

Aug 12, 2024 – 04:41 pm BST

| PDB ID       | : | 80ZP                                                                 |
|--------------|---|----------------------------------------------------------------------|
| EMDB ID      | : | EMD-17317                                                            |
| Title        | : | In situ subtomogram average of Prototype Foamy Virus Env pentamer of |
|              |   | trimers                                                              |
| Authors      | : | Calcraft, T.; Nans, A.; Rosenthal, P.B.                              |
| Deposited on | : | 2023-05-09                                                           |
| Resolution   | : | 11.90 Å(reported)                                                    |
|              |   |                                                                      |

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1.dev92                                                        |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.4, CSD as541be (2020)                                          |
| MolProbity                     | : | 4.02b-467                                                          |
| buster-report                  | : | 1.1.7 (2018)                                                       |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| MapQ                           | : | 1.9.13                                                             |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.37.1                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 11.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | Whole archive<br>(#Entries) | ${ m EM}  { m structures} \ (\#{ m Entries})$ |  |
|-----------------------|-----------------------------|-----------------------------------------------|--|
| Clashscore            | 158937                      | 4297                                          |  |
| Ramachandran outliers | 154571                      | 4023                                          |  |
| Sidechain outliers    | 154315                      | 3826                                          |  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length |                  | Quality of | of chain |   |
|-----|-------|--------|------------------|------------|----------|---|
| 1   | А     | 988    | 6%               | g          | 4%       | _ |
| 1   | В     | 988    | <b></b>          | ••         | 58%      |   |
| 1   | С     | 988    | <b>-</b>         | 5% •       | 58%      |   |
| 1   | D     | 988    | <b>••</b><br>37% | •          | 59%      |   |
| 1   | Е     | 988    | <b>5</b> % •     | g          | 4%       | _ |
| 1   | F     | 988    |                  | 99%        | 6        |   |
| 1   | G     | 988    | 35%              | 5% •       | 59%      | _ |
| 1   | Н     | 988    | 37%              | •          | 59%      |   |



| Mol | Chain | Length | Quality of chain |  |  |
|-----|-------|--------|------------------|--|--|
| 1   | Ι     | 988    | <b>6</b> % 94%   |  |  |
| 1   | L     | 988    | · · · 59%        |  |  |
| 2   | М     | 2      | 50%              |  |  |
| 2   | N     | 2      | 50%<br>100%      |  |  |
| 2   | Ο     | 2      | 100%             |  |  |
| 2   | Y     | 2      | 50%              |  |  |
| 2   | Z     | 2      | 50%              |  |  |
| 2   | a     | 2      | 50%              |  |  |
| 2   | b     | 2      | 100%             |  |  |
| 2   | с     | 2      | 100%             |  |  |
| 2   | d     | 2      | 100%             |  |  |
| 3   | S     | 3      | 100%             |  |  |
| 3   | Т     | 3      | 67%<br>100%      |  |  |
| 3   | U     | 3      | 100%             |  |  |
| 4   | V     | 6      | 17%              |  |  |
| 4   | W     | 6      | 17%<br>17% 83%   |  |  |
| 4   | Х     | 6      | 100%             |  |  |
| 5   | Р     | 4      | 100%             |  |  |
| 5   | Q     | 4      | 25% 75%          |  |  |
| 5   | R     | 4      | 100%             |  |  |
| 6   | е     | 8      | 25% 75%          |  |  |
| 6   | f     | 8      | 100%             |  |  |
| 6   | g     | 8      | 100%             |  |  |
| 7   | h     | 6      | 100%             |  |  |
| 7   | i     | 6      | 17% 83%          |  |  |



| Mol | Chain | Length | Quality of chain |
|-----|-------|--------|------------------|
|     |       |        | 67%              |
| 7   | j     | 6      | 100%             |



# 2 Entry composition (i)

There are 10 unique types of molecules in this entry. The entry contains 22752 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues | Atoms                                                                                                                                                | AltConf | Trace |
|-----|-------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| 1   | А     | 58       | Total C N O S<br>466 309 76 77 4                                                                                                                     | 0       | 0     |
| 1   | В     | 411      | Total         C         N         O         S           3380         2164         561         636         19                                         | 0       | 0     |
| 1   | D     | 405      | Total         C         N         O         S           3190         2054         536         586         14                                         | 0       | 0     |
| 1   | F     | 11       | Total         C         N         O         S           94         61         18         14         1                                                | 0       | 0     |
| 1   | Н     | 405      | Total         C         N         O         S           3190         2054         536         586         14                                         | 0       | 0     |
| 1   | L     | 405      | Total         C         N         O         S           3190         2054         536         586         14                                         | 0       | 0     |
| 1   | Е     | 58       | Total C N O S<br>466 309 76 77 4                                                                                                                     | 0       | 0     |
| 1   | Ι     | 58       | $\begin{array}{cccccccccc} {\rm Total} & {\rm C} & {\rm N} & {\rm O} & {\rm S} \\ {\rm 466} & {\rm 309} & {\rm 76} & {\rm 77} & {\rm 4} \end{array}$ | 0       | 0     |
| 1   | С     | 411      | Total         C         N         O         S           3380         2164         561         636         19                                         | 0       | 0     |
| 1   | G     | 405      | Total         C         N         O         S           3328         2133         549         628         18                                         | 0       | 0     |

• Molecule 1 is a protein called Envelope glycoprotein.

• Molecule 2 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.



| Mol | Chain | Residues | Atoms                                                                            | AltConf | Trace |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|-------|
| 2   | М     | 2        | Total         C         N         O           28         16         2         10 | 0       | 0     |
| 2   | a     | 2        | Total         C         N         O           28         16         2         10 | 0       | 0     |



| Mol | Chain | Residues | Atoms         | AltConf | Trace |
|-----|-------|----------|---------------|---------|-------|
| 2   | h     | 9        | Total C N O   | 0       | 0     |
| 2   | D     | 2        | 28  16  2  10 | 0       | 0     |
| 2   | C     | 2        | Total C N O   | 0       | 0     |
|     | C     |          | 28 16 2 10    | 0       | 0     |
| 2   | d     | 2        | Total C N O   | 0       | 0     |
|     | u     |          | 28 16 2 10    | 0       | 0     |
| 2   | Ν     | 2        | Total C N O   | 0       | 0     |
|     | 11    |          | 28 16 2 10    | 0       | 0     |
| 2   | 0     | 2        | Total C N O   | 0       | 0     |
|     | 0     |          | 28  16  2  10 | 0       | 0     |
| 2   | V     | 2        | Total C N O   | 0       | 0     |
|     | 1     |          | 28  16  2  10 | 0       | 0     |
| 2   | Z     | 2        | Total C N O   | 0       | 0     |
|     |       |          | 28  16  2  10 | 0       |       |

• Molecule 3 is an oligosaccharide called beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-b eta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.



| Mol | Chain | Residues | Atoms                                                                            | AltConf | Trace |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|-------|
| 3   | U     | 3        | Total         C         N         O           39         22         2         15 | 0       | 0     |
| 3   | S     | 3        | Total         C         N         O           39         22         2         15 | 0       | 0     |
| 3   | Т     | 3        | Total         C         N         O           39         22         2         15 | 0       | 0     |

• Molecule 4 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alp ha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.



| Mol | Chain | Residues | I           | Aton    | ns     |         | AltConf | Trace |
|-----|-------|----------|-------------|---------|--------|---------|---------|-------|
| 4   | Х     | 6        | Total<br>75 | C<br>42 | N<br>3 | O<br>30 | 0       | 0     |



| Continued from | previous page |
|----------------|---------------|
|----------------|---------------|

| Mol | Chain | Residues | Atoms                                                                            | AltConf | Trace |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|-------|
| 4   | V     | 6        | Total         C         N         O           75         42         3         30 | 0       | 0     |
| 4   | W     | 6        | Total         C         N         O           75         42         3         30 | 0       | 0     |

• Molecule 5 is an oligosaccharide called alpha-D-mannopyranose-(1-6)-beta-D-mannopyranos e-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluco pyranose.



| Mol | Chain | Residues | Atoms                                                       |         | AltConf | Trace |
|-----|-------|----------|-------------------------------------------------------------|---------|---------|-------|
| 5   | R     | 4        | Total         C         N           50         28         2 | O<br>20 | 0       | 0     |
| 5   | Р     | 4        | Total         C         N           50         28         2 | O<br>20 | 0       | 0     |
| 5   | Q     | 4        | Total         C         N           50         28         2 | O<br>20 | 0       | 0     |

• Molecule 6 is an oligosaccharide called alpha-D-mannopyranose-(1-2)-alpha-D-mannopyran ose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.



| Mol | Chain | Residues | Atoms                                                                            | AltConf | Trace |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|-------|
| 6   | е     | 8        | Total         C         N         O           94         52         2         40 | 0       | 0     |
| 6   | f     | 8        | Total         C         N         O           94         52         2         40 | 0       | 0     |
| 6   | g     | 8        | Total         C         N         O           94         52         2         40 | 0       | 0     |

• Molecule 7 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.





| Mol | Chain | Residues | Atoms                                                                            | AltConf | Trace |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|-------|
| 7   | h     | 6        | Total         C         N         O           72         40         2         30 | 0       | 0     |
| 7   | i     | 6        | Total         C         N         O           72         40         2         30 | 0       | 0     |
| 7   | j     | 6        | Total         C         N         O           72         40         2         30 | 0       | 0     |

• Molecule 8 is CHOLESTEROL (three-letter code: CLR) (formula:  $C_{27}H_{46}O$ ) (labeled as "Ligand of Interest" by depositor).



| Mol | Chain | Residues | Atoms                                                                              | AltConf |
|-----|-------|----------|------------------------------------------------------------------------------------|---------|
| 8   | А     | 1        | Total         C         O           28         27         1                        | 0       |
| 8   | D     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 28 & 27 & 1 \end{array}$ | 0       |
| 8   | L     | 1        | $\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 28 & 27 & 1 \end{array}$ | 0       |

• Molecule 9 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula:  $C_8H_{15}NO_6$ ) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues | Atoms       | AltConf |
|-----|-------|----------|-------------|---------|
| 0   | В     | 1        | Total C N O | 0       |
| 9   | D     | 1        | 14  8  1  5 | 0       |
| 0   | В     | 1        | Total C N O | 0       |
| 9   | D     | 1        | 14  8  1  5 | 0       |
| 0   | В     | 1        | Total C N O | 0       |
| 9   | D     | 1        | 14  8  1  5 | 0       |
| 0   | С     | 1        | Total C N O | 0       |
| 3   | U     | T        | 14  8  1  5 | 0       |
| 0   | С     | 1        | Total C N O | 0       |
| 3   | U     | T        | 14  8  1  5 | 0       |
| 0   | С     | 1        | Total C N O | 0       |
| 5   | U     | 1        | 14  8  1  5 | 0       |
| 0   | C     | 1        | Total C N O | 0       |
| 3   | G     | T        | 14  8  1  5 | 0       |
| 0   | C     | 1        | Total C N O | 0       |
| 3   | G     | T        | 14  8  1  5 | 0       |
| 0   | C     | 1        | Total C N O | 0       |
|     | G     | 1        | 14  8  1  5 | 0       |

• Molecule 10 is PHOSPHATIDYLETHANOLAMINE (three-letter code: PTY) (formula:  $C_{40}H_{80}NO_8P$ ) (labeled as "Ligand of Interest" by depositor).





| Mol | Chain | Residues |       | Ato | oms |   |   | AltConf |
|-----|-------|----------|-------|-----|-----|---|---|---------|
| 10  | Л     | 1        | Total | С   | Ν   | 0 | Р | 0       |
| 10  | D     | L        | 50    | 40  | 1   | 8 | 1 | 0       |
| 10  | ц     | 1        | Total | С   | Ν   | 0 | Р | 0       |
| 10  | 11    | L        | 50    | 40  | 1   | 8 | 1 | 0       |
| 10  | т     | 1        | Total | С   | Ν   | 0 | Р | 0       |
| 10  |       | L        | 50    | 40  | 1   | 8 | 1 | 0       |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Envelope glycoprotein



















| Molecule 1: Envelope glycoprotein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Chain E: 5% • 94%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                  |
| ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CLU<br>CLU<br>CLU<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ARG<br>TYR<br>LEU<br>LEU<br>Y59                                    |
| • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |
| V68<br>V68<br>V68<br>V68<br>V75<br>V75<br>V75<br>V75<br>V76<br>V75<br>V76<br>V76<br>V76<br>V76<br>V76<br>V76<br>V76<br>V76<br>V76<br>V76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ILE<br>PRO<br>GLN<br>GLY<br>VAL<br>TYR<br>TYR<br>CLU<br>GLU<br>PRO |
| PR0<br>PR0<br>PR0<br>PR0<br>PR0<br>PR0<br>PR0<br>PR0<br>PR0<br>PR0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ILE<br>ASP<br>PHE<br>GLU<br>ILE<br>PRO                             |
| dLY<br>dLY<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>GLN<br>TTR<br>CYS<br>CYS<br>GLN<br>TYR<br>GLN<br>TYR<br>GLN<br>TYR<br>GLN<br>TYR<br>GLN<br>TYR<br>GLN<br>TYR<br>GLN<br>TYR<br>GLN<br>TYR<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GLU<br>TYS<br>GL | ASN<br>ARG<br>GLN<br>SER<br>TLE<br>TRP                             |
| TYR<br>TYR<br>TYR<br>TYR<br>TYR<br>TYR<br>THE<br>PRO<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ASN<br>ILE<br>GLU<br>ASN<br>ILE<br>ILE                             |
| A ANG<br>A ANG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ILE<br>LEU<br>LEU<br>ASN<br>SER                                    |
| TTRP<br>PFHE<br>PFHE<br>CLLEU<br>CLLEU<br>CLLEU<br>AASP<br>PFHE<br>PFHE<br>PFHE<br>AASN<br>AASP<br>AASP<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASP<br>AASN<br>AASN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LYS<br>CYS<br>ARG<br>ASP<br>GLY<br>GLU                             |
| 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LE<br>LA<br>ER<br>YS<br>YR<br>YR                                   |
| : 是今我上沙运我沙漠附近过来我大我心上来过不自来也就是一大沙混个心爹还心心我我心然上我没过多我我我爹就来!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H 4 10 L A F                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AR<br>LY<br>AR<br>AR<br>SE<br>VA                                   |
| ASSE<br>ASSE<br>ALAR<br>ALAR<br>ALAR<br>ALAR<br>ALAR<br>ALAR<br>ALAR<br>ALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SER<br>VAL<br>MET<br>GLU<br>GLU<br>GLU<br>MET                      |
| ALAL<br>VALL<br>LEU<br>VALL<br>LEU<br>HIS<br>ASB<br>HIS<br>ASB<br>HIS<br>ASB<br>HIS<br>ASB<br>ASP<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>CLEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TYR<br>TYR<br>VAL<br>LYS<br>GLN<br>THR                             |
| SER<br>SER<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ILE<br>ASN<br>LYS<br>GLU<br>CYS<br>VAL                             |
| THR<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ASN<br>GLY<br>SER<br>TYR<br>LEU<br>VAL                             |
| ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HIS<br>LEU<br>VAL<br>GLY<br>ILE<br>ILE                             |
| LIVE<br>LIVE<br>LIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLIVE<br>CLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALA<br>ALA<br>ALA<br>SER<br>ALA<br>LEU                             |
| GLY<br>TLE<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ASN<br>ALA<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>AS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GLN                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |

• Molecule 1: Envelope glycoprotein

Chain I: 6%

94%



LILLE LILLE SCRUMANNA ANNUNCTURE RARG CVC SUSTANCE CVC SUSTANCE CVC SUSTANCE SUST A ASN LEVU A ALA A ASN A VAL HIES VAL HIES VAL HIES ASS HIES HIES ASS HIE TILE ASN OF ASN • Molecule 1: Envelope glycoprotein Chain C: 36% 58% 5% 







LYS ASN GLN

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

|              | 50% |     |
|--------------|-----|-----|
| Chain M:     | 10  | 00% |
|              |     |     |
| <b>_</b>     |     |     |
| NAG1<br>NAG2 |     |     |

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|            | 50% |      |  |
|------------|-----|------|--|
| Chain a:   |     | 100% |  |
|            |     |      |  |
| <b>•</b>   |     |      |  |
| AG1<br>AG2 |     |      |  |
|            |     |      |  |
|            |     |      |  |

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

| Chain b:                   | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| NAG1<br>NAG2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| • Molecule 2:<br>opyranose | eq:2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-a | -gluc |

Chain c:

100%



#### NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|               | 50%                                                         |                      |
|---------------|-------------------------------------------------------------|----------------------|
| Chain d:      | 100%                                                        |                      |
| NAG1<br>NAG2  |                                                             |                      |
| • Molecule 2: | 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido- | -2-deoxy-beta-D-gluc |
| opyranose     |                                                             |                      |

| _            | 50% |   |
|--------------|-----|---|
| Chain N:     | 100 | % |
| •            |     |   |
| NAG1<br>NAG2 |     |   |

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Ch | ain | O: |
|----|-----|----|
|    |     |    |

#### 100%

#### NAG 1 NAG 2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|            | 50% |      |
|------------|-----|------|
| Chain Y:   |     | 100% |
|            |     |      |
| •          |     |      |
| 4G1<br>4G2 |     |      |
|            |     |      |
|            |     |      |

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|              | 50%                            |                                  |
|--------------|--------------------------------|----------------------------------|
| Chain Z:     | 10                             | 0%                               |
|              |                                |                                  |
| NAG1<br>NAG2 |                                |                                  |
| • Molecul    | e 3: beta-D-mannopyranose-(1-4 | )-2-acetamido-2-deoxy-beta-D-glu |

• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|          | 100% |
|----------|------|
| Chain U: | 100% |
|          |      |





• Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|                      | 67%  |  |
|----------------------|------|--|
| Chain S:             | 100% |  |
|                      |      |  |
| ••                   |      |  |
| NAG1<br>NAG2<br>BMA3 |      |  |

 $\bullet$  Molecule 3: beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| 6              | 57%  |  |
|----------------|------|--|
| Chain T:       | 100% |  |
|                |      |  |
| A3 22          |      |  |
| NA<br>NA<br>BM |      |  |

 $\label{eq:2-acetamido-2-deoxy-beta-D-glucopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose nose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose$ 

| $\alpha \rightarrow x$ | 17%  |  |  |  |  |  |
|------------------------|------|--|--|--|--|--|
| Chain X:               | 100% |  |  |  |  |  |
|                        |      |  |  |  |  |  |
| NG 55 43 23 1          |      |  |  |  |  |  |
| NA<br>BM<br>MA<br>NA   |      |  |  |  |  |  |

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]} beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ nose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ \end{array}$ 

| 1                                           | 17%  |  |  |  |  |  |
|---------------------------------------------|------|--|--|--|--|--|
| Chain V:                                    | 100% |  |  |  |  |  |
|                                             |      |  |  |  |  |  |
|                                             |      |  |  |  |  |  |
| NAG<br>BMAG<br>MANA<br>NAGE<br>MANG<br>MANG |      |  |  |  |  |  |

 $\label{eq:mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]} beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ nose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ \end{array}$ 





 $\bullet$  Molecule 5: alpha-D-mannopyranose-(1-6)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose (1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose



 $\bullet \ Molecule \ 5: \ alpha-D-mannopyranose-(1-6)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ eta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \ (1-4)-2-acetamido-2-deoxy-beta-D-glucopyra$ 



 $\bullet \ Molecule \ 5: \ alpha-D-mannopyranose-(1-6)-beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose$ 



• Molecule 6: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose e



• Molecule 6: alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose e



 $\bullet \ Molecule \ 6: \ alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)] \\ alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)] \\ beta-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)] \\ beta-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)] \\ beta-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[a$ 



| -4)-2-acet | amido-2-deoxy-beta-D-g | glucopyranose-(1-4)- | 2-acetamido-2-deoxy | v-beta-D-glucopyranos |
|------------|------------------------|----------------------|---------------------|-----------------------|
| e          |                        |                      |                     |                       |
|            | 38%                    |                      |                     |                       |
| Chain g:   |                        | 100%                 |                     |                       |

|      |      |      |      |      | 0.   |      |      |
|------|------|------|------|------|------|------|------|
|      |      |      |      |      | •    | •    | •    |
| NAG1 | NAG2 | BMA3 | MAN4 | MAN5 | MAN6 | MAN7 | MAN8 |

 $\label{eq:mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]} beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy$ 

|                                        | 67%  |
|----------------------------------------|------|
| Chain h:                               | 100% |
|                                        |      |
| <b>***</b>                             |      |
| AG1<br>AG2<br>MA3<br>AN4<br>AN5<br>AN6 |      |
| NN A W W                               |      |

• Molecule 7: alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|     |            |     |      |      |     |  | 83% |     |  |  |
|-----|------------|-----|------|------|-----|--|-----|-----|--|--|
| Cł  | nai        | n   | i:   |      | 17% |  |     | 83% |  |  |
|     |            |     |      |      |     |  |     |     |  |  |
| -   | •          | •   | ••   | •    |     |  |     |     |  |  |
| AG1 | MA3        | AN4 | IAN5 | IAN6 |     |  |     |     |  |  |
| 2 2 | <u>а</u> ф | Σ   | Σ    | Σ    |     |  |     |     |  |  |

• Molecule 7: alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

|                                              | 67%  |   |
|----------------------------------------------|------|---|
| Chain j:                                     | 100% | 6 |
|                                              |      |   |
| NAG1<br>NAG2<br>MAN4<br>MAN5<br>MAN5<br>MAN5 |      |   |



# 4 Experimental information (i)

| Property                           | Value                        | Source    |
|------------------------------------|------------------------------|-----------|
| EM reconstruction method           | SUBTOMOGRAM AVERAGING        | Depositor |
| Imposed symmetry                   | POINT, C5                    | Depositor |
| Number of subtomograms used        | 2220                         | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF            | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE | Depositor |
|                                    | CORRECTION                   |           |
| Microscope                         | FEI TITAN KRIOS              | Depositor |
| Voltage (kV)                       | 300                          | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 107.42                       | Depositor |
| Minimum defocus (nm)               | 2000                         | Depositor |
| Maximum defocus (nm)               | 4500                         | Depositor |
| Magnification                      | Not provided                 |           |
| Image detector                     | GATAN K2 SUMMIT (4k x 4k)    | Depositor |
| Maximum map value                  | 0.194                        | Depositor |
| Minimum map value                  | -0.121                       | Depositor |
| Average map value                  | -0.000                       | Depositor |
| Map value standard deviation       | 0.029                        | Depositor |
| Recommended contour level          | 0.064                        | Depositor |
| Map size (Å)                       | 441.6, 441.6, 441.6          | wwPDB     |
| Map dimensions                     | 160, 160, 160                | wwPDB     |
| Map angles $(^{\circ})$            | 90.0, 90.0, 90.0             | wwPDB     |
| Pixel spacing (Å)                  | 2.76, 2.76, 2.76             | Depositor |



# 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MAN, CLR, BMA, NAG, PTY

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Chain | Bond | lengths  | Bond angles |                  |  |
|------|-------|------|----------|-------------|------------------|--|
| MIOI | Unain | RMSZ | # Z  > 5 | RMSZ        | # Z  > 5         |  |
| 1    | А     | 0.69 | 0/476    | 1.02        | 0/653            |  |
| 1    | В     | 0.72 | 0/3469   | 1.11        | 22/4705~(0.5%)   |  |
| 1    | С     | 0.71 | 0/3469   | 1.13        | 25/4705~(0.5%)   |  |
| 1    | D     | 0.64 | 0/3260   | 1.08        | 17/4441~(0.4%)   |  |
| 1    | Е     | 0.68 | 0/476    | 1.13        | 4/653~(0.6%)     |  |
| 1    | F     | 0.77 | 0/97     | 1.19        | 1/130~(0.8%)     |  |
| 1    | G     | 0.72 | 0/3416   | 1.16        | 32/4634~(0.7%)   |  |
| 1    | Н     | 0.64 | 0/3260   | 1.08        | 16/4441~(0.4%)   |  |
| 1    | Ι     | 0.70 | 0/476    | 1.09        | 2/653~(0.3%)     |  |
| 1    | L     | 0.64 | 0/3260   | 1.10        | 18/4441~(0.4%)   |  |
| All  | All   | 0.68 | 0/21659  | 1.11        | 137/29456~(0.5%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | В     | 0                   | 10                  |
| 1   | С     | 0                   | 11                  |
| 1   | D     | 0                   | 11                  |
| 1   | Ε     | 0                   | 1                   |
| 1   | G     | 0                   | 9                   |
| 1   | Н     | 0                   | 10                  |
| 1   | Ι     | 0                   | 1                   |
| 1   | L     | 0                   | 5                   |
| All | All   | 0                   | 58                  |

There are no bond length outliers.

All (137) bond angle outliers are listed below:



| Mol | Chain | Res | Type | Atoms     | Z      | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|--------|------------------|---------------|
| 1   | L     | 745 | TYR  | CB-CG-CD1 | -12.05 | 113.77           | 121.00        |
| 1   | В     | 513 | TYR  | CB-CG-CD2 | -9.86  | 115.08           | 121.00        |
| 1   | С     | 373 | ARG  | NE-CZ-NH1 | 9.71   | 125.16           | 120.30        |
| 1   | G     | 395 | TYR  | CB-CG-CD2 | -9.70  | 115.18           | 121.00        |
| 1   | G     | 223 | TYR  | CB-CG-CD2 | -9.51  | 115.30           | 121.00        |
| 1   | D     | 707 | TYR  | CB-CG-CD2 | -9.40  | 115.36           | 121.00        |
| 1   | D     | 896 | ARG  | NE-CZ-NH1 | 9.37   | 124.98           | 120.30        |
| 1   | С     | 137 | TYR  | CB-CG-CD1 | -9.06  | 115.56           | 121.00        |
| 1   | G     | 339 | PHE  | CB-CG-CD2 | -8.87  | 114.59           | 120.80        |
| 1   | Ι     | 92  | ARG  | NE-CZ-NH2 | 8.83   | 124.72           | 120.30        |
| 1   | С     | 513 | TYR  | CB-CG-CD1 | -8.82  | 115.71           | 121.00        |
| 1   | G     | 373 | ARG  | NE-CZ-NH1 | 8.82   | 124.71           | 120.30        |
| 1   | G     | 210 | PHE  | CB-CG-CD2 | -8.71  | 114.70           | 120.80        |
| 1   | С     | 226 | ARG  | NE-CZ-NH2 | -8.63  | 115.98           | 120.30        |
| 1   | D     | 765 | ARG  | NE-CZ-NH1 | 8.62   | 124.61           | 120.30        |
| 1   | Н     | 707 | TYR  | CB-CG-CD2 | -8.51  | 115.89           | 121.00        |
| 1   | Е     | 92  | ARG  | NE-CZ-NH2 | 8.35   | 124.47           | 120.30        |
| 1   | L     | 896 | ARG  | NE-CZ-NH1 | 8.18   | 124.39           | 120.30        |
| 1   | С     | 226 | ARG  | NE-CZ-NH1 | 8.14   | 124.37           | 120.30        |
| 1   | D     | 811 | TYR  | CB-CG-CD1 | -8.10  | 116.14           | 121.00        |
| 1   | G     | 226 | ARG  | NE-CZ-NH1 | 8.08   | 124.34           | 120.30        |
| 1   | L     | 717 | TYR  | CB-CG-CD2 | -7.97  | 116.22           | 121.00        |
| 1   | С     | 477 | TYR  | CB-CG-CD1 | -7.90  | 116.26           | 121.00        |
| 1   | G     | 439 | ARG  | NE-CZ-NH1 | 7.88   | 124.24           | 120.30        |
| 1   | Н     | 948 | PHE  | CB-CG-CD2 | -7.80  | 115.34           | 120.80        |
| 1   | L     | 865 | ARG  | NE-CZ-NH1 | 7.78   | 124.19           | 120.30        |
| 1   | В     | 540 | ARG  | NE-CZ-NH1 | 7.76   | 124.18           | 120.30        |
| 1   | D     | 765 | ARG  | NE-CZ-NH2 | -7.71  | 116.44           | 120.30        |
| 1   | G     | 459 | TYR  | CB-CG-CD2 | -7.62  | 116.43           | 121.00        |
| 1   | L     | 613 | ARG  | NE-CZ-NH1 | 7.57   | 124.08           | 120.30        |
| 1   | Н     | 585 | TYR  | CB-CG-CD1 | -7.52  | 116.49           | 121.00        |
| 1   | Н     | 613 | ARG  | NE-CZ-NH1 | 7.42   | 124.01           | 120.30        |
| 1   | G     | 493 | ARG  | NE-CZ-NH1 | 7.39   | 124.00           | 120.30        |
| 1   | С     | 540 | ARG  | NE-CZ-NH1 | 7.35   | 123.98           | 120.30        |
| 1   | Н     | 865 | ARG  | NE-CZ-NH1 | 7.33   | 123.96           | 120.30        |
| 1   | С     | 269 | ARG  | NE-CZ-NH1 | 7.32   | 123.96           | 120.30        |
| 1   | В     | 137 | TYR  | CB-CG-CD1 | -7.31  | 116.61           | 121.00        |
| 1   | В     | 373 | ARG  | NE-CZ-NH1 | 7.28   | 123.94           | 120.30        |
| 1   | L     | 581 | ARG  | NE-CZ-NH1 | 7.28   | 123.94           | 120.30        |
| 1   | В     | 226 | ARG  | CD-NE-CZ  | 7.27   | 133.78           | 123.60        |
| 1   | Н     | 768 | TYR  | CB-CG-CD2 | -7.23  | 116.66           | 121.00        |
| 1   | Н     | 684 | ARG  | NE-CZ-NH1 | 7.20   | 123.90           | 120.30        |
| 1   | В     | 474 | TYR  | CB-CG-CD2 | -7.19  | 116.68           | 121.00        |



Continued from previous page...

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms                  | $\mathbf{Z}$ | $Observed(^{o})$    | $Ideal(^{o})$ |
|-----|-------|----------------|------|------------------------|--------------|---------------------|---------------|
| 1   | G     | 520            | PHE  | CB-CG-CD2              | -7.18        | 115.77              | 120.80        |
| 1   | G     | 460            | TYR  | CB-CG-CD2              | -7.17        | 116.70              | 121.00        |
| 1   | G     | 540            | ARG  | NE-CZ-NH1              | 7.16         | 123.88              | 120.30        |
| 1   | D     | 613            | ARG  | NE-CZ-NH1              | 7.15         | 123.87              | 120.30        |
| 1   | В     | 528            | TYR  | CB-CG-CD2              | -7.13        | 116.72              | 121.00        |
| 1   | С     | 493            | ARG  | NE-CZ-NH1              | 7.03         | 123.81              | 120.30        |
| 1   | L     | 707            | TYR  | CB-CG-CD1              | -7.01        | 116.79              | 121.00        |
| 1   | G     | 226            | ARG  | CD-NE-CZ               | 6.99         | 133.38              | 123.60        |
| 1   | Н     | 659            | TYR  | CB-CG-CD1              | -6.91        | 116.86              | 121.00        |
| 1   | Н     | 896            | ARG  | NE-CZ-NH1              | 6.90         | 123.75              | 120.30        |
| 1   | G     | 318            | CYS  | CA-CB-SG               | 6.86         | 126.35              | 114.00        |
| 1   | В     | 433            | TYR  | CB-CG-CD2              | -6.80        | 116.92              | 121.00        |
| 1   | D     | 707            | TYR  | CB-CG-CD1              | -6.75        | 116.95              | 121.00        |
| 1   | Н     | 765            | ARG  | NE-CZ-NH1              | 6.59         | 123.59              | 120.30        |
| 1   | G     | 163            | ARG  | NE-CZ-NH1              | 6.48         | 123.54              | 120.30        |
| 1   | D     | 768            | TYR  | CB-CG-CD2              | -6.45        | 117.13              | 121.00        |
| 1   | G     | 218            | ARG  | NE-CZ-NH1              | 6.45         | 123.52              | 120.30        |
| 1   | В     | 339            | PHE  | CB-CG-CD2              | -6.41        | 116.31              | 120.80        |
| 1   | L     | 684            | ARG  | NE-CZ-NH1              | 6.41         | 123.50              | 120.30        |
| 1   | Ε     | 73             | PHE  | CB-CG-CD2              | -6.40        | 116.32              | 120.80        |
| 1   | L     | 768            | TYR  | CB-CG-CD2              | -6.39        | 117.17              | 121.00        |
| 1   | L     | 681            | ARG  | NE-CZ-NH1              | 6.36         | 123.48              | 120.30        |
| 1   | Н     | 845            | ARG  | NE-CZ-NH1              | 6.34         | 123.47              | 120.30        |
| 1   | F     | 129            | ARG  | NE-CZ-NH1              | 6.30         | 123.45              | 120.30        |
| 1   | D     | 689            | TYR  | CB-CG-CD1              | -6.30        | 117.22              | 121.00        |
| 1   | D     | 858            | ARG  | NE-CZ-NH1              | 6.27         | 123.43              | 120.30        |
| 1   | D     | 896            | ARG  | NE-CZ-NH2              | -6.25        | 117.17              | 120.30        |
| 1   | L     | 654            | ARG  | NE-CZ-NH1              | 6.24         | 123.42              | 120.30        |
| 1   | В     | 283            | ARG  | NE-CZ-NH1              | 6.24         | 123.42              | 120.30        |
| 1   | G     | 308            | ARG  | NE-CZ-NH1              | 6.24         | 123.42              | 120.30        |
| 1   | G     | 327            | TYR  | CB-CG-CD2              | -6.14        | 117.31              | 121.00        |
| 1   | G     | 456            | ARG  | NE-CZ-NH2              | 6.10         | 123.35              | 120.30        |
| 1   | D     | 654            | ARG  | NE-CZ-NH1              | 6.09         | 123.35              | 120.30        |
| 1   | G     | 503            | TYR  | CB-CG-CD1              | -6.09        | 117.35              | 121.00        |
| 1   | D     | 684            | ARG  | NE-CZ-NH1              | 6.05         | 123.33              | 120.30        |
| 1   | L     | 765            | ARG  | NE-CZ-NH1              | 6.04         | 123.32              | 120.30        |
| 1   | Н     | 581            | ARG  | NE-CZ-NH1              | 6.00         | 123.30              | 120.30        |
| 1   | В     | 240            | TYR  | CB-CG-CD2              | -5.99        | 117.40              | 121.00        |
| 1   | G     | 513            | TYR  | CB-CG-CD1              | -5.97        | 117.42              | 121.00        |
| 1   | C     | 559            | ARG  | NE-CZ-NH1              | 5.95         | 123.28              | 120.30        |
| 1   | C     | 339            | PHE  | $CB-CG-\overline{CD2}$ | -5.93        | $116.6\overline{5}$ | 120.80        |
| 1   | С     | 436            | ARG  | NE-CZ-NH1              | 5.87         | 123.23              | 120.30        |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C    |          |      |
|----------------------------------|------|----------|------|
| Continued                        | trom | previous | page |
|                                  | J    | 1        | 1    |

| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 1   | G     | 133 | PRO  | CA-N-CD   | -5.78 | 103.41           | 111.50        |
| 1   | С     | 229 | TYR  | CB-CG-CD1 | -5.77 | 117.54           | 121.00        |
| 1   | С     | 323 | TYR  | CB-CG-CD2 | -5.76 | 117.55           | 121.00        |
| 1   | Ι     | 113 | ARG  | NE-CZ-NH1 | 5.75  | 123.17           | 120.30        |
| 1   | В     | 226 | ARG  | NE-CZ-NH1 | 5.71  | 123.15           | 120.30        |
| 1   | Н     | 852 | ARG  | NE-CZ-NH1 | 5.65  | 123.13           | 120.30        |
| 1   | L     | 858 | ARG  | NE-CZ-NH1 | 5.63  | 123.12           | 120.30        |
| 1   | В     | 493 | ARG  | NE-CZ-NH1 | 5.59  | 123.10           | 120.30        |
| 1   | Н     | 858 | ARG  | NE-CZ-NH1 | 5.58  | 123.09           | 120.30        |
| 1   | G     | 395 | TYR  | CB-CG-CD1 | 5.57  | 124.34           | 121.00        |
| 1   | В     | 163 | ARG  | NE-CZ-NH1 | 5.56  | 123.08           | 120.30        |
| 1   | G     | 235 | CYS  | CA-CB-SG  | -5.52 | 104.07           | 114.00        |
| 1   | G     | 474 | TYR  | CB-CG-CD2 | -5.51 | 117.69           | 121.00        |
| 1   | Е     | 86  | CYS  | CA-CB-SG  | -5.49 | 104.12           | 114.00        |
| 1   | D     | 681 | ARG  | NE-CZ-NH1 | 5.44  | 123.02           | 120.30        |
| 1   | С     | 163 | ARG  | NE-CZ-NH1 | 5.44  | 123.02           | 120.30        |
| 1   | G     | 297 | ARG  | NE-CZ-NH1 | 5.44  | 123.02           | 120.30        |
| 1   | С     | 218 | ARG  | NE-CZ-NH1 | 5.43  | 123.02           | 120.30        |
| 1   | В     | 218 | ARG  | NE-CZ-NH1 | 5.43  | 123.01           | 120.30        |
| 1   | В     | 151 | TYR  | CB-CG-CD2 | -5.40 | 117.76           | 121.00        |
| 1   | D     | 688 | TYR  | CB-CG-CD1 | -5.40 | 117.76           | 121.00        |
| 1   | L     | 659 | TYR  | CB-CG-CD2 | -5.39 | 117.76           | 121.00        |
| 1   | С     | 397 | PHE  | CB-CG-CD2 | -5.38 | 117.04           | 120.80        |
| 1   | L     | 852 | ARG  | NE-CZ-NH2 | 5.36  | 122.98           | 120.30        |
| 1   | С     | 406 | PHE  | CB-CG-CD2 | -5.33 | 117.07           | 120.80        |
| 1   | С     | 297 | ARG  | NE-CZ-NH1 | 5.32  | 122.96           | 120.30        |
| 1   | С     | 456 | ARG  | NE-CZ-NH2 | 5.30  | 122.95           | 120.30        |
| 1   | D     | 865 | ARG  | NE-CZ-NH1 | 5.30  | 122.95           | 120.30        |
| 1   | L     | 903 | ARG  | NE-CZ-NH1 | 5.30  | 122.95           | 120.30        |
| 1   | G     | 357 | ARG  | NE-CZ-NH1 | 5.25  | 122.93           | 120.30        |
| 1   | Н     | 903 | ARG  | NE-CZ-NH1 | 5.25  | 122.93           | 120.30        |
| 1   | В     | 503 | TYR  | CB-CG-CD1 | -5.25 | 117.85           | 121.00        |
| 1   | С     | 500 | TYR  | CB-CG-CD1 | -5.24 | 117.85           | 121.00        |
| 1   | Н     | 825 | TYR  | CB-CG-CD2 | -5.24 | 117.86           | 121.00        |
| 1   | G     | 269 | ARG  | NE-CZ-NH1 | 5.24  | 122.92           | 120.30        |
| 1   | G     | 436 | ARG  | NE-CZ-NH1 | 5.23  | 122.92           | 120.30        |
| 1   | С     | 223 | TYR  | CB-CG-CD2 | -5.21 | 117.88           | 121.00        |
| 1   | В     | 308 | ARG  | NE-CZ-NH1 | 5.20  | 122.90           | 120.30        |
| 1   | В     | 357 | ARG  | NE-CZ-NH1 | 5.17  | 122.88           | 120.30        |
| 1   | С     | 293 | TYR  | CB-CG-CD2 | -5.16 | 117.90           | 121.00        |
| 1   | G     | 529 | THR  | CA-CB-CG2 | 5.16  | 119.63           | 112.40        |
| 1   | G     | 497 | TYR  | CB-CG-CD2 | -5.16 | 117.91           | 121.00        |



| Mol | Chain | Res | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|------------------|---------------|
| 1   | В     | 276 | TYR  | CB-CG-CD1 | -5.12 | 117.93           | 121.00        |
| 1   | С     | 460 | TYR  | CB-CG-CD2 | -5.11 | 117.94           | 121.00        |
| 1   | G     | 339 | PHE  | CB-CG-CD1 | 5.10  | 124.37           | 120.80        |
| 1   | В     | 297 | ARG  | NE-CZ-NH1 | 5.10  | 122.85           | 120.30        |
| 1   | D     | 903 | ARG  | NE-CZ-NH1 | 5.09  | 122.84           | 120.30        |
| 1   | С     | 210 | PHE  | CB-CG-CD2 | -5.04 | 117.27           | 120.80        |
| 1   | В     | 338 | ARG  | NE-CZ-NH1 | 5.02  | 122.81           | 120.30        |
| 1   | L     | 948 | PHE  | CB-CG-CD2 | -5.02 | 117.29           | 120.80        |
| 1   | E     | 67  | ARG  | NE-CZ-NH1 | 5.01  | 122.81           | 120.30        |
| 1   | Ĺ     | 757 | TYR  | CB-CG-CD1 | -5.01 | 118.00           | 121.00        |

There are no chirality outliers.

All (58) planarity outliers are listed below:

| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 1   | В     | 137 | TYR  | Sidechain |
| 1   | В     | 225 | HIS  | Sidechain |
| 1   | В     | 283 | ARG  | Sidechain |
| 1   | В     | 293 | TYR  | Sidechain |
| 1   | В     | 338 | ARG  | Sidechain |
| 1   | В     | 395 | TYR  | Sidechain |
| 1   | В     | 433 | TYR  | Sidechain |
| 1   | В     | 456 | ARG  | Sidechain |
| 1   | В     | 470 | TYR  | Sidechain |
| 1   | В     | 513 | TYR  | Sidechain |
| 1   | С     | 137 | TYR  | Sidechain |
| 1   | С     | 223 | TYR  | Sidechain |
| 1   | С     | 225 | HIS  | Sidechain |
| 1   | С     | 229 | TYR  | Sidechain |
| 1   | С     | 283 | ARG  | Sidechain |
| 1   | С     | 293 | TYR  | Sidechain |
| 1   | С     | 302 | TYR  | Sidechain |
| 1   | С     | 373 | ARG  | Sidechain |
| 1   | С     | 395 | TYR  | Sidechain |
| 1   | С     | 460 | TYR  | Sidechain |
| 1   | С     | 474 | TYR  | Sidechain |
| 1   | D     | 610 | TYR  | Sidechain |
| 1   | D     | 659 | TYR  | Sidechain |
| 1   | D     | 688 | TYR  | Sidechain |
| 1   | D     | 689 | TYR  | Sidechain |
| 1   | D     | 707 | TYR  | Sidechain |
| 1   | D     | 745 | TYR  | Sidechain |



|     | 5     | 1   | 1 0  |           |
|-----|-------|-----|------|-----------|
| Mol | Chain | Res | Type | Group     |
| 1   | D     | 757 | TYR  | Sidechain |
| 1   | D     | 765 | ARG  | Sidechain |
| 1   | D     | 845 | ARG  | Sidechain |
| 1   | D     | 858 | ARG  | Sidechain |
| 1   | D     | 865 | ARG  | Sidechain |
| 1   | Е     | 113 | ARG  | Sidechain |
| 1   | G     | 137 | TYR  | Sidechain |
| 1   | G     | 150 | TYR  | Sidechain |
| 1   | G     | 223 | TYR  | Sidechain |
| 1   | G     | 225 | HIS  | Sidechain |
| 1   | G     | 302 | TYR  | Sidechain |
| 1   | G     | 327 | TYR  | Sidechain |
| 1   | G     | 395 | TYR  | Sidechain |
| 1   | G     | 439 | ARG  | Sidechain |
| 1   | G     | 460 | TYR  | Sidechain |
| 1   | Н     | 585 | TYR  | Sidechain |
| 1   | Н     | 653 | ARG  | Sidechain |
| 1   | Н     | 659 | TYR  | Sidechain |
| 1   | Н     | 681 | ARG  | Sidechain |
| 1   | Н     | 688 | TYR  | Sidechain |
| 1   | Н     | 689 | TYR  | Sidechain |
| 1   | Н     | 707 | TYR  | Sidechain |
| 1   | Н     | 738 | HIS  | Sidechain |
| 1   | Н     | 757 | TYR  | Sidechain |
| 1   | Н     | 825 | TYR  | Sidechain |
| 1   | Ι     | 113 | ARG  | Sidechain |
| 1   | L     | 659 | TYR  | Sidechain |
| 1   | L     | 689 | TYR  | Sidechain |
| 1   | L     | 707 | TYR  | Sidechain |
| 1   | L     | 745 | TYR  | Sidechain |
| 1   | L     | 757 | TYR  | Sidechain |

Continued from previous page...

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 466   | 0        | 488      | 1       | 0            |
| 1   | В     | 3380  | 0        | 3293     | 7       | 0            |



|          | Chain      | Non-H       | H(model) | H(added)   | Clashes  | Symm-Clashes |
|----------|------------|-------------|----------|------------|----------|--------------|
| 1        | C          | 3380        |          | 3203       |          |              |
| 1        |            | 3100        | 0        | 3295       | 9        | 0            |
| 1        | D<br>F     | 466         | 0        | 188        | 9        | 0            |
| 1        | E<br>F     | 400         | 0        | 488        | 0        | 0            |
| 1        | Г          | 94<br>3398  | 0        | 397        | 0        | 0            |
| 1        | - G<br>- Ц | 2100        | 0        | 3241       | 9        | 0            |
| 1        | 11<br>T    | 466         | 0        | 188        | 9        | 0            |
| 1        | I          | 3100        | 0        | 400        | 7        | 0            |
|          |            | 3190        | 0        | 25         | <u> </u> | 0            |
|          | NI<br>N    | 20          | 0        | 25         | 0        | 0            |
|          |            | 20          | 0        | 25         | 0        | 0            |
|          |            | 20          | 0        | 25         | 0        | 0            |
|          | 1          | 20          | 0        | 25         | 0        | 0            |
|          |            | 20          | 0        | 25         | 0        | 0            |
|          | a<br>b     | 20          | 0        | 20         | 0        | 0            |
|          | D          | 20          | 0        | 20         | 0        | 0            |
|          | C          | 28          | 0        | 20         | 0        | 0            |
|          | a<br>c     | 28          | 0        | 20         | 0        | 0            |
| <u>う</u> | <u>с</u>   | 39          | 0        | 34         | 0        | 0            |
| <u>う</u> |            | 39          | 0        | 34         | 0        | 0            |
| 3        | U          | 39          | 0        | 34         | 0        | 0            |
| 4        | V          | / D<br>75   | 0        | 04         | 0        | 0            |
| 4        | VV         | / D<br>75   | 0        | 64         | 0        | 0            |
| 4        |            | ()<br>50    | 0        | 04         | 0        | 0            |
| 5        | P          | 50          | 0        | 43         | 0        | 0            |
| 5<br>    |            | 50          | 0        | 43         | 0        | 0            |
| C C      | R          | 50          | 0        | 43         | 0        | 0            |
| 0        | e          | 94          | 0        | 79         | 0        | 0            |
| 0<br>6   | I          | 94          | 0        | 79         | 0        | 0            |
| 0        | g<br>L     | 94          | 0        | (9<br>61   | 0        | 0            |
|          | <u> </u>   | 12          | 0        | 61         | 0        | 0            |
|          | 1          | 72          | 0        | 61         | 0        | 0            |
| 1        | J          | 12          | 0        | 01         | 0        | 0            |
| 8        | A          | 28          | 0        | 40         |          | 0            |
| 0        | D          | 20          | 0        | 40         | <u> </u> | 0            |
| 8        |            | <u>28</u>   | 0        | 40         | 0        | 0            |
| 9        | D          | 42          | 0        |            |          | 0            |
| 9        |            | 42          | 0        | <u>ა</u> ყ |          | 0            |
| <u> </u> | - G<br>- П | 42<br>50    | 0        | 39<br>70   |          | 0            |
| 10       |            | 50          | 0        | (9         |          | 0            |
| 10       | П          | 50          | 0        | (9         |          | 0            |
| 10       |            | 00<br>00750 | 0        | (9         |          | 0            |
| All      | All        | 22132       | U        | 22074      | 40       | U            |



The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All (46) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1            | Atom 2            | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 1:B:326:TRP:CG    | 1:B:343:LYS:HE3   | 2.31         | 0.65        |
| 1:G:326:TRP:CG    | 1:G:343:LYS:HE3   | 2.33         | 0.65        |
| 8:D:1100:CLR:H192 | 1:L:960:PRO:HB3   | 1.79         | 0.64        |
| 1:C:277:ILE:HG21  | 1:C:298:LEU:HD12  | 1.87         | 0.55        |
| 1:D:865:ARG:HE    | 1:D:890:ILE:HD11  | 1.75         | 0.52        |
| 1:G:277:ILE:HG21  | 1:G:298:LEU:HD12  | 1.92         | 0.52        |
| 1:B:277:ILE:HD11  | 1:B:302:TYR:HB2   | 1.93         | 0.50        |
| 1:D:700:THR:HG23  | 1:C:193:THR:HG23  | 1.93         | 0.50        |
| 1:L:792:TRP:CG    | 1:L:880:LYS:HE2   | 2.47         | 0.50        |
| 1:D:792:TRP:CG    | 1:D:880:LYS:HE2   | 2.47         | 0.49        |
| 1:H:700:THR:HG23  | 1:G:193:THR:HG23  | 1.95         | 0.49        |
| 8:D:1100:CLR:H192 | 1:L:960:PRO:CB    | 2.42         | 0.47        |
| 1:H:807:LYS:HE3   | 1:H:807:LYS:HA    | 1.95         | 0.47        |
| 1:C:398:SER:HB3   | 1:C:486:CYS:SG    | 2.55         | 0.47        |
| 1:G:549:LYS:HE3   | 1:G:549:LYS:HA    | 1.96         | 0.47        |
| 1:L:760:LEU:HD22  | 1:L:774:VAL:HG22  | 1.97         | 0.47        |
| 8:D:1100:CLR:H212 | 8:D:1100:CLR:H121 | 1.97         | 0.46        |
| 1:B:503:TYR:CE2   | 1:B:507:LYS:HE2   | 2.50         | 0.46        |
| 1:F:137:TYR:CE1   | 1:G:133:PRO:HD3   | 2.52         | 0.45        |
| 1:H:623:THR:HG21  | 1:H:659:TYR:CD1   | 2.52         | 0.44        |
| 1:D:707:TYR:CE2   | 1:C:212:ILE:HD12  | 2.53         | 0.44        |
| 1:H:681:ARG:HA    | 1:H:681:ARG:NE    | 2.33         | 0.44        |
| 1:L:609:ILE:N     | 1:L:609:ILE:HD12  | 2.33         | 0.44        |
| 1:B:325:LYS:HA    | 1:B:325:LYS:HE3   | 2.00         | 0.43        |
| 1:D:609:ILE:HD12  | 1:D:609:ILE:N     | 2.33         | 0.43        |
| 1:H:700:THR:HG21  | 1:G:197:ASN:OD1   | 2.18         | 0.43        |
| 1:C:326:TRP:CG    | 1:C:343:LYS:HE3   | 2.54         | 0.43        |
| 1:H:585:TYR:CE1   | 1:G:210:PHE:CE2   | 3.07         | 0.43        |
| 1:H:681:ARG:HA    | 1:H:681:ARG:CZ    | 2.49         | 0.43        |
| 1:D:700:THR:HG21  | 1:C:197:ASN:OD1   | 2.18         | 0.43        |
| 1:G:503:TYR:CE2   | 1:G:507:LYS:HE2   | 2.54         | 0.43        |
| 1:B:249:GLU:H     | 1:B:249:GLU:CD    | 2.22         | 0.42        |
| 1:C:156:GLU:CD    | 1:C:156:GLU:H     | 2.22         | 0.42        |
| 1:G:326:TRP:CB    | 1:G:343:LYS:HE3   | 2.48         | 0.42        |
| 1:D:807:LYS:HE3   | 1:D:807:LYS:HA    | 2.02         | 0.42        |
| 1:B:438:TRP:CE2   | 1:B:472:PHE:HB3   | 2.55         | 0.42        |
| 1:A:85:SER:HA     | 8:A:1100:CLR:C2   | 2.49         | 0.42        |



| Atom-1          | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|-----------------|------------------|-----------------------------|----------------------|
| 1:L:757:TYR:CD1 | 1:L:779:PRO:HD3  | 2.55                        | 0.42                 |
| 1:D:792:TRP:CB  | 1:D:880:LYS:HE2  | 2.50                        | 0.41                 |
| 1:D:689:TYR:CE2 | 1:D:705:GLY:HA3  | 2.56                        | 0.41                 |
| 1:L:923:LYS:HE3 | 1:L:927:PRO:HA   | 2.03                        | 0.41                 |
| 1:H:911:THR:HB  | 1:H:912:PRO:HD3  | 2.02                        | 0.41                 |
| 1:C:277:ILE:CG2 | 1:C:298:LEU:HD12 | 2.49                        | 0.41                 |
| 1:C:269:ARG:HA  | 1:C:273:TRP:CZ3  | 2.56                        | 0.41                 |
| 1:B:244:LYS:HE3 | 1:B:244:LYS:HB3  | 1.95                        | 0.41                 |
| 1:H:770:ILE:N   | 1:H:770:ILE:HD12 | 2.37                        | 0.40                 |

