

wwPDB EM Validation Summary Report (i)

Jul 7, 2024 – 12:36 PM EDT

PDB ID	:	8SCB
EMDB ID	:	EMD-40344
Title	:	Terminating ribosome with SRI-41315
Authors	:	Yip, M.C.J.; Coelho, J.P.L.; Oltion, K.; Tauton, J.; Shao, S.
Deposited on	:	2023-04-05
Resolution	:	2.50 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	257	93%	• 5%
2	В	403	95%	•••
3	С	413	85%	• 12%
4	D	297	95%	
5	Е	291	71% •	26%
6	F	247	89%	• 9%
7	G	319	• 66% •	32%
8	Н	192	97%	

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
9	Ι	214	93%	• 5%
10	J	178	89%	• 6%
11	L	211	96%	•
12	М	218	63% 37%	9
13	Ν	204	98%	•
14	Ο	203	93%	
15	Р	184	81% •	17%
16	Q	188	97%	
17	R	196	88%	• 9%
18	S	176	97%	•
19	Т	160	99%	
20	U	128	73% •	23%
21	V	140	92%	• 7%
22	W	157	· . 60%	
23	Х	156	73% •	26%
24	Y	145	89%	• 8%
25	Z	136	94%	5%•
26	a	148	96%	
27	b	245	3 0% • 69%	
28	с	115	76% 6%	18%
29	d	125	• 79% •	20%
30	е	135	94%	• 5%
31	f	110	98%	
32	g	117	94%	•••
33	h	123	94%	5%•

Mol	Chain	Length	Quality of chain	
34	i	105	94%	• •
35	j	97	82%	6% 11%
36	k	70	89%	7% ••
37	1	51	92%	• •
38	m	93	53% •	45%
39	n	25	92%	8%
40	0	106	95%	•••
41	р	92	97%	
42	r	137	89%	• 9%
43	s	318	50% 58% •	40%
44	t	165	79%	6% 15%
45	1	130	11% • 88%	
46	2	76	74%	24% ·
47	3	75	73%	27%
48	5	3543	77%	22% •
49	7	120	91%	9%
50	8	156	80%	19% •
51	9	1869	62%	27% • 9%
52	AA	295	• <u>66%</u> •	30%
53	BB	264	77%	• 20%
54	CC	293	70%	• 26%
55	DD	243	85%	6% 9%
56	EE	263	94%	5% •
57	\mathbf{FF}	204	81%	7% 11%
58	GG	249	86%	10% 5%

Mol	Chain	Length	Quality of chain	
59	HH	194	84%	7% 9%
60	II	208	93%	6% •
61	JJ	194	91%	5% 5%
62	KK	165	4 8% • 48%	
63	LL	158	83%	• 14%
64	MM	132	87%	6% 8%
65	NN	151	95%	5%•
66	00	168	71% 5%	24%
67	PP	145	74% 6%	19%
68	QQ	146	92%	
69	RR	135	10%	7% 13%
70	SS	152	86%	7% 8%
71	TT	145	070/	F 9/
72	III	110	92%	140/
72	VV	22	82%	• 14%
73		120	93%	5% •
75		142	95%	
()		143	95%	
76	Y Y	130	89%	5% 5%
	ZZ	125	53% 5% 42%	
78	aa	115	83%	• 15%
79	bb	84	87%	7% 6%
80	СС	69	83%	6% 12%
81	dd	56	84%	11% 5%
82	ee	133	33% • 65%	
83	ff	156	37% • 60%	

Mol	Chain	Length	Quality of chain	
84	gg	317	88%	8% •
85	hh	197	••• 94%	
86	ii	459	83%	7% 9%
87	jj	599	42%	•••

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
90	ZVM	ii	501	X	-	-	-

2 Entry composition (i)

There are 92 unique types of molecules in this entry. The entry contains 222478 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Ribosomal protein L8.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	А	244	Total 1868	C 1171	N 382	O 309	S 6	0	0

• Molecule 2 is a protein called Ribosomal protein L3.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	В	394	Total 3148	C 2007	N 591	O 537	S 13	0	0

• Molecule 3 is a protein called 60S ribosomal protein L4.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	С	362	Total 2883	C 1812	N 577	0 480	S 14	0	0

• Molecule 4 is a protein called Ribosomal_L18_c domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
4	D	289	Total 2361	C 1495	N 431	0 421	S 14	0	0

• Molecule 5 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		Ate	AltConf	Trace			
5	Е	215	Total 1726	C 1110	N 327	O 286	${ m S} { m 3}$	0	0

• Molecule 6 is a protein called 60S ribosomal protein L7.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	F	225	Total 1875	C 1205	N 358	O 303	${ m S} 9$	0	0

Chain	Residue	Modelled	Actual	Comment	Reference
F	61	ARG	GLY	conflict	UNP G1TUB1
F	93	ARG	GLY	conflict	UNP G1TUB1
F	131	MET	VAL	conflict	UNP G1TUB1
F	153	ILE	VAL	conflict	UNP G1TUB1

There are 4 discrepancies between the modelled and reference sequences:

• Molecule 7 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues		At	AltConf	Trace			
7	G	218	Total 1768	C 1127	N 341	0 296	S 4	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	191	GLY	CYS	conflict	UNP G1STW0

• Molecule 8 is a protein called 60S ribosomal protein L9.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	Н	190	Total 1516	C 954	N 284	0 272	S 6	0	0

• Molecule 9 is a protein called 60S ribosomal protein L10.

Mol	Chain	Residues		At	AltConf	Trace			
9	Ι	204	Total 1655	C 1051	N 319	0 272	S 13	0	0

• Molecule 10 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues		At	AltConf	Trace			
10	J	167	Total 1336	C 846	N 249	O 235	${ m S}{ m 6}$	0	0

• Molecule 11 is a protein called eL13.

Mol	Chain	Residues		Ate	AltConf	Trace			
11	L	210	Total 1702	C 1065	N 354	0 279	$\frac{S}{4}$	0	0

• Molecule 12 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues		At	AltConf	Trace			
12	М	138	Total 1137	C 727	N 221	0 182	${ m S} 7$	0	0

• Molecule 13 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		Ate	AltConf	Trace			
13	Ν	203	Total 1701	C 1072	N 359	O 266	${S \over 4}$	0	0

• Molecule 14 is a protein called uL13.

Mol	Chain	Residues	Atoms					AltConf	Trace
14	О	198	Total 1621	C 1046	N 317	O 253	${ m S}{ m 5}$	0	0

• Molecule 15 is a protein called uL22.

Mol	Chain	Residues	Atoms					AltConf	Trace
15	Р	153	Total	С	N	0	S	0	0
			1242	7777	241	215	9		

• Molecule 16 is a protein called Ribosomal protein L18.

Mol	Chain	Residues	Atoms					AltConf	Trace
16	Q	187	Total 1515	C 946	N 315	O 250	${S \atop 4}$	0	0

There are 12 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Q	4	ASP	ASN	conflict	UNP G1TFE0
Q	14	ARG	TRP	conflict	UNP G1TFE0
Q	53	MET	LEU	conflict	UNP G1TFE0
Q	58	ARG	TRP	conflict	UNP G1TFE0
Q	75	ARG	GLN	conflict	UNP G1TFE0
Q	80	ALA	PRO	conflict	UNP G1TFE0
Q	86	VAL	ILE	conflict	UNP G1TFE0
Q	104	ARG	HIS	conflict	UNP G1TFE0
Q	110	ARG	CYS	conflict	UNP G1TFE0
Q	137	VAL	GLY	conflict	UNP G1TFE0
Q	157	GLY	ARG	conflict	UNP G1TFE0

Chain	Residue	Modelled	Actual	Comment	Reference
Q	181	ARG	TRP	conflict	UNP G1TFE0

• Molecule 17 is a protein called Ribosomal protein L19.

Mol	Chain	Residues	Atoms					AltConf	Trace
17	R	179	Total 1502	C 930	N 327	O 236	${ m S} 9$	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
R	38	ARG	CYS	conflict	UNP G1TJR3
R	64	ARG	GLN	conflict	UNP G1TJR3
R	94	THR	LYS	conflict	UNP G1TJR3

• Molecule 18 is a protein called eL20.

Mol	Chain	Residues	Atoms					AltConf	Trace
18	S	176	Total 1462	C 930	N 285	O 236	S 11	0	0

• Molecule 19 is a protein called eL21.

Mol	Chain	Residues	Atoms					AltConf	Trace
19	Т	159	Total 1298	C 823	N 252	0 217	S 6	0	0

• Molecule 20 is a protein called eL22.

Mol	Chain	Residues	Atoms					AltConf	Trace
20	U	98	Total 800	C 514	N 139	0 145	${ m S} { m 2}$	0	0

There are 11 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
U	18	LEU	VAL	conflict	UNP G1TSG1
U	32	GLY	ARG	conflict	UNP G1TSG1
U	36	ALA	GLU	conflict	UNP G1TSG1
U	39	PHE	SER	conflict	UNP G1TSG1
U	54	GLY	ARG	conflict	UNP G1TSG1

Chain	Residue	Modelled	Actual	Comment	Reference
U	60	VAL	ALA	conflict	UNP G1TSG1
U	62	SER	THR	conflict	UNP G1TSG1
U	63	LEU	ILE	conflict	UNP G1TSG1
U	97	ARG	HIS	conflict	UNP G1TSG1
U	106	THR	SER	conflict	UNP G1TSG1
U	126	GLU	ASP	conflict	UNP G1TSG1

• Molecule 21 is a protein called Ribosomal protein L23.

