G

5 of 90 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
2	5	2257	С
2	5	4119	С
2	5	2262	G
2	5	2695	А
2	5	4528	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 103 ligands modelled in this entry, 102 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	I Turne Chain Reg Li		Link	Bond lengths			Bond angles			
Moi Type	Chain	nes	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
56	GDP	х	601	-	24,30,30	0.94	1 (4%)	30,47,47	1.31	4 (13%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral

centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
56	GDP	Х	601	-	-	0/12/32/32	0/3/3/3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
56	Х	601	GDP	C6-N1	-2.37	1.34	1.37

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
56	Х	601	GDP	PA-O3A-PB	-3.71	120.09	132.83
56	Х	601	GDP	C3'-C2'-C1'	3.13	105.69	100.98
56	Х	601	GDP	C8-N7-C5	2.37	107.50	102.99
56	Х	601	GDP	C5-C6-N1	2.30	118.01	113.95

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
2	5	15
1	1	3

The worst 5 of 18 chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	1	65:U	O3'	92:C	Р	57.10
1	1	258:C	O3'	282:U	Р	50.27
1	5	462:G	O3'	467:U	Р	20.95
1	5	4776:G	O3'	4859:C	Р	17.67
1	5	4097:G	O3'	4112:C	Р	17.47

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-12801. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 224

Y Index: 224

Z Index: 224

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 259

Y Index: 228

Z Index: 195

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.0195. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1075 $\rm nm^3;$ this corresponds to an approximate mass of 971 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.357 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-12801 and PDB model 70BR. Per-residue inclusion information can be found in section 3 on page 17.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.0195 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.0195).

9.4 Atom inclusion (i)

At the recommended contour level, 76% of all backbone atoms, 72% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.0195) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.7240	0.4920
1	0.0770	0.0730
5	0.7880	0.5050
7	0.8960	0.5740
8	0.8380	0.5380
А	0.8680	0.6060
В	0.8390	0.5920
С	0.8260	0.5720
D	0.6920	0.5080
Е	0.6190	0.4500
F	0.8350	0.5890
G	0.6570	0.4850
Н	0.7400	0.5440
Ι	0.7950	0.5740
J	0.5490	0.4640
L	0.7300	0.5310
М	0.7780	0.5450
Ν	0.8880	0.6030
О	0.8570	0.5930
Р	0.8470	0.5990
Q	0.8460	0.5890
R	0.7220	0.5320
S	0.8400	0.5810
Т	0.7570	0.5470
U	0.5620	0.4520
V	0.8330	0.5880
W	0.8430	0.5870
Х	0.7680	0.5490
Y	0.7880	0.5690
Z	0.7370	0.5280
a	0.8470	0.5830
b	0.6390	0.4930
с	0.7830	0.5550
d	0.7530	0.5440
е	0.8560	0.6060

Chain	Atom inclusion	Q-score
f	0.8760	0.6040
g	0.7920	0.5680
h	0.7450	0.5520
i	0.7290	0.5280
j	0.8680	0.5930
k	0.5690	0.4440
1	0.8110	0.5650
m	0.7880	0.5520
n	0.6770	0.5350
0	0.7450	0.5580
р	0.8130	0.5910
q	0.0590	0.1270
r	0.8130	0.5590
S	0.3020	0.3100
t	0.0440	0.2170
u	0.0200	0.1110
W	0.0220	0.1990
X	0.2340	0.2740
Z	0.0120	0.0950