There are no symmetry-related clashes.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 1   | А     | 56/988~(6%)     | 54 (96%)   | 2(4%)    | 0        | 100   | 100    |
| 1   | В     | 405/988~(41%)   | 382 (94%)  | 22~(5%)  | 1 (0%)   | 47    | 81     |
| 1   | С     | 405/988~(41%)   | 379~(94%)  | 24~(6%)  | 2~(0%)   | 29    | 69     |
| 1   | D     | 403/988~(41%)   | 387~(96%)  | 15 (4%)  | 1 (0%)   | 47    | 81     |
| 1   | Е     | 56/988~(6%)     | 54 (96%)   | 2(4%)    | 0        | 100   | 100    |
| 1   | F     | 9/988~(1%)      | 9 (100%)   | 0        | 0        | 100   | 100    |
| 1   | G     | 399/988~(40%)   | 374~(94%)  | 23~(6%)  | 2~(0%)   | 29    | 69     |
| 1   | Н     | 403/988~(41%)   | 387~(96%)  | 15 (4%)  | 1 (0%)   | 47    | 81     |
| 1   | Ι     | 56/988~(6%)     | 53~(95%)   | 3~(5%)   | 0        | 100   | 100    |
| 1   | L     | 403/988 (41%)   | 386 (96%)  | 16 (4%)  | 1 (0%)   | 47    | 81     |
| All | All   | 2595/9880~(26%) | 2465 (95%) | 122 (5%) | 8 (0%)   | 44    | 77     |

All (8) Ramachandran outliers are listed below:



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 470 | TYR  |
| 1   | G     | 470 | TYR  |
| 1   | В     | 470 | TYR  |
| 1   | L     | 767 | ASP  |
| 1   | Н     | 767 | ASP  |
| 1   | С     | 247 | PRO  |
| 1   | D     | 767 | ASP  |
| 1   | G     | 247 | PRO  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Rotameric  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|-------|--------|
| 1   | А     | 54/899~(6%)     | 52~(96%)   | 2(4%)    | 34    | 58     |
| 1   | В     | 382/899~(42%)   | 366~(96%)  | 16 (4%)  | 30    | 54     |
| 1   | С     | 382/899~(42%)   | 365~(96%)  | 17 (4%)  | 27    | 52     |
| 1   | D     | 356/899~(40%)   | 345~(97%)  | 11 (3%)  | 40    | 62     |
| 1   | Ε     | 54/899~(6%)     | 54 (100%)  | 0        | 100   | 100    |
| 1   | F     | 11/899~(1%)     | 11 (100%)  | 0        | 100   | 100    |
| 1   | G     | 376/899~(42%)   | 360~(96%)  | 16 (4%)  | 29    | 53     |
| 1   | Н     | 356/899~(40%)   | 347~(98%)  | 9(2%)    | 47    | 68     |
| 1   | Ι     | 54/899~(6%)     | 53~(98%)   | 1 (2%)   | 57    | 75     |
| 1   | L     | 356/899~(40%)   | 344 (97%)  | 12 (3%)  | 37    | 60     |
| All | All   | 2381/8990~(26%) | 2297 (96%) | 84 (4%)  | 39    | 59     |

All (84) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 62  | CYS  |
| 1   | А     | 67  | ARG  |
| 1   | В     | 151 | TYR  |
| 1   | В     | 156 | GLU  |
| 1   | В     | 176 | GLU  |
| 1   | В     | 200 | MET  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 222 | GLN  |
| 1   | В     | 226 | ARG  |
| 1   | В     | 235 | CYS  |
| 1   | В     | 242 | GLU  |
| 1   | В     | 249 | GLU  |
| 1   | В     | 290 | LYS  |
| 1   | В     | 318 | CYS  |
| 1   | В     | 325 | LYS  |
| 1   | В     | 366 | GLN  |
| 1   | В     | 405 | ASN  |
| 1   | В     | 450 | ARG  |
| 1   | В     | 455 | LYS  |
| 1   | D     | 652 | GLU  |
| 1   | D     | 667 | GLN  |
| 1   | D     | 703 | GLU  |
| 1   | D     | 754 | GLU  |
| 1   | D     | 778 | GLN  |
| 1   | D     | 794 | GLU  |
| 1   | D     | 798 | GLU  |
| 1   | D     | 807 | LYS  |
| 1   | D     | 916 | GLN  |
| 1   | D     | 923 | LYS  |
| 1   | D     | 924 | ASP  |
| 1   | Н     | 609 | ILE  |
| 1   | Н     | 652 | GLU  |
| 1   | Н     | 667 | GLN  |
| 1   | Н     | 703 | GLU  |
| 1   | Н     | 754 | GLU  |
| 1   | Н     | 807 | LYS  |
| 1   | Н     | 880 | LYS  |
| 1   | Н     | 892 | GLU  |
| 1   | Н     | 916 | GLN  |
| 1   | L     | 579 | LYS  |
| 1   | L     | 652 | GLU  |
| 1   | L     | 654 | ARG  |
| 1   | L     | 667 | GLN  |
| 1   | L     | 670 | GLN  |
| 1   | L     | 681 | ARG  |
| 1   | L     | 802 | GLN  |
| 1   | L     | 821 | GLN  |
| 1   | L     | 863 | GLN  |
| 1   | L     | 885 | SER  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | L     | 916 | GLN  |
| 1   | L     | 923 | LYS  |
| 1   | Ι     | 100 | GLN  |
| 1   | С     | 151 | TYR  |
| 1   | С     | 161 | LYS  |
| 1   | С     | 172 | MET  |
| 1   | С     | 200 | MET  |
| 1   | С     | 221 | GLU  |
| 1   | С     | 222 | GLN  |
| 1   | С     | 231 | GLU  |
| 1   | С     | 249 | GLU  |
| 1   | С     | 269 | ARG  |
| 1   | С     | 290 | LYS  |
| 1   | С     | 346 | ASN  |
| 1   | С     | 366 | GLN  |
| 1   | С     | 443 | GLU  |
| 1   | С     | 450 | ARG  |
| 1   | С     | 486 | CYS  |
| 1   | С     | 490 | GLN  |
| 1   | С     | 511 | LYS  |
| 1   | G     | 151 | TYR  |
| 1   | G     | 162 | GLU  |
| 1   | G     | 172 | MET  |
| 1   | G     | 211 | GLU  |
| 1   | G     | 221 | GLU  |
| 1   | G     | 222 | GLN  |
| 1   | G     | 226 | ARG  |
| 1   | G     | 249 | GLU  |
| 1   | G     | 325 | LYS  |
| 1   | G     | 405 | ASN  |
| 1   | G     | 439 | ARG  |
| 1   | G     | 443 | GLU  |
| 1   | G     | 445 | GLU  |
| 1   | G     | 448 | LYS  |
| 1   | G     | 479 | LYS  |
| 1   | G     | 511 | LYS  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (5) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 225 | HIS  |
| 1   | D     | 934 | GLN  |


Continued from previous page...

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | L     | 670 | GLN  |
| 1   | С     | 489 | GLN  |
| 1   | G     | 495 | GLN  |

## 5.3.3 RNA (i)

There are no RNA molecules in this entry.

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 5.5 Carbohydrates (i)

99 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol  | Type | Chain   | Bos | Link | Bo       | ond leng | $_{\rm ths}$ | Bond angles    |      |          |  |
|------|------|---------|-----|------|----------|----------|--------------|----------------|------|----------|--|
| WIOI | туре | Ullalli | nes |      | Counts   | RMSZ     | # Z  > 2     | Counts         | RMSZ | # Z  > 2 |  |
| 2    | NAG  | М       | 1   | 2,1  | 14,14,15 | 1.21     | 1 (7%)       | 17,19,21       | 1.27 | 2 (11%)  |  |
| 2    | NAG  | М       | 2   | 2    | 14,14,15 | 1.36     | 2 (14%)      | 17,19,21       | 0.77 | 0        |  |
| 2    | NAG  | Ν       | 1   | 2,1  | 14,14,15 | 1.24     | 2 (14%)      | 17,19,21       | 0.85 | 0        |  |
| 2    | NAG  | Ν       | 2   | 2    | 14,14,15 | 1.21     | 1 (7%)       | 17,19,21       | 0.72 | 0        |  |
| 2    | NAG  | 0       | 1   | 2,1  | 14,14,15 | 1.08     | 0            | 17,19,21       | 1.26 | 2 (11%)  |  |
| 2    | NAG  | 0       | 2   | 2    | 14,14,15 | 1.09     | 1 (7%)       | 17,19,21       | 0.87 | 0        |  |
| 5    | NAG  | Р       | 1   | 5,1  | 14,14,15 | 1.11     | 1 (7%)       | 17,19,21       | 1.16 | 1 (5%)   |  |
| 5    | NAG  | Р       | 2   | 5    | 14,14,15 | 1.40     | 4 (28%)      | 17,19,21       | 1.01 | 2 (11%)  |  |
| 5    | BMA  | Р       | 3   | 5    | 11,11,12 | 1.10     | 1 (9%)       | $15,\!15,\!17$ | 1.10 | 1 (6%)   |  |
| 5    | MAN  | Р       | 4   | 5    | 11,11,12 | 1.33     | 2 (18%)      | 15,15,17       | 1.03 | 1 (6%)   |  |
| 5    | NAG  | Q       | 1   | 5,1  | 14,14,15 | 1.01     | 0            | 17,19,21       | 0.71 | 0        |  |
| 5    | NAG  | Q       | 2   | 5    | 14,14,15 | 1.17     | 1 (7%)       | 17,19,21       | 1.10 | 2 (11%)  |  |
| 5    | BMA  | Q       | 3   | 5    | 11,11,12 | 1.16     | 1 (9%)       | 15,15,17       | 0.98 | 1 (6%)   |  |



| Mal | Tuno | Chain | Dec | Tink  | Bo       | ond leng | ths      | B              | Bond angles |         |  |
|-----|------|-------|-----|-------|----------|----------|----------|----------------|-------------|---------|--|
|     | туре | Chain | nes | LIIIK | Counts   | RMSZ     | # Z  > 2 | Counts         | RMSZ        | # Z >2  |  |
| 5   | MAN  | Q     | 4   | 5     | 11,11,12 | 1.37     | 2 (18%)  | $15,\!15,\!17$ | 1.15        | 2 (13%) |  |
| 5   | NAG  | R     | 1   | 5,1   | 14,14,15 | 1.14     | 2 (14%)  | 17,19,21       | 0.90        | 0       |  |
| 5   | NAG  | R     | 2   | 5     | 14,14,15 | 1.55     | 4 (28%)  | 17,19,21       | 0.85        | 1 (5%)  |  |
| 5   | BMA  | R     | 3   | 5     | 11,11,12 | 1.19     | 1 (9%)   | 15,15,17       | 1.11        | 0       |  |
| 5   | MAN  | R     | 4   | 5     | 11,11,12 | 1.28     | 2 (18%)  | 15,15,17       | 0.87        | 1 (6%)  |  |
| 3   | NAG  | S     | 1   | 3,1   | 14,14,15 | 1.20     | 1 (7%)   | 17,19,21       | 1.50        | 2 (11%) |  |
| 3   | NAG  | S     | 2   | 3     | 14,14,15 | 1.19     | 1 (7%)   | 17,19,21       | 0.70        | 0       |  |
| 3   | BMA  | S     | 3   | 3     | 11,11,12 | 1.15     | 2 (18%)  | 15,15,17       | 1.05        | 1 (6%)  |  |
| 3   | NAG  | Т     | 1   | 3,1   | 14,14,15 | 1.09     | 0        | 17,19,21       | 1.47        | 3 (17%) |  |
| 3   | NAG  | Т     | 2   | 3     | 14,14,15 | 1.29     | 2 (14%)  | 17,19,21       | 0.91        | 0       |  |
| 3   | BMA  | Т     | 3   | 3     | 11,11,12 | 1.32     | 2 (18%)  | 15,15,17       | 0.87        | 0       |  |
| 3   | NAG  | U     | 1   | 3,1   | 14,14,15 | 1.28     | 3 (21%)  | 17,19,21       | 0.93        | 1 (5%)  |  |
| 3   | NAG  | U     | 2   | 3     | 14,14,15 | 1.17     | 2 (14%)  | 17,19,21       | 1.13        | 2 (11%) |  |
| 3   | BMA  | U     | 3   | 3     | 11,11,12 | 1.36     | 2 (18%)  | 15,15,17       | 0.78        | 0       |  |
| 4   | NAG  | V     | 1   | 4,1   | 14,14,15 | 1.25     | 4 (28%)  | 17,19,21       | 0.86        | 0       |  |
| 4   | NAG  | V     | 2   | 4     | 14,14,15 | 0.99     | 1 (7%)   | 17,19,21       | 1.00        | 1 (5%)  |  |
| 4   | BMA  | V     | 3   | 4     | 11,11,12 | 1.20     | 1 (9%)   | 15,15,17       | 0.79        | 0       |  |
| 4   | MAN  | V     | 4   | 4     | 11,11,12 | 1.51     | 3 (27%)  | 15,15,17       | 1.42        | 2 (13%) |  |
| 4   | NAG  | V     | 5   | 4     | 14,14,15 | 0.87     | 0        | 17,19,21       | 1.26        | 2 (11%) |  |
| 4   | MAN  | V     | 6   | 4     | 11,11,12 | 1.47     | 2 (18%)  | 15,15,17       | 1.23        | 1 (6%)  |  |
| 4   | NAG  | W     | 1   | 4,1   | 14,14,15 | 1.04     | 0        | 17,19,21       | 1.11        | 0       |  |
| 4   | NAG  | W     | 2   | 4     | 14,14,15 | 1.09     | 1 (7%)   | 17,19,21       | 1.02        | 1 (5%)  |  |
| 4   | BMA  | W     | 3   | 4     | 11,11,12 | 1.10     | 1 (9%)   | 15,15,17       | 0.91        | 0       |  |
| 4   | MAN  | W     | 4   | 4     | 11,11,12 | 1.47     | 3 (27%)  | $15,\!15,\!17$ | 1.23        | 2 (13%) |  |
| 4   | NAG  | W     | 5   | 4     | 14,14,15 | 0.84     | 1 (7%)   | 17,19,21       | 1.21        | 2 (11%) |  |
| 4   | MAN  | W     | 6   | 4     | 11,11,12 | 1.40     | 2 (18%)  | $15,\!15,\!17$ | 0.90        | 1 (6%)  |  |
| 4   | NAG  | Х     | 1   | 4,1   | 14,14,15 | 1.29     | 3 (21%)  | 17,19,21       | 1.00        | 1 (5%)  |  |
| 4   | NAG  | Х     | 2   | 4     | 14,14,15 | 1.06     | 1 (7%)   | 17,19,21       | 1.16        | 2 (11%) |  |
| 4   | BMA  | Х     | 3   | 4     | 11,11,12 | 1.17     | 1 (9%)   | $15,\!15,\!17$ | 1.04        | 1 (6%)  |  |
| 4   | MAN  | X     | 4   | 4     | 11,11,12 | 1.59     | 3 (27%)  | $15,\!15,\!17$ | 1.31        | 2 (13%) |  |
| 4   | NAG  | Х     | 5   | 4     | 14,14,15 | 0.86     | 1 (7%)   | 17,19,21       | 1.18        | 2 (11%) |  |
| 4   | MAN  | X     | 6   | 4     | 11,11,12 | 1.40     | 2 (18%)  | 15,15,17       | 1.05        | 1 (6%)  |  |
| 2   | NAG  | Y     | 1   | 2,1   | 14,14,15 | 1.06     | 2(14%)   | 17,19,21       | 0.78        | 1 (5%)  |  |
| 2   | NAG  | Y     | 2   | 2     | 14,14,15 | 1.19     | 2 (14%)  | 17,19,21       | 1.18        | 1 (5%)  |  |
| 2   | NAG  | Z     | 1   | 2,1   | 14,14,15 | 1.15     | 2 (14%)  | 17,19,21       | 0.93        | 1 (5%)  |  |