Mol	Chain	Residues		At	oms		AltConf	Trace	
21	V	130	Total 973	C 615	N 183	O 170	S 5	0	0

• Molecule 22 is a protein called 60S ribosomal protein L24.

Mol	Chain	Residues		Ate	\mathbf{oms}			AltConf	Trace
22	W	63	Total 528	C 337	N 103	O 85	${ m S} { m 3}$	0	0

• Molecule 23 is a protein called eL23.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	Х	116	Total 949	C 606	N 178	0 164	S 1	0	0

• Molecule 24 is a protein called uL24.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	Y	134	Total 1115	C 700	N 226	0 186	${ m S} { m 3}$	0	0

• Molecule 25 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	Ζ	135	Total 1107	С 714	N 208	0 182	${ m S} { m 3}$	0	0

• Molecule 26 is a protein called 60S ribosomal protein L27a.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	a	147	Total 1162	С 734	N 239	0 185	$\frac{S}{4}$	0	0

• Molecule 27 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
27	b	75	Total 609	C 378	N 130	O 98	${f S} {f 3}$	0	0

• Molecule 28 is a protein called eL30.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	С	94	Total 732	C 464	N 130	0 132	S 6	0	0

• Molecule 29 is a protein called eL31.

Mol	Chain	Residues		At	oms			AltConf	Trace
29	d	100	Total 833	C 530	N 163	0 138	${ m S} { m 2}$	0	0

• Molecule 30 is a protein called eL32.

Mol	Chain	Residues		At	oms		AltConf	Trace	
30	е	128	Total 1053	C 667	N 216	0 165	${ m S}{ m 5}$	0	0

• Molecule 31 is a protein called eL33.

Mol	Chain	Residues		At	oms			AltConf	Trace
31	f	109	Total 876	C 555	N 174	0 143	${f S}$ 4	0	0

• Molecule 32 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	g	114	Total 906	C 566	N 187	0 147	S 6	0	0

• Molecule 33 is a protein called eL35.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	h	122	Total 1013	C 640	N 204	0 168	S 1	0	0

• Molecule 34 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	i	102	Total 830	C 520	N 176	O 129	${ m S}{ m 5}$	0	0

• Molecule 35 is a protein called Ribosomal protein L37.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	j	86	Total 705	C 434	N 155	0 111	${f S}{5}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
36	k	68	Total 559	C 360	N 101	O 97	S 1	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
k	24	LYS	ASN	conflict	UNP G1U001

• Molecule 37 is a protein called eL39.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
37	1	49	Total 438	C 280	N 95	O 62	S 1	0	0

• Molecule 38 is a protein called Ubiquitin A-52 residue ribosomal protein fusion product 1.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
38	m	51	Total 421	C 260	N 89	O 66	S 6	0	0

• Molecule 39 is a protein called eL41.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
39	n	23	Total 222	C 134	N 61	O 25	${ m S} { m 2}$	0	0

• Molecule 40 is a protein called eL42.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	О	103	Total 842	C 528	N 172	0 136	S 6	0	0

• Molecule 41 is a protein called eL43.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	р	91	Total 708	C 445	N 136	0 120	${f S}7$	0	0

• Molecule 42 is a protein called eL28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	r	125	Total 1001	C 621	N 206	0 168	S 6	0	0

• Molecule 43 is a protein called 60S acidic ribosomal protein P0.

Mol	Chain	Residues		At	AltConf	Trace			
43	s	190	Total 1461	C 931	N 255	O 266	S 9	0	0

• Molecule 44 is a protein called 60S ribosomal protein L12.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	t	141	Total 1059	C 662	N 195	O 199	${ m S} { m 3}$	0	0

• Molecule 45 is a protein called NC.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
45	1	15	Total 125	C 82	N 20	O 22	S 1	0	0

• Molecule 46 is a RNA chain called P_tRNA.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
46	2	76	Total 1616	C 723	N 291	O 527	Р 75	0	0

• Molecule 47 is a RNA chain called E_tRNA.

Mol	Chain	Residues		\mathbf{A}		AltConf	Trace		
47	3	75	Total 1593	C 712	N 281	O 526	Р 74	0	0

• Molecule 48 is a RNA chain called 28S_rRNA.

Mol	Chain	Residues			AltConf	Trace			
48	5	3530	Total 75735	C 33780	N 13869	O 24556	Р 3530	0	0

• Molecule 49 is a RNA chain called 5S_rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
49	7	120	Total 2558	C 1141	N 456	0 842	Р 119	0	0

There are 7 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
7	2	U	Ν	conflict	GB X06789.1
7	36	С	Ν	conflict	GB X06789.1
7	102	U	Ν	conflict	GB X06789.1
7	112	U	Ν	conflict	GB X06789.1
7	114	U	Ν	conflict	GB X06789.1
7	119	U	С	conflict	GB X06789.1
7	120	U	Ν	conflict	GB X06789.1

• Molecule 50 is a RNA chain called $5.8S_rRNA$.

Mol	Chain	Residues		А	toms			AltConf	Trace
50	8	156	Total 3315	C 1481	N 585	O 1094	Р 155	0	0

 $\bullet\,$ Molecule 51 is a RNA chain called 18S_rRNA.

Mol	Chain	Residues		I	AltConf	Trace			
51	9	1692	Total 36134	C 16163	N 6486	O 11794	Р 1691	0	0

• Molecule 52 is a protein called uS2 (SA).

Mol	Chain	Residues		Ate	AltConf	Trace			
52	АА	206	Total 1624	$\begin{array}{c} \mathrm{C} \\ 1035 \end{array}$	N 287	O 294	S 8	0	0

• Molecule 53 is a protein called eS1.

Mol	Chain	Residues		At	oms			AltConf	Trace
53	BB	212	Total 1722	C 1093	N 308	O 307	S 14	0	0

• Molecule 54 is a protein called uS5.

Mol	Chain	Residues		At	AltConf	Trace			
54	CC	216	Total 1674	C 1085	N 286	0 294	S 9	0	0

• Molecule 55 is a protein called Ribosomal protein S3.

Mol	Chain	Residues		At	AltConf	Trace			
55	DD	221	Total 1723	C 1098	N 311	O 307	S 7	0	0

• Molecule 56 is a protein called eS4 (S4 X isoform).

Mol	Chain	Residues		Ate	AltConf	Trace			
56	EE	259	Total 2059	C 1316	N 383	O 352	S 8	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
EE	25	GLY	SER	conflict	UNP G1TK17
EE	51	ARG	LYS	conflict	UNP G1TK17
EE	78	THR	ALA	conflict	UNP G1TK17
EE	156	VAL	MET	conflict	UNP G1TK17

• Molecule 57 is a protein called uS7.

Mol	Chain	Residues		At	AltConf	Trace			
57	\mathbf{FF}	181	Total 1441	C 902	N 273	O 259	${ m S} 7$	0	0

• Molecule 58 is a protein called eS6.

Mol	Chain	Residues		Ate	AltConf	Trace			
58	GG	237	Total 1923	C 1200	N 387	O 329	S 7	0	0

• Molecule 59 is a protein called eS7.

Mol	Chain	Residues		At	AltConf	Trace			
59	HH	177	Total 1425	C 912	N 258	0 254	S 1	0	0

• Molecule 60 is a protein called eS8.

Mol	Chain	Residues	Atoms					AltConf	Trace
60	II	206	Total 1686	C 1058	N 332	0 291	${ m S}{ m 5}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
II	47	ARG	GLY	conflict	UNP G1TJW1

• Molecule 61 is a protein called uS4.

Mol	Chain	Residues		At	AltConf	Trace			
61	JJ	185	Total 1525	C 969	N 306	0 248	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 62 is a protein called S10_plectin domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
62	KK	86	Total 729	C 479	N 127	0 118	${f S}{5}$	0	0

• Molecule 63 is a protein called uS17.

Mol	Chain	Residues		At	AltConf	Trace			
63	LL	136	Total 1123	C 717	N 210	O 190	S 6	0	0

• Molecule 64 is a protein called eS12.

Mol	Chain	Residues		At	AltConf	Trace			
64	MM	122	Total 939	C 588	N 166	O 176	S 9	0	0

• Molecule 65 is a protein called uS15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
65	NN	150	Total 1208	C 773	N 229	O 205	S 1	0	0

• Molecule 66 is a protein called uS11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
66	00	127	Total 957	$\begin{array}{c} \mathrm{C} \\ 585 \end{array}$	N 189	0 177	S 6	0	0

• Molecule 67 is a protein called uS19.

Mol	Chain	Residues	Atoms					AltConf	Trace
67	PP	117	Total 968	C 615	N 181	O 165	${ m S} 7$	0	0

• Molecule 68 is a protein called uS9.

Mol	Chain	Residues	Atoms					AltConf	Trace
68	QQ	140	Total 1117	C 710	N 211	O 193	${ m S} { m 3}$	0	0

• Molecule 69 is a protein called eS17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
69	RR	118	Total 962	C 604	N 179	0 176	${ m S} { m 3}$	0	0

• Molecule 70 is a protein called uS13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	\mathbf{SS}	140	Total 1162	C 731	N 234	0 196	S 1	0	0

• Molecule 71 is a protein called eS19.