| Mol | Tuno | Chain | Dog | Link | Bo                     | ond leng | ths     | Bond angles    |      |          |
|-----|------|-------|-----|------|------------------------|----------|---------|----------------|------|----------|
|     | туре | Chain | nes |      | Counts   RMSZ   $\# Z$ |          | # Z >2  | Counts         | RMSZ | # Z  > 2 |
| 2   | NAG  | Z     | 2   | 2    | 14,14,15               | 1.22     | 2 (14%) | 17,19,21       | 0.88 | 0        |
| 2   | NAG  | a     | 1   | 2,1  | 14,14,15               | 1.43     | 3 (21%) | 17,19,21       | 0.73 | 0        |
| 2   | NAG  | a     | 2   | 2    | 14,14,15               | 1.05     | 1 (7%)  | 17,19,21       | 0.97 | 2 (11%)  |
| 2   | NAG  | b     | 1   | 2,1  | 14,14,15               | 0.99     | 1 (7%)  | 17,19,21       | 1.98 | 6 (35%)  |
| 2   | NAG  | b     | 2   | 2    | 14,14,15               | 1.30     | 3 (21%) | 17,19,21       | 1.64 | 3 (17%)  |
| 2   | NAG  | с     | 1   | 2,1  | 14,14,15               | 1.26     | 2 (14%) | 17,19,21       | 1.27 | 3 (17%)  |
| 2   | NAG  | с     | 2   | 2    | 14,14,15               | 1.27     | 1 (7%)  | 17,19,21       | 1.21 | 1 (5%)   |
| 2   | NAG  | d     | 1   | 2,1  | 14,14,15               | 1.00     | 1 (7%)  | 17,19,21       | 1.76 | 5 (29%)  |
| 2   | NAG  | d     | 2   | 2    | 14,14,15               | 1.20     | 1 (7%)  | 17,19,21       | 1.38 | 2 (11%)  |
| 6   | NAG  | е     | 1   | 6,1  | 14,14,15               | 1.25     | 2 (14%) | 17,19,21       | 1.41 | 2 (11%)  |
| 6   | NAG  | е     | 2   | 6    | 14,14,15               | 1.01     | 0       | 17,19,21       | 0.79 | 0        |
| 6   | BMA  | е     | 3   | 6    | 11,11,12               | 1.09     | 0       | 15,15,17       | 0.91 | 0        |
| 6   | MAN  | е     | 4   | 6    | 11,11,12               | 1.30     | 1 (9%)  | $15,\!15,\!17$ | 0.88 | 0        |
| 6   | MAN  | е     | 5   | 6    | 11,11,12               | 1.18     | 2 (18%) | 15,15,17       | 1.72 | 5 (33%)  |
| 6   | MAN  | е     | 6   | 6    | 11,11,12               | 1.18     | 2 (18%) | 15,15,17       | 1.20 | 1 (6%)   |
| 6   | MAN  | е     | 7   | 6    | 11,11,12               | 1.34     | 2 (18%) | 15,15,17       | 0.71 | 0        |
| 6   | MAN  | е     | 8   | 6    | 11,11,12               | 1.29     | 1 (9%)  | 15,15,17       | 0.75 | 0        |
| 6   | NAG  | f     | 1   | 6,1  | 14,14,15               | 1.27     | 2 (14%) | 17,19,21       | 1.16 | 2 (11%)  |
| 6   | NAG  | f     | 2   | 6    | 14,14,15               | 1.09     | 1 (7%)  | 17,19,21       | 0.89 | 1 (5%)   |
| 6   | BMA  | f     | 3   | 6    | 11,11,12               | 1.20     | 1 (9%)  | 15,15,17       | 0.66 | 0        |
| 6   | MAN  | f     | 4   | 6    | 11,11,12               | 1.18     | 1 (9%)  | 15,15,17       | 0.99 | 1 (6%)   |
| 6   | MAN  | f     | 5   | 6    | 11,11,12               | 1.25     | 2 (18%) | 15,15,17       | 1.33 | 2 (13%)  |
| 6   | MAN  | f     | 6   | 6    | 11,11,12               | 1.32     | 2 (18%) | 15,15,17       | 0.94 | 1 (6%)   |
| 6   | MAN  | f     | 7   | 6    | 11,11,12               | 1.28     | 1 (9%)  | 15,15,17       | 0.81 | 0        |
| 6   | MAN  | f     | 8   | 6    | 11,11,12               | 1.21     | 1 (9%)  | 15,15,17       | 0.84 | 1 (6%)   |
| 6   | NAG  | g     | 1   | 6,1  | 14,14,15               | 1.11     | 1 (7%)  | 17,19,21       | 1.21 | 2 (11%)  |
| 6   | NAG  | g     | 2   | 6    | 14,14,15               | 1.26     | 3 (21%) | 17,19,21       | 0.83 | 0        |
| 6   | BMA  | g     | 3   | 6    | 11,11,12               | 1.12     | 1 (9%)  | 15,15,17       | 1.00 | 1 (6%)   |
| 6   | MAN  | g     | 4   | 6    | 11,11,12               | 1.27     | 1 (9%)  | 15,15,17       | 0.93 | 1 (6%)   |
| 6   | MAN  | g     | 5   | 6    | 11,11,12               | 1.18     | 2 (18%) | 15,15,17       | 1.38 | 4 (26%)  |
| 6   | MAN  | g     | 6   | 6    | 11,11,12               | 1.19     | 1 (9%)  | 15,15,17       | 0.91 | 1 (6%)   |
| 6   | MAN  | g     | 7   | 6    | 11,11,12               | 1.28     | 2 (18%) | 15,15,17       | 0.88 | 1 (6%)   |
| 6   | MAN  | g     | 8   | 6    | 11,11,12               | 1.15     | 1 (9%)  | 15,15,17       | 0.81 | 1 (6%)   |
| 7   | NAG  | h     | 1   | 1,7  | 14,14,15               | 0.99     | 0       | 17,19,21       | 1.30 | 2 (11%)  |
| 7   | NAG  | h     | 2   | 7    | 14,14,15               | 0.97     | 1 (7%)  | 17,19,21       | 1.02 | 1 (5%)   |



| Mol | Tuno | Chain | Dog | Tink | Bo       | ond leng | ths     | B              | ond ang | gles     |
|-----|------|-------|-----|------|----------|----------|---------|----------------|---------|----------|
|     | туре | Unam  | nes |      | Counts   | RMSZ     | # Z >2  | Counts         | RMSZ    | # Z  > 2 |
| 7   | BMA  | h     | 3   | 7    | 11,11,12 | 1.24     | 3 (27%) | 15,15,17       | 1.08    | 1 (6%)   |
| 7   | MAN  | h     | 4   | 7    | 11,11,12 | 1.23     | 1 (9%)  | 15,15,17       | 0.85    | 1 (6%)   |
| 7   | MAN  | h     | 5   | 7    | 11,11,12 | 1.37     | 2 (18%) | 15,15,17       | 1.16    | 1 (6%)   |
| 7   | MAN  | h     | 6   | 7    | 11,11,12 | 1.33     | 2 (18%) | 15,15,17       | 0.81    | 1 (6%)   |
| 7   | NAG  | i     | 1   | 1,7  | 14,14,15 | 1.03     | 0       | 17,19,21       | 0.82    | 0        |
| 7   | NAG  | i     | 2   | 7    | 14,14,15 | 1.24     | 2 (14%) | 17,19,21       | 0.84    | 1 (5%)   |
| 7   | BMA  | i     | 3   | 7    | 11,11,12 | 1.42     | 2 (18%) | 15,15,17       | 1.21    | 1 (6%)   |
| 7   | MAN  | i     | 4   | 7    | 11,11,12 | 1.30     | 3 (27%) | 15,15,17       | 1.17    | 1 (6%)   |
| 7   | MAN  | i     | 5   | 7    | 11,11,12 | 1.40     | 2 (18%) | 15,15,17       | 1.25    | 2 (13%)  |
| 7   | MAN  | i     | 6   | 7    | 11,11,12 | 1.36     | 2 (18%) | 15,15,17       | 0.51    | 0        |
| 7   | NAG  | j     | 1   | 1,7  | 14,14,15 | 1.06     | 1 (7%)  | 17,19,21       | 1.14    | 2 (11%)  |
| 7   | NAG  | j     | 2   | 7    | 14,14,15 | 1.27     | 2 (14%) | 17,19,21       | 0.92    | 0        |
| 7   | BMA  | j     | 3   | 7    | 11,11,12 | 1.37     | 2 (18%) | 15,15,17       | 1.54    | 2 (13%)  |
| 7   | MAN  | j     | 4   | 7    | 11,11,12 | 1.20     | 2 (18%) | $15,\!15,\!17$ | 1.27    | 1 (6%)   |
| 7   | MAN  | j     | 5   | 7    | 11,11,12 | 1.39     | 2 (18%) | 15,15,17       | 1.29    | 1 (6%)   |
| 7   | MAN  | j     | 6   | 7    | 11,11,12 | 1.33     | 2 (18%) | 15,15,17       | 1.05    | 1 (6%)   |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | NAG  | М     | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | М     | 2   | 2    | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | Ν     | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | N     | 2   | 2    | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 0     | 1   | 2,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | 0     | 2   | 2    | -       | 0/6/23/26 | 0/1/1/1 |
| 5   | NAG  | Р     | 1   | 5,1  | -       | 4/6/23/26 | 0/1/1/1 |
| 5   | NAG  | Р     | 2   | 5    | -       | 2/6/23/26 | 0/1/1/1 |
| 5   | BMA  | Р     | 3   | 5    | -       | 2/2/19/22 | 0/1/1/1 |
| 5   | MAN  | Р     | 4   | 5    | -       | 1/2/19/22 | 0/1/1/1 |
| 5   | NAG  | Q     | 1   | 5,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 5   | NAG  | Q     | 2   | 5    | -       | 2/6/23/26 | 0/1/1/1 |
| 5   | BMA  | Q     | 3   | 5    | -       | 1/2/19/22 | 0/1/1/1 |
| 5   | MAN  | Q     | 4   | 5    | -       | 0/2/19/22 | 0/1/1/1 |
| 5   | NAG  | R     | 1   | 5,1  | -       | 2/6/23/26 | 0/1/1/1 |



| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 5   | NAG  | R     | 2   | 5    | -       | 2/6/23/26 | 0/1/1/1 |
| 5   | BMA  | R     | 3   | 5    | -       | 2/2/19/22 | 0/1/1/1 |
| 5   | MAN  | R     | 4   | 5    | -       | 0/2/19/22 | 0/1/1/1 |
| 3   | NAG  | S     | 1   | 3,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 3   | NAG  | S     | 2   | 3    | _       | 0/6/23/26 | 0/1/1/1 |
| 3   | BMA  | S     | 3   | 3    | -       | 0/2/19/22 | 0/1/1/1 |
| 3   | NAG  | Т     | 1   | 3,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 3   | NAG  | Т     | 2   | 3    | -       | 0/6/23/26 | 0/1/1/1 |
| 3   | BMA  | Т     | 3   | 3    | _       | 0/2/19/22 | 0/1/1/1 |
| 3   | NAG  | U     | 1   | 3,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 3   | NAG  | U     | 2   | 3    | -       | 0/6/23/26 | 0/1/1/1 |
| 3   | BMA  | U     | 3   | 3    | -       | 0/2/19/22 | 0/1/1/1 |
| 4   | NAG  | V     | 1   | 4,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 4   | NAG  | V     | 2   | 4    | -       | 0/6/23/26 | 0/1/1/1 |
| 4   | BMA  | V     | 3   | 4    | -       | 0/2/19/22 | 0/1/1/1 |
| 4   | MAN  | V     | 4   | 4    | -       | 1/2/19/22 | 0/1/1/1 |
| 4   | NAG  | V     | 5   | 4    | -       | 1/6/23/26 | 0/1/1/1 |
| 4   | MAN  | V     | 6   | 4    | -       | 1/2/19/22 | 0/1/1/1 |
| 4   | NAG  | W     | 1   | 4,1  | -       | 1/6/23/26 | 0/1/1/1 |
| 4   | NAG  | W     | 2   | 4    | -       | 0/6/23/26 | 0/1/1/1 |
| 4   | BMA  | W     | 3   | 4    | -       | 0/2/19/22 | 0/1/1/1 |
| 4   | MAN  | W     | 4   | 4    | -       | 1/2/19/22 | 0/1/1/1 |
| 4   | NAG  | W     | 5   | 4    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | MAN  | W     | 6   | 4    | -       | 1/2/19/22 | 0/1/1/1 |
| 4   | NAG  | Х     | 1   | 4,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 4   | NAG  | Х     | 2   | 4    | -       | 0/6/23/26 | 0/1/1/1 |
| 4   | BMA  | Х     | 3   | 4    | -       | 0/2/19/22 | 0/1/1/1 |
| 4   | MAN  | Х     | 4   | 4    | -       | 1/2/19/22 | 0/1/1/1 |
| 4   | NAG  | Х     | 5   | 4    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | MAN  | Х     | 6   | 4    | -       | 0/2/19/22 | 0/1/1/1 |
| 2   | NAG  | Y     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | Y     | 2   | 2    | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | Z     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | Z     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | a     | 1   | 2,1  | -       | 0/6/23/26 | 0/1/1/1 |
| 2   | NAG  | a     | 2   | 2    | -       | 1/6/23/26 | 0/1/1/1 |
| 2   | NAG  | b     | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | b     | 2   | 2    | -       | 3/6/23/26 | 0/1/1/1 |
| 2   | NAG  | с     | 1   | 2,1  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | с     | 2   | 2    | -       | 1/6/23/26 | 0/1/1/1 |



| OOnu |       |        | is puye |      |         |                               |                           |
|------|-------|--------|---------|------|---------|-------------------------------|---------------------------|
| Mol  | Type  | Chain  | Res     | Link | Chirals | Torsions                      | Rings                     |
| 2    | NAG   | d      | 1       | 2,1  | -       | 2/6/23/26                     | 0/1/1/1                   |
| 2    | NAG   | d      | 2       | 2    | _       | 3/6/23/26                     | 0/1/1/1                   |
| 6    | NAG   | е      | 1       | 6,1  | _       | 0/6/23/26                     | 0/1/1/1                   |
| 6    | NAG   | е      | 2       | 6    | _       | $\frac{2}{6}/\frac{23}{26}$   | 0/1/1/1                   |
| 6    | BMA   | е      | 3       | 6    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | е      | 4       | 6    | _       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | е      | 5       | 6    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | е      | 6       | 6    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | е      | 7       | 6    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | е      | 8       | 6    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | NAG   | f      | 1       | 6,1  | -       | 0/6/23/26                     | 0/1/1/1                   |
| 6    | NAG   | f      | 2       | 6    | -       | 0/6/23/26                     | 0/1/1/1                   |
| 6    | BMA   | f      | 3       | 6    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | f      | 4       | 6    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | f      | 5       | 6    | -       | 1/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | f      | 6       | 6    | -       | 2/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | f      | 7       | 6    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | f      | 8       | 6    | -       | 1/2/19/22                     | 0/1/1/1                   |
| 6    | NAG   | g      | 1       | 6,1  | -       | 1/6/23/26                     | 0/1/1/1                   |
| 6    | NAG   | g      | 2       | 6    | -       | 0/6/23/26                     | 0/1/1/1                   |
| 6    | BMA   | g      | 3       | 6    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | g      | 4       | 6    | _       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | g      | 5       | 6    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | g      | 6       | 6    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | g      | 7       | 6    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 6    | MAN   | g      | 8       | 6    | -       | 1/2/19/22                     | 0/1/1/1                   |
| 7    | NAG   | h      | 1       | 1,7  | -       | 0/6/23/26                     | 0/1/1/1                   |
| 7    | NAG   | h      | 2       | 7    | -       | 0/6/23/26                     | 0/1/1/1                   |
| 7    | BMA   | h      | 3       | 7    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 7    | MAN   | h      | 4       | 7    | -       | 1/2/19/22                     | 0/1/1/1                   |
| 7    | MAN   | h      | 5       | 7    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 7    | MAN   | h      | 6       | 1    | -       | 0/2/19/22                     | 0/1/1/1                   |
| 7    | NAG   | 1      | 1       | 1,7  | -       | $\frac{0/6/23/26}{0/6/22/26}$ | 0/1/1/1                   |
| 7    | NAG   | 1      | 2       | 7    | -       | 0/6/23/26                     | 0/1/1/1                   |
| 7    | BMA   | 1      | 3       |      | -       | $\frac{0/2}{19/22}$           | $\frac{U/1/1/1}{1/1}$     |
| (    | MAN   | 1      | 4<br>F  |      | -       | $\frac{1/2}{19/22}$           | $\frac{U/1/1/1}{0/1/1/1}$ |
|      | MAN   | 1      | C<br>C  |      | -       | $\frac{0/2}{19/22}$           | 0/1/1/1                   |
| 7    |       | 1      | 0       |      | -       | $\frac{1/2}{19/22}$           | 0/1/1/1                   |
| 7    | NAG   | J<br>i | 1<br>0  | 7    | -       | $\frac{0/0/23/20}{0/6/23/26}$ | 0/1/1/1                   |
| 7    | RMA   | J      | 2<br>2  | 7    | -       | 0/0/23/20<br>0/2/10/22        | 0/1/1/1                   |
|      | DIVIA | I I    | U U     | 1 1  | -       | 0/4/13/44                     |                           |



| 001000 |      |       |                |      |         |           |         |  |  |  |
|--------|------|-------|----------------|------|---------|-----------|---------|--|--|--|
| Mol    | Type | Chain | $\mathbf{Res}$ | Link | Chirals | Torsions  | Rings   |  |  |  |
| 7      | MAN  | j     | 4              | 7    | -       | 1/2/19/22 | 0/1/1/1 |  |  |  |
| 7      | MAN  | j     | 5              | 7    | -       | 0/2/19/22 | 0/1/1/1 |  |  |  |
| 7      | MAN  | j     | 6              | 7    | -       | 0/2/19/22 | 0/1/1/1 |  |  |  |

All (158) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z    | Observed(Å) | $\operatorname{Ideal}(\operatorname{\AA})$ |
|-----|-------|-----|------|-------|------|-------------|--------------------------------------------|
| 7   | j     | 5   | MAN  | O5-C5 | 3.17 | 1.49        | 1.43                                       |
| 4   | V     | 6   | MAN  | O5-C5 | 3.17 | 1.49        | 1.43                                       |
| 7   | i     | 5   | MAN  | O5-C5 | 3.15 | 1.49        | 1.43                                       |
| 7   | h     | 5   | MAN  | O5-C5 | 3.14 | 1.49        | 1.43                                       |
| 4   | Х     | 4   | MAN  | O5-C1 | 3.11 | 1.48        | 1.43                                       |
| 2   | с     | 2   | NAG  | O5-C5 | 3.02 | 1.49        | 1.43                                       |
| 7   | j     | 2   | NAG  | O4-C4 | 3.01 | 1.50        | 1.43                                       |
| 4   | Х     | 6   | MAN  | O5-C5 | 3.01 | 1.49        | 1.43                                       |
| 2   | М     | 2   | NAG  | O5-C5 | 2.95 | 1.49        | 1.43                                       |
| 6   | f     | 7   | MAN  | O5-C5 | 2.93 | 1.49        | 1.43                                       |
| 6   | е     | 5   | MAN  | O5-C5 | 2.93 | 1.49        | 1.43                                       |
| 7   | i     | 6   | MAN  | O5-C5 | 2.92 | 1.49        | 1.43                                       |
| 7   | h     | 6   | MAN  | O5-C5 | 2.91 | 1.49        | 1.43                                       |
| 2   | b     | 2   | NAG  | O5-C5 | 2.89 | 1.49        | 1.43                                       |
| 4   | W     | 6   | MAN  | O5-C5 | 2.88 | 1.49        | 1.43                                       |
| 4   | W     | 4   | MAN  | O5-C1 | 2.86 | 1.48        | 1.43                                       |
| 4   | V     | 6   | MAN  | O5-C1 | 2.82 | 1.48        | 1.43                                       |
| 6   | е     | 8   | MAN  | O5-C5 | 2.79 | 1.49        | 1.43                                       |
| 7   | j     | 6   | MAN  | O5-C5 | 2.77 | 1.49        | 1.43                                       |
| 2   | Ν     | 2   | NAG  | O5-C5 | 2.75 | 1.49        | 1.43                                       |
| 6   | g     | 7   | MAN  | O5-C5 | 2.74 | 1.49        | 1.43                                       |
| 7   | i     | 2   | NAG  | O4-C4 | 2.73 | 1.49        | 1.43                                       |
| 6   | f     | 5   | MAN  | O5-C5 | 2.73 | 1.49        | 1.43                                       |
| 6   | е     | 7   | MAN  | O5-C5 | 2.72 | 1.49        | 1.43                                       |
| 5   | Р     | 4   | MAN  | O5-C5 | 2.72 | 1.49        | 1.43                                       |
| 6   | f     | 8   | MAN  | O5-C5 | 2.71 | 1.48        | 1.43                                       |
| 6   | g     | 5   | MAN  | O5-C5 | 2.69 | 1.48        | 1.43                                       |
| 5   | R     | 2   | NAG  | O5-C1 | 2.69 | 1.48        | 1.43                                       |
| 6   | g     | 8   | MAN  | O5-C5 | 2.68 | 1.48        | 1.43                                       |
| 6   | f     | 6   | MAN  | O5-C5 | 2.68 | 1.48        | 1.43                                       |
| 7   | i     | 2   | NAG  | O5-C5 | 2.67 | 1.48        | 1.43                                       |
| 4   | V     | 4   | MAN  | O5-C1 | 2.66 | 1.48        | 1.43                                       |
| 2   | М     | 1   | NAG  | O5-C5 | 2.65 | 1.48        | 1.43                                       |
| 2   | a     | 1   | NAG  | O4-C4 | 2.64 | 1.49        | 1.43                                       |
| 4   | V     | 4   | MAN  | O5-C5 | 2.64 | 1.48        | 1.43                                       |



| Continued | from | nrevious | naae |
|-----------|------|----------|------|
| Commuea   | jrom | previous | page |

| Mol | Chain | Res | Type | Atoms | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|------|-------------|----------|
| 4   | Х     | 4   | MAN  | O5-C5 | 2.62 | 1.48        | 1.43     |
| 6   | е     | 4   | MAN  | O5-C5 | 2.61 | 1.48        | 1.43     |
| 3   | S     | 2   | NAG  | O5-C5 | 2.61 | 1.48        | 1.43     |
| 2   | d     | 2   | NAG  | O5-C5 | 2.60 | 1.48        | 1.43     |
| 5   | R     | 3   | BMA  | O5-C5 | 2.59 | 1.48        | 1.43     |
| 5   | R     | 2   | NAG  | O4-C4 | 2.58 | 1.49        | 1.43     |
| 7   | j     | 3   | BMA  | O5-C5 | 2.58 | 1.48        | 1.43     |
| 5   | Q     | 4   | MAN  | O5-C1 | 2.57 | 1.47        | 1.43     |
| 5   | R     | 2   | NAG  | O5-C5 | 2.57 | 1.48        | 1.43     |
| 3   | U     | 3   | BMA  | O5-C1 | 2.56 | 1.47        | 1.43     |
| 3   | Т     | 3   | BMA  | O5-C5 | 2.56 | 1.48        | 1.43     |
| 4   | W     | 4   | MAN  | O5-C5 | 2.55 | 1.48        | 1.43     |
| 5   | R     | 4   | MAN  | O5-C5 | 2.55 | 1.48        | 1.43     |
| 6   | е     | 6   | MAN  | O5-C5 | 2.54 | 1.48        | 1.43     |
| 6   | е     | 1   | NAG  | O5-C5 | 2.54 | 1.48        | 1.43     |
| 3   | U     | 2   | NAG  | O5-C5 | 2.53 | 1.48        | 1.43     |
| 4   | V     | 3   | BMA  | O5-C5 | 2.52 | 1.48        | 1.43     |
| 7   | i     | 3   | BMA  | O5-C5 | 2.52 | 1.48        | 1.43     |
| 4   | W     | 6   | MAN  | O5-C1 | 2.52 | 1.47        | 1.43     |
| 5   | Р     | 2   | NAG  | O4-C4 | 2.51 | 1.48        | 1.43     |
| 3   | S     | 3   | BMA  | O5-C5 | 2.50 | 1.48        | 1.43     |
| 3   | Т     | 2   | NAG  | O5-C5 | 2.50 | 1.48        | 1.43     |
| 2   | Ν     | 1   | NAG  | O5-C5 | 2.49 | 1.48        | 1.43     |
| 4   | Х     | 4   | MAN  | O2-C2 | 2.49 | 1.48        | 1.43     |
| 3   | Т     | 2   | NAG  | O4-C4 | 2.49 | 1.48        | 1.43     |
| 2   | a     | 1   | NAG  | O5-C5 | 2.47 | 1.48        | 1.43     |
| 6   | g     | 4   | MAN  | O5-C5 | 2.46 | 1.48        | 1.43     |
| 2   | с     | 1   | NAG  | O4-C4 | 2.46 | 1.48        | 1.43     |
| 7   | j     | 4   | MAN  | O5-C5 | 2.45 | 1.48        | 1.43     |
| 2   | М     | 2   | NAG  | O5-C1 | 2.45 | 1.47        | 1.43     |
| 4   | W     | 3   | BMA  | O5-C5 | 2.44 | 1.48        | 1.43     |
| 7   | j     | 2   | NAG  | O5-C5 | 2.44 | 1.48        | 1.43     |
| 3   | U     | 3   | BMA  | O5-C5 | 2.43 | 1.48        | 1.43     |
| 5   | Р     | 3   | BMA  | O5-C5 | 2.41 | 1.48        | 1.43     |
| 6   | g     | 6   | MAN  | O5-C5 | 2.41 | 1.48        | 1.43     |
| 5   | Q     | 2   | NAG  | O5-C1 | 2.40 | 1.47        | 1.43     |
| 5   | Р     | 4   | MAN  | O5-C1 | 2.40 | 1.47        | 1.43     |
| 4   | Х     | 1   | NAG  | O5-C5 | 2.40 | 1.48        | 1.43     |
| 7   | h     | 4   | MAN  | O5-C5 | 2.39 | 1.48        | 1.43     |
| 7   | i     | 4   | MAN  | O3-C3 | 2.39 | 1.48        | 1.43     |
| 6   | f     | 6   | MAN  | O5-C1 | 2.38 | 1.47        | 1.43     |
| 2   | N     | 1   | NAG  | O4-C4 | 2.38 | 1.48        | 1.43     |



| $\alpha$ $\cdots$ $1$ | C    |          |      |
|-----------------------|------|----------|------|
| Continued             | trom | previous | page |
|                       | J    | 1        | 1 0  |

| Mol | Chain | Res | Type | Atoms | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|------|-------------|----------|
| 2   | Ζ     | 2   | NAG  | O5-C5 | 2.38 | 1.48        | 1.43     |
| 6   | f     | 1   | NAG  | O5-C5 | 2.37 | 1.48        | 1.43     |
| 2   | 0     | 2   | NAG  | O5-C5 | 2.37 | 1.48        | 1.43     |
| 6   | е     | 7   | MAN  | O5-C1 | 2.37 | 1.47        | 1.43     |
| 4   | W     | 4   | MAN  | O2-C2 | 2.37 | 1.48        | 1.43     |
| 4   | V     | 4   | MAN  | O2-C2 | 2.37 | 1.48        | 1.43     |
| 4   | Х     | 2   | NAG  | O5-C5 | 2.36 | 1.48        | 1.43     |
| 7   | i     | 5   | MAN  | O5-C1 | 2.35 | 1.47        | 1.43     |
| 5   | Q     | 4   | MAN  | O5-C5 | 2.35 | 1.48        | 1.43     |
| 5   | Р     | 2   | NAG  | O5-C5 | 2.35 | 1.48        | 1.43     |
| 5   | Р     | 2   | NAG  | C1-C2 | 2.34 | 1.55        | 1.52     |
| 6   | f     | 4   | MAN  | O5-C5 | 2.34 | 1.48        | 1.43     |
| 4   | Х     | 3   | BMA  | O5-C5 | 2.33 | 1.48        | 1.43     |
| 5   | R     | 4   | MAN  | O5-C1 | 2.32 | 1.47        | 1.43     |
| 2   | Y     | 2   | NAG  | O5-C5 | 2.32 | 1.48        | 1.43     |
| 4   | Х     | 6   | MAN  | O5-C1 | 2.31 | 1.47        | 1.43     |
| 2   | b     | 1   | NAG  | O4-C4 | 2.31 | 1.48        | 1.43     |
| 6   | f     | 3   | BMA  | O5-C5 | 2.29 | 1.48        | 1.43     |
| 6   | g     | 1   | NAG  | O5-C5 | 2.29 | 1.48        | 1.43     |
| 2   | d     | 1   | NAG  | O4-C4 | 2.29 | 1.48        | 1.43     |
| 2   | Y     | 1   | NAG  | O4-C4 | 2.28 | 1.48        | 1.43     |
| 6   | g     | 2   | NAG  | O5-C5 | 2.28 | 1.48        | 1.43     |
| 6   | g     | 2   | NAG  | O5-C1 | 2.28 | 1.47        | 1.43     |
| 7   | j     | 6   | MAN  | O5-C1 | 2.28 | 1.47        | 1.43     |
| 2   | Ζ     | 2   | NAG  | O5-C1 | 2.27 | 1.47        | 1.43     |
| 4   | V     | 1   | NAG  | O5-C1 | 2.27 | 1.47        | 1.43     |
| 3   | Т     | 3   | BMA  | O5-C1 | 2.27 | 1.47        | 1.43     |
| 5   | R     | 2   | NAG  | C1-C2 | 2.27 | 1.55        | 1.52     |
| 3   | U     | 1   | NAG  | O4-C4 | 2.26 | 1.48        | 1.43     |
| 7   | i     | 6   | MAN  | O5-C1 | 2.25 | 1.47        | 1.43     |
| 7   | i     | 4   | MAN  | O5-C5 | 2.25 | 1.48        | 1.43     |
| 4   | W     | 2   | NAG  | O5-C5 | 2.24 | 1.48        | 1.43     |
| 5   | R     | 1   | NAG  | O4-C4 | 2.23 | 1.48        | 1.43     |
| 5   | Р     | 1   | NAG  | O4-C4 | 2.22 | 1.48        | 1.43     |
| 7   | h     | 2   | NAG  | O5-C5 | 2.22 | 1.47        | 1.43     |
| 5   | Q     | 3   | BMA  | O5-C5 | 2.20 | 1.47        | 1.43     |
| 2   | b     | 2   | NAG  | O5-C1 | 2.19 | 1.47        | 1.43     |
| 4   | V     | 1   | NAG  | C1-C2 | 2.19 | 1.55        | 1.52     |
| 4   | X     | 5   | NAG  | O5-C5 | 2.18 | 1.47        | 1.43     |
| 6   | f     | 2   | NAG  | O5-C5 | 2.18 | 1.47        | 1.43     |
| 7   | j     | 5   | MAN  | O5-C1 | 2.18 | 1.47        | 1.43     |
| 3   | U     | 1   | NAG  | O5-C5 | 2.18 | 1.47        | 1.43     |



| Conti | nued fron | i previ        | ous page | •••   |              |             | Δ        |
|-------|-----------|----------------|----------|-------|--------------|-------------|----------|
| Mol   | Chain     | $\mathbf{Res}$ | Type     | Atoms | $\mathbf{Z}$ | Observed(Å) | Ideal(Å) |
| 4     | V         | 1              | NAG      | O5-C5 | 2.18         | 1.47        | 1.43     |
| 4     | Х         | 1              | NAG      | C1-C2 | 2.17         | 1.55        | 1.52     |
| 4     | W         | 5              | NAG      | O5-C5 | 2.16         | 1.47        | 1.43     |
| 7     | i         | 3              | BMA      | O3-C3 | 2.16         | 1.48        | 1.43     |
| 5     | Р         | 2              | NAG      | O5-C1 | 2.15         | 1.47        | 1.43     |
| 7     | h         | 3              | BMA      | O5-C5 | 2.15         | 1.47        | 1.43     |
| 6     | g         | 3              | BMA      | O5-C5 | 2.12         | 1.47        | 1.43     |
| 2     | a         | 1              | NAG      | C1-C2 | 2.12         | 1.55        | 1.52     |
| 3     | S         | 3              | BMA      | O5-C1 | 2.10         | 1.47        | 1.43     |
| 7     | h         | 3              | BMA      | O5-C1 | 2.10         | 1.47        | 1.43     |
| 2     | Y         | 1              | NAG      | O5-C5 | 2.09         | 1.47        | 1.43     |
| 7     | i         | 4              | MAN      | O5-C1 | 2.09         | 1.47        | 1.43     |
| 2     | a         | 2              | NAG      | O5-C5 | 2.09         | 1.47        | 1.43     |
| 4     | V         | 1              | NAG      | O4-C4 | 2.08         | 1.47        | 1.43     |
| 7     | h         | 3              | BMA      | O3-C3 | 2.08         | 1.47        | 1.43     |
| 3     | S         | 1              | NAG      | C1-C2 | 2.08         | 1.55        | 1.52     |
| 7     | h         | 5              | MAN      | O5-C1 | 2.07         | 1.47        | 1.43     |
| 6     | g         | 7              | MAN      | O5-C1 | 2.07         | 1.47        | 1.43     |
| 6     | е         | 1              | NAG      | C1-C2 | 2.06         | 1.55        | 1.52     |
| 6     | g         | 5              | MAN      | O5-C1 | 2.06         | 1.47        | 1.43     |
| 6     | е         | 6              | MAN      | O5-C1 | 2.06         | 1.47        | 1.43     |
| 7     | j         | 4              | MAN      | O5-C1 | 2.05         | 1.47        | 1.43     |
| 5     | R         | 1              | NAG      | O5-C5 | 2.05         | 1.47        | 1.43     |
| 6     | е         | 5              | MAN      | O5-C1 | 2.05         | 1.47        | 1.43     |
| 6     | f         | 5              | MAN      | O2-C2 | 2.05         | 1.47        | 1.43     |
| 3     | U         | 2              | NAG      | O4-C4 | 2.04         | 1.47        | 1.43     |
| 2     | с         | 1              | NAG      | O5-C5 | 2.04         | 1.47        | 1.43     |
| 2     | b         | 2              | NAG      | C1-C2 | 2.04         | 1.55        | 1.52     |
| 3     | U         | 1              | NAG      | C1-C2 | 2.03         | 1.55        | 1.52     |
| 2     | Ζ         | 1              | NAG      | O5-C5 | 2.03         | 1.47        | 1.43     |
| 2     | Ζ         | 1              | NAG      | C1-C2 | 2.03         | 1.55        | 1.52     |
| 4     | Х         | 1              | NAG      | O5-C1 | 2.03         | 1.47        | 1.43     |
| 2     | Y         | 2              | NAG      | O5-C1 | 2.02         | 1.46        | 1.43     |
| 6     | g         | 2              | NAG      | C1-C2 | 2.02         | 1.55        | 1.52     |
| 7     | h         | 6              | MAN      | O5-C1 | 2.01         | 1.46        | 1.43     |
| 6     | f         | 1              | NAG      | C1-C2 | 2.01         | 1.55        | 1.52     |
| 7     | j         | 3              | BMA      | O3-C3 | 2.01         | 1.47        | 1.43     |
| 7     | j         | 1              | NAG      | O5-C5 | 2.00         | 1.47        | 1.43     |
| 4     | V         | 2              | NAG      | O5-C5 | 2.00         | 1.47        | 1.43     |