Mol	Chain	Residues	Atoms					AltConf	Trace
71	TT	138	Total 1075	C 674	N 206	0 192	S 3	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
TT	119	GLY	TRP	conflict	UNP G1TN62

• Molecule 72 is a protein called uS10.

Mol	Chain	Residues	Atoms					AltConf	Trace
72	UU	102	Total 807	C 507	N 153	0 143	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 73 is a protein called eS21.

Mol	Chain	Residues	Atoms					AltConf	Trace
73	VV	81	Total 617	C 380	N 114	0 118	${ m S}{ m 5}$	0	0

There are 7 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
VV	3	ASN	SER	conflict	UNP G1TM82
VV	4	ASP	ASN	conflict	UNP G1TM82
VV	33	GLN	PRO	conflict	UNP G1TM82
VV	50	PHE	SER	conflict	UNP G1TM82
VV	75	ALA	SER	conflict	UNP G1TM82
VV	76	ASP	HIS	conflict	UNP G1TM82
VV	81	LYS	GLN	conflict	UNP G1TM82

• Molecule 74 is a protein called uS8.

Mol	Chain	Residues	Atoms					AltConf	Trace
74	WW	129	Total 1034	C 659	N 193	0 176	S 6	0	0

• Molecule 75 is a protein called uS12.

Mol	Chain	Residues		At	AltConf	Trace			
75	XX	141	Total 1098	C 693	N 219	0 183	${ m S} { m 3}$	0	0

• Molecule 76 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		At	AltConf	Trace			
76	YY	123	Total 1006	C 637	N 197	0 167	${ m S}{ m 5}$	0	0

• Molecule 77 is a protein called eS25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
77	ZZ	72	Total 574	C 368	N 104	0 101	S 1	0	0

• Molecule 78 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
78	aa	98	Total 781	C 486	N 161	0 129	${ m S}{ m 5}$	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
aa	28	ARG	CYS	conflict	UNP G1TFE8
aa	56	ALA	VAL	conflict	UNP G1TFE8
aa	109	ARG	PRO	conflict	UNP G1TFE8

• Molecule 79 is a protein called eS27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
79	bb	79	Total 628	C 395	N 117	0 110	S 6	0	0

• Molecule 80 is a protein called eS28.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
80	00	61	Total	С	Ν	Ο	\mathbf{S}	0	0
80	cc	01	479	292	95	90	2	0	0

• Molecule 81 is a protein called uS14.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
81	dd	53	Total	С	Ν	Ο	\mathbf{S}	0	0
01	uu		445	278	90	72	5	0	0

• Molecule 82 is a protein called eS30.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
82	ee	47	Total 380	C 231	N 86	0 62	S 1	0	0

• Molecule 83 is a protein called eS31.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
83	ff	63	Total 527	C 336	N 99	O 86	S 6	0	0

• Molecule 84 is a protein called Receptor for Activated C Kinase 1 (RACK1).

Mol	Chain	Residues		At	AltConf	Trace			
84	gg	304	Total 2371	C 1496	N 414	0 449	S 12	0	0

• Molecule 85 is a RNA chain called mRNA.

Mol	Chain	Residues		Ate	\mathbf{oms}	AltConf	Trace		
85	hh	11	Total 236	C 106	N 44	O 75	Р 11	0	0

• Molecule 86 is a protein called Eukaryotic peptide chain release factor subunit 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
86	ii	416	Total 3280	C 2087	N 559	O 623	S 11	0	0

There are 24 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
ii	-21	MET	-	expression tag	UNP P62495
ii	-20	ARG	-	expression tag	UNP P62495
ii	-19	GLY	-	expression tag	UNP P62495
ii	-18	SER	-	expression tag	UNP P62495

Chain	Residue	Modelled	Actual	Comment	Reference
ii	-17	HIS	-	expression tag	UNP P62495
ii	-16	HIS	-	expression tag	UNP P62495
ii	-15	HIS	-	expression tag	UNP P62495
ii	-14	HIS	-	expression tag	UNP P62495
ii	-13	HIS	-	expression tag	UNP P62495
ii	-12	HIS	-	expression tag	UNP P62495
ii	-11	GLY	-	expression tag	UNP P62495
ii	-10	MET	-	expression tag	UNP P62495
ii	-9	ALA	-	expression tag	UNP P62495
ii	-8	SER	-	expression tag	UNP P62495
ii	-7	GLU	-	expression tag	UNP P62495
ii	-6	ASN	-	expression tag	UNP P62495
ii	-5	LEU	-	expression tag	UNP P62495
ii	-4	TYR	-	expression tag	UNP P62495
ii	-3	PHE	-	expression tag	UNP P62495
ii	-2	GLN	-	expression tag	UNP P62495
ii	-1	GLY	-	expression tag	UNP P62495
ii	0	SER	-	expression tag	UNP P62495
ii	183	ALA	GLY	conflict	UNP P62495
ii	184	ALA	GLY	conflict	UNP P62495

• Molecule 87 is a protein called ATP binding cassette subfamily E member 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
87	jj	578	Total 4558	C 2914	N 780	O 835	S 29	0	0

• Molecule 88 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
88	А	2	Total Mg 2 2	0
88	Ι	2	Total Mg 2 2	0
88	Ν	1	Total Mg 1 1	0
88	Р	1	Total Mg 1 1	0
88	V	1	Total Mg 1 1	0
88	a	1	Total Mg 1 1	0

<u>ъл</u> і				
Wol	Chain	Residues	Atoms	AltConf
00	0	1	Total Mg	0
00	е	L	1 1	0
0.0	c	1	Total Mg	0
88	İ	1	1 1	0
0.0		1	Total Mg	0
88	g	1	1 1	0
		1	Total Mg	0
88	0	1	1 1	0
	2		Total Mg	2
88	2	2	2 2	0
		221	Total Mg	
88	5	221	221 221	0
			Total Mg	
88	7	6	6 6	0
			Total Mg	
88	8	2	2 2	0
	-	6.4	Total Mg	0
88	9	64	64 64	0
			Total Mg	
88	EE	1	1 1	0
			Total Mg	
88	LL	1	1 1	0
			Total Mg	
88	00	1	1 1	0
			Total Mg	
88	XX	1	1 1	0
			Total Mg	
88	hh	1	1 1	0

Continued from previous page...

• Molecule 89 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
89	g	1	Total Zn 1 1	0
89	j	1	Total Zn 1 1	0
89	m	1	Total Zn 1 1	0
89	О	1	Total Zn 1 1	0
89	р	1	Total Zn 1 1	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
89	aa	1	Total Zn 1 1	0
89	dd	1	Total Zn 1 1	0
89	ff	1	Total Zn 1 1	0

• Molecule 90 is (2S,4aS)-2-cyclobutyl-10-methyl-3-phenyl-2,10-dihydropyrimido[4,5-b]quinoli ne-4,5(3H,4aH)-dione (three-letter code: ZVM) (formula: C₂₂H₂₁N₃O₂) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A	Aton	ns		AltConf
90	ii	1	Total 27	C 22	N 3	O 2	0

• Molecule 91 is IRON/SULFUR CLUSTER (three-letter code: SF4) (formula: Fe_4S_4).

Mol	Chain	Residues	Atoms	AltConf
91	jj	1	TotalFeS844	0
91	jj	1	TotalFeS844	0

• Molecule 92 is water.

Mol	Chain	Residues	Atoms	AltConf
92	А	6	Total O 6 6	0
92	В	2	Total O 2 2	0
92	С	1	Total O 1 1	0
92	F	1	Total O 1 1	0
92	Ι	1	Total O 1 1	0
92	L	1	Total O 1 1	0
92	Ν	4	Total O 4 4	0
92	Q	1	Total O 1 1	0
92	R	1	Total O 1 1	0
92	V	2	Total O 2 2	0

Mol	Chain	Residues	Atoms	AltConf
92	Х	2	Total O 2 2	0
92	a	5	Total O 5 5	0
92	е	5	Total O 5 5	0
92	j	1	Total O 1 1	0
92	О	2	Total O 2 2	0
92	5	723	Total O 723 723	0
92	7	13	Total O 13 13	0
92	8	8	Total O 8 8	0
92	9	173	Total O 173 173	0
92	II	1	Total O 1 1	0
92	00	1	Total O 1 1	0
92	XX	1	Total O 1 1	0
92	aa	1	Total O 1 1	0
92	ii	2	Total O 2 2	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Ribosomal protein L8

MET ALA ALA GLU CYS GLU CYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ALA ALA ALS ALA ALA ALA CLYS LYS LYS LYS LYS LYS CHA ALA	ULYS LYS LYS LYS LYS LYS CLY LYS CLY F44 F44 F44 ALA	ALA PRO LYS SER ARG TLE GLU GLU LYS LYS	LYS
ARG GLU LYS LYS VAL VAL L92 P98 P98 P120 P120 LYS LVS LVS LVS LVS LVS ARG ARG ARG ARG ARG ARG	GLU GLV GLY DLE TLE ASP ASP ASP CLU CLV E241 E244 E244 E244 E244	F291		
• Molecule 6: 60S ribosomal	protein L7			
Chain F:	89%		• 9%	
MET GLV GLV GLV GLV GLU GLU GLU CVS CLVS CLVS GLU CVS GLU CVS CLVS CVS CVS CVS CVS CVS CVS CVS CVS CVS C	AKU N23 K34 M186 K198 R235 R235			
• Molecule 7: 60S ribosomal	protein L7a			
Chain G:	66%	• 32%	,	
MET SER SER SER TYR TYR CYS GLU GLU GLU CYS ARC CYS ARC CYS CYS CUS CUS CUS CUS CUS CUS CUS CUS CUS CU	LRP SER GLN GLN PRO GLY CLEU ASN SER LEU CYS CYS CYS TRP TRP	P. RU THR ASN ILEU LEU VAL CU GLY ALA ALA ALA ARG	GLU GLY GLY GLY GLY GLY TRP GLY GLY GLY GLY	ARG
SER GLU GLU GLU GLU CLN CLN FRO FRO FRO FRO FRO FRO FRO FRO FRO FRO	AL29 043 198 1117 A1118 E119 LYS LYS ALA	ALA GLY LYS CLYS GLY GLYS PRO PRO PRO THR THR PRO PRO PRO PRO PRO PRO PRO PRO PRO PR	R1/5 R192 R229 R229 L25 L15 C11	LEU GLU
ALA THR LEV LEU GLY				
• Molecule 8: 60S ribosomal	protein L9			
Chain H:	97%			
M1 D17 S94 Q106 A190 A190 GLU				
• Molecule 9: 60S ribosomal	protein L10			
Chain I:	93%		• 5%	
MET G2 G2 G2 B3 G2 G2 G2 G2 G2 G2 G1 G1 G1 G1 G1 G1 G1 G1 G1 G1	8214 8214			
• Molecule 10: 60S ribosomal	l protein L11			
Chain J:	89%		• 6%	
MET ALA ALA GLN GLN GLN GLN GLV GLV GLV GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU	8158 D171 1173 C177 C177 LYS			
• Molecule 11: eL13				
Chain L:	96%	DWIDF	·	
		DB DATA BANK		

• Molecule 12: 60S ribosomal protein L14

Chain N	ſ: 6 3%		37%
MET V2 C54 C54	A138 PR0 PR0 LYS LYS LYS LYS PR0 PR0 PR0 PR0 ALA ALA ALA ALA ALA ALA ALA AL	LAN LYNS VAL PRO ALA ALA LYNS ALA ALA ALA ALA ALA ALA ALA ALA CLNS CLN	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA
ALA GLN PRO LYS ALA	CLN CLYS CLYS CLN CLN CLN PRO PRO ALA ALA ALA ALA ALA ALA ALA ALA CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS	ИЛА	
• Molec	ule 13: Ribosomal protein I	-15	
Chain N	:	98%	
MET G2 D17 B17 R67	R204		
• Molec	ule 14: uL13		
Chain C):	93%	• •
MET ALA GLU GLV GLN VG	R31 R49 R61 M62 K91 R117 R117 K187 K191 K191		
• Molec	ule 15: uL22		
Chain F	: 8	11%	• 17%
MET V2 R3 S14	C57 S100 E N S100 C E	ILE SER GLN LYS LYS LYS LYS CLV CLV CLV ARC ARC GLU GLU	
• Molec	ule 16: Ribosomal protein I	18	
Chain G	2:	97%	
MET G2 R14 T42	E147 147 1467 1467 1468 1468		
• Molec	ule 17: Ribosomal protein I	19	
Chain F	5% 	88%	• 9%
MET SER M3 S12 S13 S13	S37 R62 K65 K71 L154 E168 E174 E174 E174 E174	LITT AIT79 AIT79 AIT79 AIT79 AIT80 AIT8 AIT8 AIT9 AIT9 AIT9 AIT9 AIT9 AIT9 AIT9 AIT9	LYS LYS
• Molec	ule 18: eL20		

Chain S: 97% ·	
M1 83 829 843 843 843 843 843 843 843 843 843 843	
• Molecule 19: eL21	
Chain T: 99%	
ALT 2 4160	
• Molecule 20: eL22	
Chain U: 73% · 23%	
MET ALA PALA PALA PALA PALA PALA PALA CITYS CITY	
• Molecule 21: Ribosomal protein L23	
Chain V: 92% • 7%	
MET SER ARG ARG ARG CLY SER SER A140 A140	
\bullet Molecule 22: 60S ribosomal protein L24	
Chain W: 39% . 60%	
MI EA SSE SSE SSE SSE SSE SSE SSE SSE SSE	LYS
LIYS LIYS LIYS ALA SER CLYS CLYS CLYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 23: eL23	
Chain X: 73% · 26%	
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 24: uL24	
Chain Y: 89% • 8%	
M1 774 7115 7115 7115 7115 7115 7115 7115	
WORLDWIDE PROTEIN DATA BANK	

• Molecule 25: 60S ribosomal protein L27 Chain Z: 94% 5%• • Molecule 26: 60S ribosomal protein L27a Chain a: 96% • Molecule 27: 60S ribosomal protein L29 Chain b: 30% 69% PR.0 ALA LYS ALA PR.0 • Molecule 28: eL30 Chain c: 76% 6% 18% MET VAL ALA ALA ALA ALA LYS LYS LYS LYS SER LYS SER LEU GLU SER MET PRO GLU GLU GLU CLU • Molecule 29: eL31 Chain d: 79% 20% MET ALA ALA ALA ALA CLYS GLY GLY CLYS GLY LYS CLYS SLYS SER ALA ALA • Molecule 30: eL32 Chain e: • 5% 94%

• Molecule 31: eL33		
Chain f:	98%	
MET 22 24 1110 1110		
• Molecule 32: 60S ribo	osomal protein L34	
Chain g:	94%	
MET V2 V2 N29 N29 N29 N111 Q112 Q112 Q114 ALA ALA ALA		
• Molecule 33: eL35		
Chain h:	94%	5% •
MET A2 D8 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0 C0		
• Molecule 34: 60S ribo	osomal protein L36	
Chain i:	94%	• •
MET A2 A2 17 832 E89 E89 L173 ASP		
• Molecule 35: Riboson	nal protein L37	
Chain j:	82%	6% 11%
MET 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	ALA ALA VAL ALA ALA SER SER SER SER	
• Molecule 36: 60S ribo	osomal protein L38	
Chain k:	89%	7% ••
MET P2 K9 K9 K16 R16 R16 B54 F61 L69 L78 L78		
• Molecule 37: eL39		
Chain l:	92%	• •
MET 22 250 250 250 250 250 250 250 250 250		

F 138

• Molecule 38: Ubiquiti	in A-52 residue ribos	somal protein fu	usion product 1	1	
Chain m:	53%	•	45%	-	
ILE PRO PRO ASP ASP GLN GLN ALA ALA ALA ALA CLN GLN GLN GLN	GLY ARG THR LEU SER ASP ASP ASN ASN ASN CLU CLU SER THR CLU LEU	HIS LEU LEU LEU ARG LEU ARG GLY GLY ILE ITE	881 984 K128		
• Molecule 39: eL41					
Chain n:	92%		8%	, D	
MET R2 LYS LYS					
• Molecule 40: eL42					
Chain o:	95%		·	·	
MET V2 S79 S79 GLN PHE					
• Molecule 41: eL43					
Chain p:	97%				
MET A2 K7 17 4 D9 1 Q9 2					
• Molecule 42: eL28					
Chain r:	89%		• 9%	-	
MET 82 K58 K58 K58 K58 K58 K58 K58 K58 K58 K58	THR THR SER SER SER				
• Molecule 43: 60S acid	lic ribosomal protein	n P0			
Chain s:	50%	·	40%	-	
MET PRO ANC GLU BS 11 S11 L15 K16 K16 K16	118 419 120 121 121 121 724 724 725 725 727 728	G31 A32 D33 N34 G42 G42 I43	M45 M45 S46 L47 R48 G49 A51	R62 K63 A64 165 R66 G67	H68 L69 E70 N71 P73 A74 A74 L75
E76 K77 L78 L79 P80 H81 182 R83 R83 R83 R83 R83 R83 R83 R83 R83 R87 K92 K92	E93 D94 L95 E97 E97 E97 R99 M101 M101 L102 L103	A104 N105 K106 V107 P108 A109 A110 A111 A111	A113 G114 A115 A116 A117 P118 C119 E120	V121 T122 V123 P124 A125 Q126 N127	T128 6129 6129 6131 9132 E133 K134 X135 S136 S136 F137
Q139 A140 L141 G142 G142 T144 T145 K146 T145 S147 S148 R149 G150 G150	1152 1154 1154 1155 1155 1155 1157 1161 1161 1163 1163	6164 0165 V167 0168 0168 0168 A169 S170 E171	A172 1173 L174 L175 L175 N177 L178 N177 L178	1100 1181 1182 1182 1187 1187	1188 1188 0190 0192 F193 F193 ASN GLY SER ILLE