 $\alpha$ tio 1 L

All (117) bond angle outliers are listed below:



| Mol | Chain | Res | Type | Atoms Z               |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------------------|-------|------------------|---------------|
| 3   | Т     | 1   | NAG  | C2-N2-C7              | 4.65  | 129.53           | 122.90        |
| 3   | S     | 1   | NAG  | C2-N2-C7              | 4.57  | 129.41           | 122.90        |
| 7   | j     | 3   | BMA  | C1-O5-C5              | 4.52  | 118.32           | 112.19        |
| 7   | j     | 4   | MAN  | C1-O5-C5              | 4.42  | 118.18           | 112.19        |
| 2   | d     | 1   | NAG  | O5-C5-C6              | -4.22 | 100.58           | 107.20        |
| 6   | е     | 6   | MAN  | C1-O5-C5              | 4.17  | 117.84           | 112.19        |
| 2   | b     | 2   | NAG  | C2-N2-C7              | 4.13  | 128.78           | 122.90        |
| 2   | b     | 1   | NAG  | O5-C5-C6              | -3.94 | 101.02           | 107.20        |
| 4   | V     | 6   | MAN  | C1-O5-C5              | 3.78  | 117.32           | 112.19        |
| 7   | i     | 4   | MAN  | C1-O5-C5              | 3.78  | 117.31           | 112.19        |
| 2   | Y     | 2   | NAG  | C1-O5-C5              | 3.70  | 117.20           | 112.19        |
| 2   | d     | 1   | NAG  | C1-O5-C5              | 3.61  | 117.08           | 112.19        |
| 2   | b     | 1   | NAG  | C4-C3-C2              | -3.56 | 105.81           | 111.02        |
| 6   | е     | 1   | NAG  | C1-O5-C5              | 3.53  | 116.97           | 112.19        |
| 2   | b     | 1   | NAG  | C3-C4-C5              | -3.45 | 104.09           | 110.24        |
| 4   | V     | 4   | MAN  | O2-C2-C1              | 3.38  | 116.08           | 109.15        |
| 6   | f     | 5   | MAN  | C1-O5-C5              | 3.38  | 116.77           | 112.19        |
| 7   | h     | 1   | NAG  | C2-N2-C7              | 3.36  | 127.69           | 122.90        |
| 2   | d     | 2   | NAG  | C2-N2-C7              | 3.33  | 127.64           | 122.90        |
| 4   | Х     | 3   | BMA  | C1-O5-C5              | 3.27  | 116.62           | 112.19        |
| 4   | V     | 5   | NAG  | O4-C4-C3              | -3.26 | 102.81           | 110.35        |
| 2   | b     | 1   | NAG  | C1-O5-C5              | 3.25  | 116.60           | 112.19        |
| 4   | Х     | 6   | MAN  | C1-O5-C5              | 3.22  | 116.56           | 112.19        |
| 2   | с     | 2   | NAG  | C2-N2-C7              | -3.22 | 118.32           | 122.90        |
| 4   | W     | 4   | MAN  | C1-O5-C5              | 3.21  | 116.54           | 112.19        |
| 6   | е     | 1   | NAG  | C4-C3-C2              | -3.18 | 106.36           | 111.02        |
| 6   | g     | 6   | MAN  | C1-O5-C5              | 3.16  | 116.47           | 112.19        |
| 6   | е     | 5   | MAN  | O4-C4-C3              | -3.14 | 103.09           | 110.35        |
| 6   | f     | 1   | NAG  | C1-O5-C5              | 3.12  | 116.42           | 112.19        |
| 4   | Х     | 4   | MAN  | C1-O5-C5              | 3.10  | 116.40           | 112.19        |
| 4   | W     | 5   | NAG  | O4-C4-C3              | -3.10 | 103.19           | 110.35        |
| 5   | Q     | 2   | NAG  | C1-O5-C5              | 3.09  | 116.38           | 112.19        |
| 2   | 0     | 1   | NAG  | O4-C4-C3              | -3.08 | 103.22           | 110.35        |
| 6   | g     | 1   | NAG  | C4-C3-C2              | -3.06 | 106.53           | 111.02        |
| 2   | b     | 2   | NAG  | C1-C2-N2              | 3.05  | 115.70           | 110.49        |
| 3   | U     | 2   | NAG  | C2-N2-C7              | -3.04 | 118.57           | 122.90        |
| 5   | Р     | 4   | MAN  | C1-O5-C5              | 3.01  | 116.27           | 112.19        |
| 2   | d     | 2   | NAG  | C1-C2-N2              | 2.99  | 115.59           | 110.49        |
| 3   | S     | 1   | NAG  | C1-C2-N2              | 2.97  | 115.56           | 110.49        |
| 4   | X     | 5   | NAG  | O4-C4-C3              | -2.93 | 103.58           | 110.35        |
| 4   | V     | 2   | NAG  | $O4-C4-C\overline{3}$ | -2.91 | 103.62           | 110.35        |
| 7   | i     | 3   | BMA  | C1-O5-C5              | 2.90  | 116.11           | 112.19        |
| 6   | f     | 6   | MAN  | C1-O5-C5              | 2.88  | 116.09           | 112.19        |



| Ν.Γ.1 |        |     | <u> </u> | <b>A 4 -</b>                              | 7            | $\mathbf{O}$ | $T_{1} = 1(0)$ |
|-------|--------|-----|----------|-------------------------------------------|--------------|--------------|----------------|
|       | Chain  | Res | Type     | Atoms                                     |              | Observed(°)  | Ideal(°)       |
| 7     | h      | 5   | MAN      | C1-C2-C3                                  | 2.86         | 113.18       | 109.67         |
| 2     | С      | 1   | NAG      | C1-O5-C5                                  | 2.85         | 116.06       | 112.19         |
| 6     | е      | 5   | MAN      | C1-O5-C5                                  | 2.83         | 116.03       | 112.19         |
| 7     | i      | 5   | MAN      | C1-O5-C5                                  | 2.82         | 116.01       | 112.19         |
| 7     | j      | 6   | MAN      | C1-O5-C5                                  | 2.82         | 116.01       | 112.19         |
| 7     | j      | 1   | NAG      | C1-O5-C5                                  | 2.80         | 115.99       | 112.19         |
| 4     | W      | 6   | MAN      | C1-O5-C5                                  | 2.76         | 115.93       | 112.19         |
| 6     | е      | 5   | MAN      | C1-C2-C3                                  | 2.75         | 113.04       | 109.67         |
| 6     | g      | 5   | MAN      | C1-O5-C5                                  | 2.71         | 115.87       | 112.19         |
| 5     | Q      | 3   | BMA      | C1-O5-C5                                  | 2.66         | 115.79       | 112.19         |
| 4     | Х      | 1   | NAG      | C1-O5-C5                                  | 2.64         | 115.77       | 112.19         |
| 6     | е      | 5   | MAN      | O2-C2-C1                                  | -2.64        | 103.76       | 109.15         |
| 7     | h      | 4   | MAN      | C1-O5-C5                                  | 2.63         | 115.75       | 112.19         |
| 5     | Q      | 4   | MAN      | C1-C2-C3                                  | 2.63         | 112.90       | 109.67         |
| 4     | V      | 4   | MAN      | C1-O5-C5                                  | 2.61         | 115.73       | 112.19         |
| 2     | с      | 1   | NAG      | C3-C4-C5                                  | -2.61        | 105.59       | 110.24         |
| 2     | М      | 1   | NAG      | C1-O5-C5                                  | 2.60         | 115.72       | 112.19         |
| 5     | Q      | 4   | MAN      | C1-O5-C5                                  | 2.57         | 115.67       | 112.19         |
| 4     | W      | 2   | NAG      | O4-C4-C3                                  | -2.56        | 104.44       | 110.35         |
| 6     | g      | 1   | NAG      | C1-O5-C5                                  | 2.56         | 115.65       | 112.19         |
| 7     | i      | 5   | MAN      | C1-O5-C5                                  | 2.55         | 115.64       | 112.19         |
| 2     | M      | 1   | NAG      | C4-C3-C2                                  | -2.53        | 107.30       | 111.02         |
| 2     | d      | 1   | NAG      | C6-C5-C4                                  | 2.53         | 118.92       | 113.00         |
| 7     | h      | 1   | NAG      | C1-O5-C5                                  | 2.52         | 115.61       | 112.19         |
| 7     | h      | 3   | BMA      | C1-O5-C5                                  | 2.52         | 115.61       | 112.19         |
| 2     | b      | 1   | NAG      | C6-C5-C4                                  | 2.52         | 118.90       | 113.00         |
| 2     | 0      | 1   | NAG      | C3-C4-C5                                  | 2.51         | 114.72       | 110.24         |
| 6     | g      | 5   | MAN      | O4-C4-C3                                  | -2.51        | 104.55       | 110.35         |
| 2     | c      | 1   | NAG      | C4-C3-C2                                  | -2.50        | 107.36       | 111.02         |
| 2     | b      | 2   | NAG      | C1-O5-C5                                  | 2.49         | 115.57       | 112.19         |
| 4     | V      | 5   | NAG      | C3-C4-C5                                  | 2.48         | 114.66       | 110.24         |
| 7     | h      | 2   | NAG      | C2-N2-C7                                  | -2.47        | 119.39       | 122.90         |
| 4     | X      | 2   | NAG      | 04-C4-C3                                  | -2.46        | 104.67       | 110.35         |
| 5     | R      | 4   | MAN      | C1-O5-C5                                  | 2.43         | 115.49       | 112.19         |
| 5     | P      | 2   | NAG      | C1-O5-C5                                  | 2.43         | 115.48       | 112.19         |
| 2     | -<br>a | 2   | NAG      | 05-C1-C2                                  | -2.42        | 107.46       | 111 29         |
| 2     | d      | 1   | NAG      | $\frac{\text{C3-C4-C5}}{\text{C3-C4-C5}}$ | -2.42        | 105.92       | 110.24         |
| 5     | P      | 1   | NAG      | C6-C5-C4                                  | 2.42         | 118.67       | 113.00         |
| 7     | i      | 5   | MAN      | $\frac{\text{C1-C2-C3}}{\text{C1-C2-C3}}$ | 2.12<br>2.42 | 112.64       | 109.67         |
| 7     | i      | 3   | BMA      | 03-03-02                                  | 2.12<br>2.41 | 114 69       | 100.00         |
| 6     | J<br>f | 1   | NAG      | C2-N2-C7                                  | 2.11<br>2.40 | 126.33       | 122.90         |
| 4     | X      | 4   | MAN      | 02-02-02                                  | 2.38         | 114 02       | 109 15         |



| Mol | Chain | Res | Type | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|-------|------------------|---------------|
| 6   | f     | 5   | MAN  | O4-C4-C3 | -2.35 | 104.91           | 110.35        |
| 7   | h     | 6   | MAN  | C1-O5-C5 | 2.35  | 115.38           | 112.19        |
| 5   | Р     | 3   | BMA  | C1-O5-C5 | 2.35  | 115.38           | 112.19        |
| 6   | g     | 7   | MAN  | C1-O5-C5 | 2.33  | 115.35           | 112.19        |
| 6   | g     | 5   | MAN  | O2-C2-C1 | -2.33 | 104.39           | 109.15        |
| 4   | W     | 4   | MAN  | O2-C2-C1 | 2.31  | 113.87           | 109.15        |
| 2   | Y     | 1   | NAG  | C2-N2-C7 | -2.30 | 119.63           | 122.90        |
| 3   | U     | 1   | NAG  | C2-N2-C7 | 2.27  | 126.14           | 122.90        |
| 2   | Ζ     | 1   | NAG  | C4-C3-C2 | 2.26  | 114.33           | 111.02        |
| 3   | Т     | 1   | NAG  | C1-C2-N2 | 2.23  | 114.30           | 110.49        |
| 4   | Х     | 2   | NAG  | C2-N2-C7 | -2.20 | 119.76           | 122.90        |
| 3   | U     | 2   | NAG  | O4-C4-C3 | -2.20 | 105.27           | 110.35        |
| 3   | S     | 3   | BMA  | C1-O5-C5 | 2.19  | 115.16           | 112.19        |
| 2   | a     | 2   | NAG  | C1-O5-C5 | 2.18  | 115.14           | 112.19        |
| 7   | i     | 2   | NAG  | C2-N2-C7 | -2.16 | 119.83           | 122.90        |
| 3   | Т     | 1   | NAG  | C1-O5-C5 | 2.15  | 115.10           | 112.19        |
| 7   | j     | 1   | NAG  | O4-C4-C3 | -2.15 | 105.38           | 110.35        |
| 2   | b     | 1   | NAG  | O4-C4-C5 | 2.14  | 114.60           | 109.30        |
| 2   | d     | 1   | NAG  | C4-C3-C2 | -2.13 | 107.89           | 111.02        |
| 6   | f     | 4   | MAN  | C1-O5-C5 | 2.13  | 115.08           | 112.19        |
| 6   | е     | 5   | MAN  | C2-C3-C4 | 2.13  | 114.58           | 110.89        |
| 6   | f     | 8   | MAN  | C1-O5-C5 | 2.13  | 115.07           | 112.19        |
| 4   | W     | 5   | NAG  | C3-C4-C5 | 2.10  | 113.99           | 110.24        |
| 6   | g     | 8   | MAN  | C1-O5-C5 | 2.09  | 115.02           | 112.19        |
| 4   | Х     | 5   | NAG  | C3-C4-C5 | 2.08  | 113.96           | 110.24        |
| 5   | Р     | 2   | NAG  | C3-C4-C5 | -2.08 | 106.53           | 110.24        |
| 5   | R     | 2   | NAG  | O5-C5-C6 | 2.07  | 110.45           | 107.20        |
| 6   | g     | 5   | MAN  | C1-C2-C3 | 2.07  | 112.20           | 109.67        |
| 6   | f     | 2   | NAG  | C1-O5-C5 | 2.06  | 114.98           | 112.19        |
| 5   | Q     | 2   | NAG  | O5-C5-C4 | -2.05 | 105.85           | 110.83        |
| 6   | g     | 4   | MAN  | O3-C3-C2 | -2.04 | 106.09           | 109.99        |
| 6   | g     | 3   | BMA  | O3-C3-C4 | -2.01 | 105.71           | 110.35        |

There are no chirality outliers.

All (68) torsion outliers are listed below:

| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 2   | b     | 2   | NAG  | C1-C2-N2-C7 |
| 2   | d     | 2   | NAG  | C1-C2-N2-C7 |
| 3   | S     | 1   | NAG  | C3-C2-N2-C7 |
| 3   | Т     | 1   | NAG  | C3-C2-N2-C7 |
| 2   | Ζ     | 2   | NAG  | C4-C5-C6-O6 |



| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 5   | R     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | с     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | d     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | с     | 1   | NAG  | C4-C5-C6-O6 |
| 2   | Ζ     | 2   | NAG  | O5-C5-C6-O6 |
| 5   | Q     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | d     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | b     | 1   | NAG  | O5-C5-C6-O6 |
| 5   | R     | 3   | BMA  | O5-C5-C6-O6 |
| 5   | Р     | 3   | BMA  | O5-C5-C6-O6 |
| 4   | W     | 5   | NAG  | O5-C5-C6-O6 |
| 6   | f     | 6   | MAN  | O5-C5-C6-O6 |
| 5   | Р     | 1   | NAG  | C4-C5-C6-O6 |
| 5   | R     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | d     | 1   | NAG  | O5-C5-C6-O6 |
| 5   | Р     | 2   | NAG  | O5-C5-C6-O6 |
| 4   | Х     | 5   | NAG  | O5-C5-C6-O6 |
| 5   | Q     | 2   | NAG  | C4-C5-C6-O6 |
| 5   | R     | 1   | NAG  | C8-C7-N2-C2 |
| 2   | a     | 2   | NAG  | O5-C5-C6-O6 |
| 4   | Х     | 4   | MAN  | O5-C5-C6-O6 |
| 2   | Y     | 2   | NAG  | O5-C5-C6-O6 |
| 4   | W     | 4   | MAN  | O5-C5-C6-O6 |
| 4   | V     | 4   | MAN  | O5-C5-C6-O6 |
| 7   | h     | 4   | MAN  | O5-C5-C6-O6 |
| 2   | b     | 2   | NAG  | C4-C5-C6-O6 |
| 5   | Р     | 3   | BMA  | C4-C5-C6-O6 |
| 7   | i     | 4   | MAN  | O5-C5-C6-O6 |
| 7   | j     | 4   | MAN  | O5-C5-C6-O6 |
| 5   | R     | 3   | BMA  | C4-C5-C6-O6 |
| 5   | Q     | 1   | NAG  | C4-C5-C6-O6 |
| 2   | Ν     | 1   | NAG  | C1-C2-N2-C7 |
| 2   | b     | 1   | NAG  | C4-C5-C6-O6 |
| 4   | V     | 5   | NAG  | O5-C5-C6-O6 |
| 4   | V     | 6   | MAN  | O5-C5-C6-O6 |
| 5   | Q     | 3   | BMA  | O5-C5-C6-O6 |
| 4   | W     | 6   | MAN  | O5-C5-C6-O6 |
| 6   | f     | 8   | MAN  | O5-C5-C6-O6 |
| 5   | P     | 1   | NAG  | C8-C7-N2-C2 |
| 2   | b     | 2   | NAG  | O5-C5-C6-O6 |
| 5   | Р     | 4   | MAN  | O5-C5-C6-O6 |
| 6   | g     | 1   | NAG  | O5-C5-C6-O6 |



| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 7   | i     | 6   | MAN  | C4-C5-C6-O6 |
| 4   | W     | 5   | NAG  | C4-C5-C6-O6 |
| 5   | Р     | 1   | NAG  | O5-C5-C6-O6 |
| 4   | W     | 1   | NAG  | C4-C5-C6-O6 |
| 6   | е     | 2   | NAG  | C4-C5-C6-O6 |
| 5   | R     | 1   | NAG  | O7-C7-N2-C2 |
| 2   | М     | 1   | NAG  | C3-C2-N2-C7 |
| 5   | Р     | 1   | NAG  | O7-C7-N2-C2 |
| 6   | f     | 6   | MAN  | C4-C5-C6-O6 |
| 5   | Q     | 1   | NAG  | O5-C5-C6-O6 |
| 6   | g     | 8   | MAN  | O5-C5-C6-O6 |
| 2   | d     | 1   | NAG  | C4-C5-C6-O6 |
| 4   | V     | 1   | NAG  | C4-C5-C6-O6 |
| 2   | с     | 2   | NAG  | C4-C5-C6-O6 |
| 6   | f     | 5   | MAN  | O5-C5-C6-O6 |
| 6   | е     | 2   | NAG  | O5-C5-C6-O6 |
| 4   | Х     | 5   | NAG  | C4-C5-C6-O6 |
| 2   | N     | 1   | NAG  | C3-C2-N2-C7 |
| 2   | 0     | 1   | NAG  | C3-C2-N2-C7 |
| 3   | S     | 1   | NAG  | C1-C2-N2-C7 |
| 5   | Р     | 2   | NAG  | C4-C5-C6-O6 |

Continued from previous page...