W O R L D W I D E PROTEIN DATA BANK

 \bullet Molecule 44: 60S ribosomal protein L12

C340	<mark>c350</mark>	<mark>0354</mark>	<mark>(373</mark>	A385 A386	<mark>G387</mark>	A398 G399	A400	<mark>G403</mark>	C406 A407	A408 6409	G412	G417	14.30		C440	G449 G450	C451 A452 A452	0454 0454 0455	G462	A463 G464	G465 A466	U467	0400 C480	G481 C481	G482	U484	C485 C486	U492 G493	-
C498 G499	<mark>G500</mark> G504	G505	U510	C521	C523	1639 U639	<mark>6642</mark>	C657	C658 G659	G660	6666		C685 A686	U687	C694	6697	G703 C704	G705	G730 G731	A/32 A733	C738	G742	G745 G744 G745	6145 A746 A747	A141	e 00		0914 1914	A917 G918
C922B	C923 C924	6926	A929 G930	C931 A932	G933 C934	<mark>4935</mark> G935A	C936	A943 A944	U945	G959 A960	G961	A966 C967	C968 C968		G973	69 <mark>78</mark>	C983	G1068 G1069	G1070 C1071	C1072 G1073	C1079	C1082	G1094	C1097	G1169	C1172	G1173 G1174	A1175 C1176	-
U1179 C1180	C1183 A1184	G1195	<mark>G1200</mark>	U1209 C1210	G1211 G1212	<mark>G1213</mark> C1214	C1215	<mark>G1234</mark> G1235	C1236 C1236 C1237	A1238 C1239	5 5	G	000	000	0 C C	C1272 C1272	61273 A1274 64.075	C1276 C1276 C1277	C1 280	G1284	U1285 C1286	G1287	G1291 C1292	G1293 A1294	U1295 G1296		U1302 01302	C1313	_
G1316	A1322	A1320	C1340	A1354	G1358	G1359	G1 <mark>370</mark> A1371	G1377	A1387	G1394	A1397	A1398	G1406	G1411A	G1412	C1413 C1414	61415	61437	U U U1440	C1441 C1442	A1443 G1444	U1445 C1446	G1455	C1456 G1457	C1463	C1477	C1478	G1482 C1483	G1484
G1 <u>489</u>	A1497		U1514	G1517	G1522	A1523 A1524	A1534	A1547	G1552	A1564	A1565 C1566	01578	1590	01591	U1596	U1602	G1612	61018	G1625	A1631 A1632	G1633 A1634	A1638	U1639 C1640	G1641	G1654	<mark>C1661</mark>	C1676 U1677	U1683	•
C1694	U1726	C1/31 C1732 C1733	G1734 01735	G1741	A1742 A1743	U1744	G1750	U1754 C1755	U1756 U1757	G1758 G1759	G1760	G1764	A1765	A1767	C1768	A1770	01771 C1772 111772		A1780	U1781 U1782	A1787	U1792	A1804	A1805 G1806	C1807 C1808	C1809	<mark>G1818</mark> G1819	U1820 G1821	U1822
G1833	01834 01835 01000	41836 A1837	G1842	G1855	U1860 U1861	U1862	G1869 C1870	A1871	U1882	G1890 A1891	A1892	A1897	01918 01919	C1920	61922 61922	U1930	C1931 A1932	G1940	G1948	A1956 U1957	A1958 U1959	A1960 G1961	A1962 C1963	C1966	A1967	C1971 G1972	G1973 U1974	G1975 G1976	C1977
C1978 A1979	01980 61981	61982 A1983 A1984	01985 01985 01986	C1987 G1988	G1989 A1990	A1991 U1992	U1997	A1998 A1999	G2000	A2002 G2003	U2004	A2009 A2010	C2011	A2025	AZUZD	62046 A2047		G2055	G2056	C2068 A2069	U2070 A2071	U2084	G2089	U2090 C2091	G2092 G2093	C2094 A 2095	<mark>G2096</mark> A2097	G2098 C2099	62100
A2101 G2102	A2103 A2104	62105 G2106 A2107	G2108 G2108 A2109	G2110	C2258 G2259	C2260	C2266 U2267	C2289	A2300	G2301	A2313 G2314	G2333	22348		62301	A2360	A2363 G2364 G2365	42300 42382	(23394	A2395	C2422 A2423	G2424 U2425	G2433	C2441	G2450	A2453	G2471	G2475	-
C2488	U2490	C2491 C2492	u2494	A2502 G2503	C2504	G2506 A2507	U2508	A2511 A2512	A2512 A2513	A2529 112530	G2544	U2545 02546	G2547	U2554	C2558	C2563	G2564 A2565	G2566	G2569 U2570	C2583	A2587	A2611	U2628	U2632	G2638	02039 G2640	C2653	G2658	G2662
C2669	G2673		A2030 A2696	U2707	C2709	G2711	C2716	G2721	G2726	G2735	U2740	A2743	G2753	G2754	U2763 A2764	A2765	U2769	A2787 U2788	A2789 U2790	C2794	G2799	C2804	C2814 A2815		A2825 112826	G2827	02829 U2829	A2833	U2 <mark>8</mark> 37
G2842	G2855	C2861	U2869	G2876	C3598	C3602 G3603	A3604 C3605	U3606	U3616 G3617	C3618	<mark>G3625</mark> G3626	G3627	A3635	U3639	U3644	U3657	A3662	G3672 C3673	13688	U3695	C3701	G3710	A3711 A3712	U3713 G3714	U3715	A3718	A3724	U3734	C3741
G3742 G3743	A3748	C3 / 49 G3750	G3753	A3760 C3761	U3762 A3763	U3764	U3773 A3774	A3775 G3776	G3777	C3782 A3783	A3784 A3785	U3786 G3787	C3788	G3792	C3808	G3810 C3810	G3811 C3812	A3013 U3814	A3817 UY13818	G3819	U3822	A3825	A3830	C3837 U3838	G3839 U3840	C3841	U3 <mark>851</mark> A3852	U3853	A3867

	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	97 28 33 33 33 33 33 33 33 33 33 33 33 33 33		63 64
8171 8171 8171 8171 8171 8171 8171 8171	6 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	U171 1171 1181 1181 1181 1181 1181 1181	0138 018 018 018 018 018 018 018 018 018 01	
Basto V				
• Molecule 52: uS	2 (SA)			
Chain AA:	66%		30%	
	• • •			
D14 D14 D44 V47 S75	N81 K89 K89 K152 K152 K193 H193 H193 H193 K193 C10 C10 C10 C10 C10	GLU GLU GLN ALA ALA ALA CLU CLYS CLU CLYS GLU	GLU GLU GLN GLN TRP GLU TRR ALA ALA PRO PRO CLU	PHE THR
THR GLN GLU VAL AIA ASP TRP SER GLU VAL	VAL VAL PRO PRO PRO TILE CLA CLA CLA CLA CLA CLA CLA CLA CLA CLA	LINK G GLU A C T T R P A L A A L A A L A A L A A L A A L A C L U G L U	TRP VAL GLY THR THR THR GLU SER	
• Molecule 53: eS	1			
Chain BB:	77%	·	20%	
ALA VALA GLY CLYS CLYS ASN ASN ASN LYS CLY GLY GLY	LIVS LIVS GLY ALA ALA ALA LIVS LIVS LIVS LIVS LIVS NI 23 NI 4 NI 4 NI 4 NI 4 NI 4 NI 4 NI 4 NI	M172 H208 GLU GLU SER SER SER SER ALA	THR GLY ASP GLU GLU GLU GLU VAL ALA ALA ALA ALA	ASP
ALLA				
Molecule 54: uS	5			
Chain CC:	70%		26%	
	,		2070	L
ALA ASP ASP ALA ALA ALA ALA CLY CLY CLY CLY CLY	MY CALLER	ANY ARG GLYG GLYG GLYG GLYG GLYG GLYG GLYG GL	ARG GLY ALA ARG CLY GLY CLYS CLV CLYS CLU CLV CLVS CLU CLV CLVS CLU CLVS CLV CLVS CLVS CLVS CLVS CLVS CLVS	Γ
N1 2 S77 K1 45 K1 45 V1 84 V1 84	1236 1242 1248 1259 1273 1273 1273 1273 1273 1273 1273 1273	GLN THR GLN ALA PRO PRO ALA ALA THR THR THR		
• Molecule 55: Ri	bosomal protein S3			
Chain DD:	85%		6% 9%	
ALA VALA F24 F24 V41 THR THR FR0 FR0 FR0	K62 R65 R65 R67 R76 R76 R74 R76 R94 R94 R94 R123 R123 R123 R123 R123 R123 R123 R123	R146 Y167 V176 W192	E21 121 121 121 721 7221 7221 7221 7221	GLY
ALA MET PRO GLN PRO PRO PRO VAL THR ALA				
• Molecule 56: eS	4 (S4 X isoform)			
Chain EE:	ባ <i>1</i> %		5% •	

\bullet Molecule 68: uS9		
Chain QQ:	92%	• •
MET PR0 L1YS CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY		
• Molecule 69: eS17		
Chain RR:	81%	7% 13%
MET C2 C2 C3 K45 K45 K45 K45 K45 K45 K45 K47 K47 K77 K77 K77 K77 K77 K77 K77 K77	V88 S89 E94 E97 P100 P100 P100 E104 P100 D110 S113	N116 L117 Q118 Q118 V119 PR0 GLN PR0 PR0 PR0 PR0 ARG ARG ARG ARG ARG ARG
• Molecule 70: uS13		
Chain SS:	86%	7% 8%
MET SER L <mark>13</mark> K8 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3 K3	K115 H135 H142 AR4 AR6 AR6 AR6 AR7 AR6 AR7 AR7 AR7 AR7 AR7 AR7 AR7 AR7 AR7 AR7	
• Molecule 71: eS19		
Chain TT:	92%	• 5%
MET PRO GLY V4 V4 V65 V65 V65 V65 V65 V133 L131 D132 L132 R133 R133 L141 L145 L145 L145 L145 L145 L145 L145		
• Molecule 72: uS10		
Chain UU:	82%	• 14%
MET ALA ALA PHE LYS LYS CLY GLY GLV GLU GLU GLU AI CLU S26 S26	E45 T65 K75 E96 K99 V98 V98 T102 T102 S103 T104 S103 T104 S105 E107	A117 ASP ALA
• Molecule 73: eS21		
Chain VV:	93%	5% •
M1 D10 S65 S65 AS81 AS81 AS81 AS81		
• Molecule 74: uS8		
Chain WW:	95%	
MET V2 C30 K43 K67 R67 T121 T121 T121		
• Molecule 75: uS12		