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.
























































































# 5.6 Ligand geometry (i)

15 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal Tura |      | Chain | Chain Res | Chain | Chain    | Chain | Chain  | Chain    | Chain | Chain    | Dog | Tink | Bo | ond leng | $\mathbf{ths}$ | B | ond ang | les |
|----------|------|-------|-----------|-------|----------|-------|--------|----------|-------|----------|-----|------|----|----------|----------------|---|---------|-----|
| WIOI     | Type | nes   |           | LIIIK | Counts   | RMSZ  | # Z >2 | Counts   | RMSZ  | # Z  > 2 |     |      |    |          |                |   |         |     |
| 8        | CLR  | L     | 1100      | -     | 31,31,31 | 1.00  | 2 (6%) | 48,48,48 | 0.96  | 4 (8%)   |     |      |    |          |                |   |         |     |



| Mol  | Type | Chain   | Bog  | Link | Bond lengths |      |         | B        | ond ang | gles     |
|------|------|---------|------|------|--------------|------|---------|----------|---------|----------|
| WIOI | туре | Ullalli | nes  |      | Counts       | RMSZ | # Z >2  | Counts   | RMSZ    | # Z  > 2 |
| 9    | NAG  | С       | 1003 | 1    | 14,14,15     | 1.14 | 2 (14%) | 17,19,21 | 0.86    | 0        |
| 9    | NAG  | В       | 1003 | 1    | 14,14,15     | 1.21 | 2 (14%) | 17,19,21 | 1.14    | 1 (5%)   |
| 9    | NAG  | С       | 1001 | 1    | 14,14,15     | 1.27 | 2 (14%) | 17,19,21 | 0.83    | 0        |
| 9    | NAG  | В       | 1001 | 1    | 14,14,15     | 1.41 | 3 (21%) | 17,19,21 | 1.04    | 1 (5%)   |
| 9    | NAG  | G       | 1003 | 1    | 14,14,15     | 1.06 | 1 (7%)  | 17,19,21 | 0.99    | 1 (5%)   |
| 10   | PTY  | Н       | 1101 | -    | 49,49,49     | 0.67 | 0       | 52,54,54 | 0.45    | 0        |
| 10   | PTY  | L       | 1101 | -    | 49,49,49     | 0.79 | 0       | 52,54,54 | 0.62    | 0        |
| 9    | NAG  | В       | 1002 | 1    | 14,14,15     | 1.22 | 2 (14%) | 17,19,21 | 0.71    | 0        |
| 8    | CLR  | D       | 1100 | -    | 31,31,31     | 1.04 | 1 (3%)  | 48,48,48 | 0.95    | 3 (6%)   |
| 8    | CLR  | А       | 1100 | -    | 31,31,31     | 0.93 | 0       | 48,48,48 | 1.04    | 5 (10%)  |
| 9    | NAG  | С       | 1002 | 1    | 14,14,15     | 1.16 | 2 (14%) | 17,19,21 | 0.96    | 1 (5%)   |
| 9    | NAG  | G       | 1002 | 1    | 14,14,15     | 1.20 | 2 (14%) | 17,19,21 | 0.84    | 0        |
| 9    | NAG  | G       | 1001 | 1    | 14,14,15     | 1.48 | 3 (21%) | 17,19,21 | 0.97    | 1 (5%)   |
| 10   | PTY  | D       | 1101 | -    | 49,49,49     | 0.74 | 0       | 52,54,54 | 0.50    | 0        |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res  | Link | Chirals | Torsions    | Rings   |
|-----|------|-------|------|------|---------|-------------|---------|
| 8   | CLR  | L     | 1100 | -    | -       | 1/10/68/68  | 0/4/4/4 |
| 9   | NAG  | С     | 1003 | 1    | -       | 1/6/23/26   | 0/1/1/1 |
| 9   | NAG  | В     | 1003 | 1    | -       | 1/6/23/26   | 0/1/1/1 |
| 9   | NAG  | С     | 1001 | 1    | -       | 1/6/23/26   | 0/1/1/1 |
| 9   | NAG  | В     | 1001 | 1    | -       | 1/6/23/26   | 0/1/1/1 |
| 9   | NAG  | G     | 1003 | 1    | -       | 2/6/23/26   | 0/1/1/1 |
| 10  | PTY  | Н     | 1101 | -    | -       | 7/53/53/53  | -       |
| 10  | PTY  | L     | 1101 | -    | -       | 8/53/53/53  | -       |
| 9   | NAG  | В     | 1002 | 1    | -       | 0/6/23/26   | 0/1/1/1 |
| 8   | CLR  | D     | 1100 | -    | -       | 0/10/68/68  | 0/4/4/4 |
| 8   | CLR  | А     | 1100 | -    | -       | 2/10/68/68  | 0/4/4/4 |
| 9   | NAG  | С     | 1002 | 1    | -       | 1/6/23/26   | 0/1/1/1 |
| 9   | NAG  | G     | 1002 | 1    | -       | 0/6/23/26   | 0/1/1/1 |
| 9   | NAG  | G     | 1001 | 1    | -       | 1/6/23/26   | 0/1/1/1 |
| 10  | PTY  | D     | 1101 | -    | -       | 13/53/53/53 | -       |

All (22) bond length outliers are listed below:



| Mol | Chain        | Res  | Type | Atoms   | Ζ    | Observed(Å) | $\mathrm{Ideal}(\mathrm{\AA})$ |
|-----|--------------|------|------|---------|------|-------------|--------------------------------|
| 9   | В            | 1001 | NAG  | O5-C5   | 2.80 | 1.49        | 1.43                           |
| 9   | G            | 1001 | NAG  | O5-C5   | 2.71 | 1.48        | 1.43                           |
| 9   | G            | 1001 | NAG  | C1-C2   | 2.66 | 1.56        | 1.52                           |
| 9   | В            | 1001 | NAG  | O5-C1   | 2.63 | 1.47        | 1.43                           |
| 8   | D            | 1100 | CLR  | C11-C9  | 2.63 | 1.58        | 1.53                           |
| 9   | С            | 1001 | NAG  | C1-C2   | 2.59 | 1.56        | 1.52                           |
| 9   | В            | 1003 | NAG  | O5-C5   | 2.55 | 1.48        | 1.43                           |
| 9   | G            | 1002 | NAG  | O5-C5   | 2.48 | 1.48        | 1.43                           |
| 9   | В            | 1001 | NAG  | C1-C2   | 2.45 | 1.56        | 1.52                           |
| 9   | G            | 1001 | NAG  | O5-C1   | 2.40 | 1.47        | 1.43                           |
| 9   | С            | 1003 | NAG  | O5-C5   | 2.39 | 1.48        | 1.43                           |
| 9   | $\mathbf{C}$ | 1002 | NAG  | O5-C5   | 2.36 | 1.48        | 1.43                           |
| 9   | С            | 1003 | NAG  | C1-C2   | 2.36 | 1.55        | 1.52                           |
| 9   | С            | 1001 | NAG  | O5-C5   | 2.34 | 1.48        | 1.43                           |
| 9   | В            | 1002 | NAG  | C1-C2   | 2.26 | 1.55        | 1.52                           |
| 8   | L            | 1100 | CLR  | C18-C13 | 2.25 | 1.58        | 1.54                           |
| 9   | В            | 1002 | NAG  | O5-C5   | 2.20 | 1.47        | 1.43                           |
| 9   | G            | 1003 | NAG  | O5-C5   | 2.18 | 1.47        | 1.43                           |
| 8   | L            | 1100 | CLR  | C11-C9  | 2.18 | 1.57        | 1.53                           |
| 9   | В            | 1003 | NAG  | C1-C2   | 2.13 | 1.55        | 1.52                           |
| 9   | G            | 1002 | NAG  | C1-C2   | 2.08 | 1.55        | 1.52                           |
| 9   | С            | 1002 | NAG  | C1-C2   | 2.04 | 1.55        | 1.52                           |

All (17) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|-------|------------------|---------------|
| 9   | В     | 1001 | NAG  | C1-O5-C5    | 3.33  | 116.70           | 112.19        |
| 9   | В     | 1003 | NAG  | C1-C2-N2    | 3.01  | 115.64           | 110.49        |
| 9   | G     | 1001 | NAG  | C1-O5-C5    | 2.83  | 116.03           | 112.19        |
| 9   | G     | 1003 | NAG  | C1-C2-N2    | 2.75  | 115.18           | 110.49        |
| 8   | А     | 1100 | CLR  | C1-C2-C3    | 2.65  | 113.87           | 110.47        |
| 8   | А     | 1100 | CLR  | C19-C10-C1  | 2.50  | 113.38           | 109.43        |
| 8   | А     | 1100 | CLR  | C15-C14-C13 | 2.43  | 106.77           | 103.84        |
| 8   | А     | 1100 | CLR  | C7-C8-C9    | 2.38  | 112.60           | 109.71        |
| 8   | L     | 1100 | CLR  | C21-C20-C22 | 2.22  | 113.84           | 110.36        |
| 8   | D     | 1100 | CLR  | C19-C10-C9  | -2.19 | 109.06           | 111.68        |
| 8   | L     | 1100 | CLR  | C11-C9-C8   | 2.15  | 114.85           | 111.75        |
| 8   | D     | 1100 | CLR  | C11-C9-C8   | 2.14  | 114.84           | 111.75        |
| 8   | D     | 1100 | CLR  | C15-C14-C13 | 2.11  | 106.39           | 103.84        |
| 8   | L     | 1100 | CLR  | C9-C10-C5   | -2.11 | 106.34           | 109.65        |
| 9   | С     | 1002 | NAG  | O5-C1-C2    | -2.07 | 108.03           | 111.29        |
| 8   | L     | 1100 | CLR  | C1-C10-C5   | 2.01  | 112.43           | 108.75        |
| 8   | А     | 1100 | CLR  | C1-C10-C5   | -2.00 | 105.09           | 108.75        |



There are no chirality outliers.

| All | (39) | ) torsion | outliers | are | listed | below: |  |
|-----|------|-----------|----------|-----|--------|--------|--|
|-----|------|-----------|----------|-----|--------|--------|--|

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms           |
|-----|-------|----------------|------|-----------------|
| 10  | D     | 1101           | PTY  | C2-C3-O11-P1    |
| 10  | D     | 1101           | PTY  | C6-C5-O14-P1    |
| 10  | Н     | 1101           | PTY  | C6-C5-O14-P1    |
| 10  | L     | 1101           | PTY  | N1-C2-C3-O11    |
| 10  | L     | 1101           | PTY  | C6-C5-O14-P1    |
| 9   | В     | 1003           | NAG  | C1-C2-N2-C7     |
| 9   | С     | 1003           | NAG  | C1-C2-N2-C7     |
| 10  | D     | 1101           | PTY  | C11-C12-C13-C14 |
| 10  | D     | 1101           | PTY  | C11-C8-O7-C6    |
| 9   | В     | 1001           | NAG  | O5-C5-C6-O6     |
| 9   | G     | 1001           | NAG  | O5-C5-C6-O6     |
| 10  | Н     | 1101           | PTY  | C40-C41-C42-C43 |
| 9   | С     | 1001           | NAG  | O5-C5-C6-O6     |
| 10  | L     | 1101           | PTY  | C34-C35-C36-C37 |
| 8   | L     | 1100           | CLR  | C20-C22-C23-C24 |
| 9   | С     | 1002           | NAG  | C1-C2-N2-C7     |
| 10  | Н     | 1101           | PTY  | C16-C17-C18-C19 |
| 10  | L     | 1101           | PTY  | C31-C32-C33-C34 |
| 10  | Н     | 1101           | PTY  | O14-C5-C6-C1    |
| 10  | D     | 1101           | PTY  | O30-C30-O4-C1   |
| 10  | D     | 1101           | PTY  | C30-C31-C32-C33 |
| 10  | Н     | 1101           | PTY  | O14-C5-C6-O7    |
| 9   | G     | 1003           | NAG  | C1-C2-N2-C7     |
| 10  | D     | 1101           | PTY  | C3-O11-P1-O12   |
| 10  | D     | 1101           | PTY  | C3-O11-P1-O13   |
| 8   | А     | 1100           | CLR  | C17-C20-C22-C23 |
| 10  | L     | 1101           | PTY  | C35-C36-C37-C38 |
| 10  | D     | 1101           | PTY  | O4-C1-C6-O7     |
| 10  | L     | 1101           | PTY  | O4-C1-C6-O7     |
| 10  | D     | 1101           | PTY  | C3-O11-P1-O14   |
| 8   | А     | 1100           | CLR  | C21-C20-C22-C23 |
| 10  | Н     | 1101           | PTY  | C23-C24-C25-C26 |
| 10  | D     | 1101           | PTY  | C35-C36-C37-C38 |
| 10  | D     | 1101           | PTY  | C41-C42-C43-C44 |
| 10  | L     | 1101           | PTY  | C41-C42-C43-C44 |
| 9   | G     | 1003           | NAG  | C3-C2-N2-C7     |
| 10  | Н     | 1101           | PTY  | C36-C37-C38-C39 |
| 10  | L     | 1101           | PTY  | C2-C3-O11-P1    |
| 10  | D     | 1101           | PTY  | O4-C30-C31-C32  |



There are no ring outliers.

2 monomers are involved in 4 short contacts:

| Mol | Chain | Res  | Type | Clashes | Symm-Clashes |
|-----|-------|------|------|---------|--------------|
| 8   | D     | 1100 | CLR  | 3       | 0            |
| 8   | А     | 1100 | CLR  | 1       | 0            |

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.































# 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-17317. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

# 6.1 Orthogonal projections (i)

## 6.1.1 Primary map











6.1.2 Raw map



The images above show the map projected in three orthogonal directions.



# 6.2 Central slices (i)

## 6.2.1 Primary map



X Index: 80



Y Index: 80



Z Index: 80

### 6.2.2 Raw map



X Index: 80





The images above show central slices of the map in three orthogonal directions.



# 6.3 Largest variance slices (i)

## 6.3.1 Primary map



X Index: 74



Y Index: 78



Z Index: 66

## 6.3.2 Raw map



X Index: 72





The images above show the largest variance slices of the map in three orthogonal directions.



# 6.4 Orthogonal standard-deviation projections (False-color) (i)

## 6.4.1 Primary map



6.4.2 Raw map



The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.



# 6.5 Orthogonal surface views (i)

### 6.5.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.064. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

### 6.5.2 Raw map



These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.



#### Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

#### $emd_{17317}msk_{1.map}$ (i) 6.6.1



Υ



# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

# 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



# 7.2 Volume estimate (i)



The volume at the recommended contour level is  $3695 \text{ nm}^3$ ; this corresponds to an approximate mass of 3337 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



# 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.084  ${\rm \AA^{-1}}$ 



# 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

## 8.1 FSC (i)



\*Reported resolution corresponds to spatial frequency of 0.084  $\mathrm{\AA^{-1}}$ 



# 8.2 Resolution estimates (i)

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | Estimation criterion (FSC cut-off) |       |          |  |  |
|--------------------------------------------------------|------------------------------------|-------|----------|--|--|
| resolution estimate (A)                                | 0.143                              | 0.5   | Half-bit |  |  |
| Reported by author                                     | 11.90                              | -     | -        |  |  |
| Author-provided FSC curve                              | 11.78                              | 20.24 | 13.53    |  |  |
| Unmasked-calculated*                                   | 14.25                              | 21.01 | 15.36    |  |  |

\*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 14.25 differs from the reported value 11.9 by more than 10 %



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-17317 and PDB model 80ZP. Per-residue inclusion information can be found in section 3 on page 11.

# 9.1 Map-model overlays

### 9.1.1 Map-model overlay (i)



9.1.2 Map-model assembly overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.064 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



## 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.064).



# 9.4 Atom inclusion (i)



At the recommended contour level, 92% of all backbone atoms, 83% of all non-hydrogen atoms, are inside the map.



# 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.064) and Q-score for the entire model and for each chain.

| Chain | Atom inclusion | $\mathbf{Q}	extsf{-score}$ |
|-------|----------------|----------------------------|
| All   | 0.8260         | 0.1150                     |
| А     | 0.7270         | 0.1210                     |
| В     | 0.8600         | 0.1000                     |
| С     | 0.8680         | 0.1160                     |
| D     | 0.8400         | 0.1270                     |
| E     | 0.7800         | 0.1330                     |
| F     | 0.6590         | 0.1300                     |
| G     | 0.8530         | 0.1030                     |
| Н     | 0.8470         | 0.1210                     |
| Ι     | 0.7320         | 0.1070                     |
| L     | 0.8660         | 0.1250                     |
| М     | 0.2140         | 0.0540                     |
| N     | 0.4290         | 0.0990                     |
| 0     | 0.7860         | 0.1960                     |
| Р     | 0.2600         | 0.2070                     |
| Q     | 0.4200         | 0.2220                     |
| R     | 0.2400         | 0.1400                     |
| S     | 0.2050         | 0.1320                     |
| Т     | 0.1790         | 0.1570                     |
| U     | 0.1030         | 0.0430                     |
| V     | 0.6670         | 0.0710                     |
| W     | 0.6530         | 0.1100                     |
| Х     | 0.6270         | 0.0640                     |
| Y     | 0.3570         | 0.1410                     |
| Z     | 0.3570         | 0.2380                     |
| a     | 0.2500         | 0.2150                     |
| b     | 0.7140         | 0.1340                     |
| с     | 0.7500         | 0.0890                     |
| d     | 0.6430         | 0.0720                     |
| e     | 0.5750         | 0.0600                     |
| f     | 0.5110         | 0.0270                     |
| g     | 0.6700         | 0.0920                     |
| h     | 0.3890         | 0.1060                     |
| i     | 0.2220         | 0.1020                     |
| j     | 0.3330         | 0.1170                     |

0.0

1.0