Chain XX:	95%	• •
MET 62 69 105 1130	K1 35 E1 39 SER	
• Molecule	e 76: 40S ribosomal protein S24	
Chain YY:	89%	5% 5%
MET ASP ASP T4 R20 E42 E42	S78 K39 K111 T120 LYS LYS LYS	
• Molecule	e 77: eS25	
Chain ZZ:	53% 5%	42%
MET PRO LYS ASP ASP LYS LYS	LYS LYS ALA ALA ALA ALA ALA ALA LYS LYS ALA ASP ASP CVS CVS CVS CVS CVS CVS CVS CVS CVS CVS	N52 K60 K60 K78 K78 LYS GLY GLY A13 A15 A15 A15
PRO ALA ALA GLY GLU ASP ALA		
• Molecule	e 78: 40S ribosomal protein S26	
Chain aa:	83%	• 15%
MET 12 019 E46 R85	ARG PHE PHE PRC ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule	e 79: eS27	
Chain bb:	87%	7% 6%
MET PRO L3 M33 M33 D34	K42 K42 V51 V57 CXS SER SER B80 H84	
• Molecule	e 80: eS28	
Chain cc:	83%	6% 12%
MET ASP THR SER SER ARG VAL GLN	R13 R66 R66 ARG ARG	
• Molecule	e 81: uS14	
Chain dd:	• 84%	11% 5%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	90190	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	53.8	Depositor
Minimum defocus (nm)	800	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 ($6k \ge 4k$)	Depositor
Maximum map value	0.050	Depositor
Minimum map value	-0.013	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.002	Depositor
Recommended contour level	0.005	Depositor
Map size (Å)	396.0, 396.0, 396.0	wwPDB
Map dimensions	480, 480, 480	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.825, 0.825, 0.825	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: G7M, 1MA, 5MC, MG, OMC, 2MG, SF4, MA6, ZN, A2M, OMG, 6MZ, UR3, 4AC, UY1, B8N, OMU, B9B, ZVM, PSU

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.39	0/1906	0.65	0/2556	
2	В	0.39	0/3216	0.59	0/4311	
3	С	0.38	0/2937	0.63	0/3946	
4	D	0.38	0/2407	0.60	0/3224	
5	Е	0.37	0/1760	0.61	0/2362	
6	F	0.40	0/1911	0.61	0/2549	
7	G	0.36	0/1799	0.61	0/2424	
8	Н	0.36	0/1535	0.61	0/2063	
9	Ι	0.37	0/1693	0.60	0/2260	
10	J	0.36	0/1359	0.62	0/1817	
11	L	0.36	0/1733	0.64	0/2316	
12	М	0.36	0/1158	0.58	0/1547	
13	Ν	0.42	0/1746	0.67	0/2338	
14	0	0.37	0/1653	0.64	0/2210	
15	Р	0.39	0/1268	0.59	0/1700	
16	Q	0.39	0/1539	0.68	0/2054	
17	R	0.33	0/1518	0.65	0/2005	
18	S	0.40	0/1501	0.63	0/2012	
19	Т	0.38	0/1326	0.59	0/1770	
20	U	0.39	0/814	0.61	0/1092	
21	V	0.38	0/987	0.61	0/1324	
22	W	0.40	0/541	0.58	0/720	
23	Х	0.35	0/966	0.60	0/1301	
24	Y	0.37	0/1132	0.62	0/1504	
25	Ζ	0.41	0/1130	0.63	0/1507	
26	a	0.41	0/1191	0.61	0/1590	
27	b	0.39	0/619	0.57	0/818	
28	с	0.39	0/742	0.58	0/995	
29	d	0.36	0/846	0.62	0/1136	
30	е	0.40	0/1071	0.62	0/1429	
31	f	0.43	0/895	0.68	0/1198	

Mal	Chain	B	Bond lengths		Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5		
32	g	0.37	0/916	0.64	0/1220		
33	h	0.35	0/1021	0.61	0/1348		
34	i	0.35	0/841	0.64	0/1112		
35	j	0.40	0/720	0.66	0/952		
36	k	0.38	0/565	0.66	0/750		
37	1	0.37	0/450	0.64	0/597		
38	m	0.40	0/427	0.60	0/564		
39	n	0.39	0/223	0.83	0/284		
40	0	0.40	0/855	0.63	0/1128		
41	р	0.37	0/718	0.60	0/953		
42	r	0.38	0/1017	0.65	0/1364		
43	S	0.31	0/1483	0.56	0/2000		
44	t	0.29	0/1071	0.58	0/1444		
45	1	0.37	0/129	0.58	0/173		
46	2	0.55	0/1805	1.00	2/2809~(0.1%)		
47	3	0.46	0/1777	0.99	0/2763		
48	5	0.83	5/82331 (0.0%)	0.99	95/128398 (0.1%)		
49	7	0.77	0/2858	0.88	0/4455		
50	8	0.83	1/3675~(0.0%)	0.93	6/5725~(0.1%)		
51	9	0.69	7/38943 (0.0%)	0.98	69/60686 (0.1%)		
52	AA	0.34	0/1661	0.57	0/2259		
53	BB	0.34	0/1749	0.58	0/2340		
54	CC	0.35	0/1710	0.56	0/2312		
55	DD	0.35	0/1749	0.60	0/2350		
56	EE	0.35	0/2101	0.63	0/2828		
57	\mathbf{FF}	0.33	0/1461	0.57	0/1961		
58	GG	0.33	0/1946	0.65	0/2590		
59	HH	0.34	0/1447	0.60	0/1939		
60	II	0.35	0/1715	0.64	0/2287		
61	JJ	0.33	0/1550	0.64	0/2069		
62	KK	0.36	0/752	0.59	0/1014		
63	LL	0.37	0/1143	0.61	0/1529		
64	MM	0.30	0/949	0.53	0/1274		
65	NN	0.34	0/1232	0.59	0/1656		
66	00	0.39	0/969	0.71	0/1298		
67	PP	0.33	0/986	0.63	0/1316		
68	QQ	0.36	0/1134	0.62	0/1517		
69	RR	0.34	0/973	0.61	$0/1\overline{304}$		
70	SS	0.33	0/1180	0.62	$0/1\overline{581}$		
71	TT	0.34	$0/109\overline{3}$	0.60	0/1466		
72	UU	0.32	0/817	0.62	0/1097		
73	VV	0.34	0/623	0.61	0/833		
74	WW	0.35	$0/1\overline{051}$	0.59	$0/1\overline{406}$		

Mal	Chain	Bond lengths		I	Bond angles
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
75	XX	0.34	0/1116	0.61	0/1490
76	YY	0.35	0/1023	0.61	0/1359
77	ZZ	0.32	0/580	0.59	0/780
78	aa	0.36	0/794	0.64	0/1065
79	bb	0.33	0/640	0.58	0/856
80	сс	0.34	0/481	0.71	0/643
81	dd	0.35	0/455	0.65	0/603
82	ee	0.32	0/381	0.64	0/498
83	ff	0.34	0/538	0.64	0/713
84	gg	0.32	0/2427	0.58	0/3303
85	hh	0.63	0/264	0.95	0/409
86	ii	0.35	0/3333	0.59	0/4483
87	jj	0.31	0/4644	0.55	0/6272
All	All	0.63	13/233391~(0.0%)	0.85	172/341503~(0.1%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
57	\mathbf{FF}	0	1
63	LL	0	1
All	All	0	2

The worst 5 of 13 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
50	8	62	A	N9-C4	-7.30	1.33	1.37
48	5	978	G	N9-C4	-6.25	1.32	1.38
51	9	1675	А	N9-C4	-5.92	1.34	1.37
48	5	3775	А	N3-C4	-5.74	1.31	1.34
51	9	1130	G	N9-C4	-5.71	1.33	1.38

The worst 5 of 172 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
48	5	978	G	N3-C4-N9	-11.15	119.31	126.00
51	9	1779	G	N3-C4-N9	9.76	131.85	126.00
48	5	1612	G	N9-C4-C5	-9.75	101.50	105.40
48	5	255	С	N1-C2-O2	9.63	124.68	118.90
48	5	978	G	N3-C4-C5	9.42	133.31	128.60

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
57	\mathbf{FF}	136	ARG	Sidechain
63	LL	118	ARG	Sidechain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	242/257~(94%)	226~(93%)	16 (7%)	0	100	100
2	В	392/403~(97%)	376~(96%)	16 (4%)	0	100	100
3	С	360/413~(87%)	348~(97%)	12 (3%)	0	100	100
4	D	287/297~(97%)	270~(94%)	16 (6%)	1 (0%)	41	61
5	Е	209/291~(72%)	189 (90%)	20 (10%)	0	100	100
6	F	223/247~(90%)	218 (98%)	5 (2%)	0	100	100
7	G	214/319~(67%)	202 (94%)	12 (6%)	0	100	100
8	Н	188/192~(98%)	178 (95%)	10 (5%)	0	100	100
9	Ι	200/214~(94%)	193~(96%)	7 (4%)	0	100	100
10	J	165/178~(93%)	151 (92%)	13 (8%)	1 (1%)	25	43
11	L	208/211~(99%)	202 (97%)	6 (3%)	0	100	100
12	М	136/218~(62%)	132 (97%)	4 (3%)	0	100	100
13	N	201/204~(98%)	199 (99%)	2 (1%)	0	100	100
14	Ο	196/203~(97%)	187 (95%)	8 (4%)	1 (0%)	29	48
15	Р	151/184~(82%)	145 (96%)	6 (4%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
16	Q	185/188~(98%)	179 (97%)	6 (3%)	0	100	100
17	R	177/196~(90%)	172 (97%)	5 (3%)	0	100	100
18	S	174/176~(99%)	166 (95%)	8 (5%)	0	100	100
19	Т	157/160~(98%)	152 (97%)	5 (3%)	0	100	100
20	U	96/128~(75%)	88 (92%)	8 (8%)	0	100	100
21	V	128/140~(91%)	127 (99%)	1 (1%)	0	100	100
22	W	61/157~(39%)	60 (98%)	1 (2%)	0	100	100
23	Х	114/156~(73%)	108 (95%)	6 (5%)	0	100	100
24	Y	132/145~(91%)	127 (96%)	5 (4%)	0	100	100
25	Ζ	133/136~(98%)	118 (89%)	15 (11%)	0	100	100
26	a	145/148~(98%)	136 (94%)	8 (6%)	1 (1%)	22	39
27	b	73/245~(30%)	70 (96%)	3 (4%)	0	100	100
28	с	92/115~(80%)	87 (95%)	5 (5%)	0	100	100
29	d	96/125~(77%)	94 (98%)	2 (2%)	0	100	100
30	е	126/135~(93%)	122 (97%)	4 (3%)	0	100	100
31	f	107/110~(97%)	102 (95%)	5 (5%)	0	100	100
32	g	112/117~(96%)	110 (98%)	2 (2%)	0	100	100
33	h	120/123~(98%)	114 (95%)	6 (5%)	0	100	100
34	i	100/105~(95%)	97 (97%)	3 (3%)	0	100	100
35	j	84/97~(87%)	82 (98%)	2 (2%)	0	100	100
36	k	66/70~(94%)	60 (91%)	5 (8%)	1 (2%)	10	18
37	1	47/51~(92%)	45 (96%)	2 (4%)	0	100	100
38	m	49/93~(53%)	47 (96%)	2 (4%)	0	100	100
39	n	21/25~(84%)	21 (100%)	0	0	100	100
40	О	101/106~(95%)	95 (94%)	6 (6%)	0	100	100
41	р	89/92~(97%)	81 (91%)	8 (9%)	0	100	100
42	r	123/137~(90%)	113 (92%)	10 (8%)	0	100	100
43	S	$\overline{188/318}~(59\%)$	163 (87%)	25 (13%)	0	100	100
44	t	135/165~(82%)	113 (84%)	21 (16%)	1 (1%)	22	39
45	1	13/130 (10%)	11 (85%)	2 (15%)	0	100	100
52	AA	$\overline{204/295}~(69\%)$	189 (93%)	15 (7%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
53	BB	210/264~(80%)	200 (95%)	10 (5%)	0	100	100
54	CC	214/293~(73%)	202 (94%)	12 (6%)	0	100	100
55	DD	217/243~(89%)	196 (90%)	21 (10%)	0	100	100
56	EE	257/263~(98%)	231 (90%)	26 (10%)	0	100	100
57	\mathbf{FF}	177/204~(87%)	163~(92%)	13 (7%)	1 (1%)	25	43
58	GG	235/249~(94%)	205 (87%)	29 (12%)	1 (0%)	34	54
59	HH	173/194~(89%)	146 (84%)	27 (16%)	0	100	100
60	II	204/208~(98%)	194 (95%)	10 (5%)	0	100	100
61	JJ	183/194 (94%)	167 (91%)	16 (9%)	0	100	100
62	KK	84/165~(51%)	76 (90%)	8 (10%)	0	100	100
63	LL	132/158~(84%)	125 (95%)	7 (5%)	0	100	100
64	MM	120/132~(91%)	91 (76%)	29 (24%)	0	100	100
65	NN	148/151~(98%)	144 (97%)	4 (3%)	0	100	100
66	00	125/168~(74%)	121 (97%)	4 (3%)	0	100	100
67	PP	115/145~(79%)	106 (92%)	9 (8%)	0	100	100
68	QQ	138/146~(94%)	128 (93%)	10 (7%)	0	100	100
69	RR	116/135~(86%)	106 (91%)	10 (9%)	0	100	100
70	SS	138/152~(91%)	130 (94%)	8 (6%)	0	100	100
71	TT	136/145~(94%)	124 (91%)	12 (9%)	0	100	100
72	UU	100/119~(84%)	89 (89%)	11 (11%)	0	100	100
73	VV	79/83~(95%)	71 (90%)	8 (10%)	0	100	100
74	WW	127/130~(98%)	120 (94%)	7 (6%)	0	100	100
75	XX	139/143~(97%)	130 (94%)	9 (6%)	0	100	100
76	YY	121/130~(93%)	111 (92%)	10 (8%)	0	100	100
77	ZZ	70/125~(56%)	64 (91%)	6 (9%)	0	100	100
78	aa	96/115~(84%)	86 (90%)	10 (10%)	0	100	100
79	bb	75/84~(89%)	70 (93%)	5 (7%)	0	100	100
80	сс	59/69~(86%)	54 (92%)	5 (8%)	0	100	100
81	dd	$51/\overline{56}~(91\%)$	45 (88%)	6 (12%)	0	100	100
82	ee	43/133~(32%)	37~(86%)	6 (14%)	0	100	100
83	ff	59/156~(38%)	49 (83%)	10 (17%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
84	gg	300/317~(95%)	252~(84%)	48 (16%)	0	100	100
86	ii	414/459~(90%)	380~(92%)	33 (8%)	1 (0%)	47	68
87	jj	574/599~(96%)	529~(92%)	44 (8%)	1 (0%)	47	68
All	All	12249/14542~(84%)	11407 (93%)	832 (7%)	10 (0%)	54	73

5 of 10 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
58	GG	128	THR
57	\mathbf{FF}	33	ILE
86	ii	180	HIS
26	а	15	VAL
10	J	173	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	187/199~(94%)	181~(97%)	6 (3%)	39 65
2	В	336/348~(97%)	326~(97%)	10 (3%)	41 68
3	С	302/337~(90%)	291~(96%)	11 (4%)	35 61
4	D	245/250~(98%)	237~(97%)	8~(3%)	38 64
5	Ε	191/251~(76%)	183~(96%)	8 (4%)	30 54
6	F	196/215~(91%)	192~(98%)	4 (2%)	55 79
7	G	189/272~(70%)	180~(95%)	9~(5%)	25 48
8	Н	169/171~(99%)	165 (98%)	4 (2%)	49 74
9	Ι	174/181~(96%)	169~(97%)	5(3%)	42 69
10	J	140/149~(94%)	133~(95%)	7(5%)	24 46
11	L	175/176~(99%)	168 (96%)	7 (4%)	31 56
12	М	117/161~(73%)	116 (99%)	1 (1%)	78 92
13	Ν	171/172 (99%)	168 (98%)	3~(2%)	59 81

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
14	Ο	170/173~(98%)	162~(95%)	8 (5%)	26	49
15	Р	134/163~(82%)	130 (97%)	4 (3%)	41	68
16	Q	164/165~(99%)	159 (97%)	5 (3%)	41	68
17	R	158/175~(90%)	151 (96%)	7 (4%)	28	52
18	S	157/157~(100%)	152 (97%)	5 (3%)	39	65
19	Т	139/140~(99%)	139 (100%)	0	100	100
20	U	88/114 (77%)	84 (96%)	4 (4%)	27	51
21	V	100/107~(94%)	99 (99%)	1 (1%)	76	90
22	W	55/126~(44%)	53 (96%)	2 (4%)	35	61
23	Х	104/134~(78%)	102 (98%)	2 (2%)	57	80
24	Y	124/135~(92%)	119 (96%)	5 (4%)	31	56
25	Ζ	117/118~(99%)	110 (94%)	7 (6%)	19	37
26	a	119/120~(99%)	115 (97%)	4 (3%)	37	63
27	b	62/184~(34%)	60 (97%)	2 (3%)	39	65
28	с	80/98~(82%)	73 (91%)	7 (9%)	10	19
29	d	91/110 (83%)	90 (99%)	1 (1%)	73	89
30	е	$114/121 \ (94\%)$	113 (99%)	1 (1%)	78	92
31	f	88/89~(99%)	87 (99%)	1 (1%)	73	89
32	g	98/100~(98%)	94 (96%)	4 (4%)	30	55
33	h	109/110~(99%)	103 (94%)	6 (6%)	21	41
34	i	86/89~(97%)	83 (96%)	3 (4%)	36	62
35	j	73/80~(91%)	67 (92%)	6 (8%)	11	22
36	k	63/65~(97%)	57 (90%)	6 (10%)	8	17
37	1	46/48~(96%)	44 (96%)	2 (4%)	29	53
38	m	47/84~(56%)	45 (96%)	2 (4%)	29	53
39	n	22/24~(92%)	22 (100%)	0	100	100
40	0	91/94~(97%)	89 (98%)	2 (2%)	52	77
41	р	74/75~(99%)	72 (97%)	2 (3%)	44	71
42	r	109/121~(90%)	106 (97%)	3 (3%)	43	70
43	s	159/258~(62%)	152 (96%)	7 (4%)	28	52
44	t	115/137~(84%)	106 (92%)	9 (8%)	12	24

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
45	1	13/102~(13%)	12 (92%)	1 (8%)	13	25
52	AA	172/244~(70%)	161 (94%)	11 (6%)	17	33
53	BB	193/231~(84%)	185~(96%)	8 (4%)	30	55
54	CC	182/225~(81%)	170 (93%)	12 (7%)	16	32
55	DD	185/202~(92%)	170 (92%)	15 (8%)	11	23
56	EE	222/225~(99%)	210 (95%)	12 (5%)	22	42
57	\mathbf{FF}	154/170~(91%)	140 (91%)	14 (9%)	9	18
58	GG	207/218~(95%)	184 (89%)	23 (11%)	6	11
59	HH	158/174~(91%)	144 (91%)	14 (9%)	9	19
60	II	178/180~(99%)	166 (93%)	12 (7%)	16	31
61	JJ	161/168~(96%)	152 (94%)	9 (6%)	21	40
62	KK	78/136~(57%)	71 (91%)	7 (9%)	9	19
63	LL	125/142~(88%)	121 (97%)	4 (3%)	39	65
64	MM	102/108~(94%)	94 (92%)	8 (8%)	12	24
65	NN	130/131~(99%)	123 (95%)	7 (5%)	22	42
66	00	100/130~(77%)	92 (92%)	8 (8%)	12	23
67	PP	106/130~(82%)	97 (92%)	9 (8%)	10	21
68	QQ	116/121~(96%)	111 (96%)	5 (4%)	29	53
69	RR	107/121~(88%)	98 (92%)	9 (8%)	11	21
70	SS	122/132~(92%)	112 (92%)	10 (8%)	11	22
71	TT	109/115~(95%)	104 (95%)	5 (5%)	27	50
72	UU	93/107~(87%)	89 (96%)	4 (4%)	29	53
73	VV	65/67~(97%)	61 (94%)	4 (6%)	18	35
74	WW	112/113~(99%)	107 (96%)	5 (4%)	27	51
75	XX	113/115~(98%)	108 (96%)	5 (4%)	28	52
76	YY	107/112~(96%)	100 (94%)	7 (6%)	17	33
77	ZZ	64/103~(62%)	58 (91%)	6 (9%)	8	17
78	aa	85/98~(87%)	82 (96%)	3 (4%)	36	62
79	bb	72/76~(95%)	66 (92%)	6 (8%)	11	22
80	сс	54/62~(87%)	50 (93%)	4 (7%)	13	27
81	dd	47/49~(96%)	41 (87%)	6 (13%)	4	8

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
82	ee	39/106~(37%)	36~(92%)	3~(8%)	13 25
83	ff	59/140~(42%)	54 (92%)	5 (8%)	10 21
84	gg	263/275~(96%)	238~(90%)	25~(10%)	8 17
86	ii	358/394~(91%)	326~(91%)	32~(9%)	9 19
87	jj	508/526~(97%)	485~(96%)	23~(4%)	27 51
All	All	10707/12344~(87%)	10165~(95%)	542~(5%)	27 45

5 of 542 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
84	gg	8	ARG
84	gg	131	LEU
84	gg	5	MET
87	jj	53	THR
44	t	17	CYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such side chains are listed below:

Mol	Chain	Res	Type
8	Н	8	GLN
62	KK	61	GLN
70	SS	97	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
46	2	74/76~(97%)	20 (27%)	0
47	3	72/75~(96%)	20 (27%)	0
48	5	3502/3543~(98%)	648 (18%)	72 (2%)
49	7	119/120~(99%)	11 (9%)	0
50	8	155/156~(99%)	29 (18%)	3(1%)
51	9	1676/1869~(89%)	439 (26%)	36 (2%)
85	hh	10/197~(5%)	3 (30%)	0
All	All	5608/6036~(92%)	1170 (20%)	111 (1%)

5 of 1170 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
46	2	7	G
46	2	8	U
46	2	9	А
46	2	15	G
46	2	19	G

5 of 111 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
48	5	3876	А
51	9	1835	А
48	5	4947	U
51	9	1824	А
51	9	1408	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

163 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bog	Link	B	ond leng	gths	Bond angles			
	туре	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
51	A2M	9	166	51	18,25,26	4.13	6 (33%)	18,36,39	3.44	3 (16%)	
48	OMG	5	2876	48	18,26,27	2.43	8 (44%)	19,38,41	1.38	3 (15%)	
51	PSU	9	1046	51	18,20,22	1.07	1 (5%)	21,28,33	1.81	5 (23%)	
51	A2M	9	99	88,51	18,25,26	4.28	7 (38%)	18,36,39	3.41	3 (16%)	
51	OMU	9	1442	51	19,22,23	2.80	6 (31%)	26,31,34	1.72	4 (15%)	
51	4AC	9	1337	51	21,24,25	3.12	10 (47%)	29,34,37	0.99	1 (3%)	
51	6MZ	9	1832	88,51	18,25,26	1.89	2 (11%)	16,36,39	2.01	2 (12%)	
51	OMG	9	1490	88,51	18,26,27	2.37	7 (38%)	19,38,41	1.39	4 (21%)	
51	OMC	9	174	51	19,22,23	2.90	8 (42%)	26,31,34	0.92	0	
48	OMC	5	1340	48	19,22,23	2.96	8 (42%)	26,31,34	1.00	2 (7%)	
51	PSU	9	1238	51	18,20,22	1.15	2 (11%)	21,28,33	1.89	4 (19%)	
48	OMG	5	4618	48	18,26,27	2.40	8 (44%)	19,38,41	1.66	5 (26%)	

Mol	Type	Chain	Bog	Link	Bond lengths			Bond angles		
	Туре	Chan	Ites		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
51	PSU	9	863	51	18,20,22	0.94	1 (5%)	21,28,33	1.82	3 (14%)
51	PSU	9	822	51	18,20,22	1.16	3 (16%)	21,28,33	2.11	6 (28%)
48	OMU	5	4620	48	19,22,23	2.79	7 (36%)	26,31,34	1.76	4 (15%)
51	OMG	9	644	51	$18,\!26,\!27$	2.40	8 (44%)	19,38,41	1.37	3 (15%)
48	PSU	5	3715	48	18,20,22	1.06	<mark>3 (16%)</mark>	21,28,33	1.99	6 (28%)
51	PSU	9	1081	51	18,20,22	1.09	1 (5%)	21,28,33	1.92	6 (28%)
50	OMG	8	75	50	18,26,27	2.39	8 (44%)	19,38,41	1.53	5 (26%)
48	6MZ	5	4220	48	18,25,26	1.99	2 (11%)	16,36,39	1.99	2 (12%)
51	OMU	9	172	51	19,22,23	2.81	7 (36%)	26,31,34	1.71	5 (19%)
51	PSU	9	1177	51	18,20,22	1.03	1 (5%)	21,28,33	1.67	4 (19%)
48	5MC	5	3782	88,48	18,22,23	3.27	7 (38%)	26,32,35	1.14	2 (7%)
48	OMG	5	3792	48	18,26,27	2.34	7 (38%)	19,38,41	1.44	4 (21%)
48	PSU	5	1782	48	18,20,22	1.04	1 (5%)	21,28,33	1.90	4 (19%)
48	A2M	5	1326	48	18,25,26	4.16	7 (38%)	18,36,39	<mark>3.39</mark>	3 (16%)
51	A2M	9	159	51	18,25,26	4.28	7 (38%)	18,36,39	3.43	3 (16%)
48	PSU	5	4457	48	18,20,22	1.10	1 (5%)	21,28,33	1.67	3 (14%)
48	OMC	5	3701	88,48	19,22,23	2.75	8 (42%)	26,31,34	1.01	1 (3%)
51	OMU	9	428	51	19,22,23	2.83	7 (36%)	26,31,34	1.68	5 (19%)
51	PSU	9	1692	51	18,20,22	1.08	1 (5%)	21,28,33	1.68	3 (14%)
48	OMC	5	3887	48	19,22,23	2.78	7 (36%)	26,31,34	0.76	0
51	PSU	9	1347	51	18,20,22	1.03	1 (5%)	21,28,33	1.89	5 (23%)
48	UY1	5	3818	88,48	19,22,23	4.18	9(47%)	22,31,34	1.94	5 (22%)
48	PSU	5	4296	48	18,20,22	1.15	1 (5%)	21,28,33	1.85	3 (14%)
48	A2M	5	1871	88,48	18,25,26	4.10	7 (38%)	18,36,39	<mark>3.33</mark>	3 (16%)
48	A2M	5	398	48	18,25,26	4.29	7 (38%)	18,36,39	3.38	3 (16%)
48	OMG	5	1316	48	18,26,27	2.43	8 (44%)	19,38,41	1.64	3 (15%)
51	PSU	9	572	51	18,20,22	1.02	1 (5%)	21,28,33	1.84	4 (19%)
51	PSU	9	1445	51	18,20,22	0.99	1 (5%)	21,28,33	1.73	4 (19%)
51	PSU	9	801	51	18,20,22	1.20	2 (11%)	21,28,33	1.57	4 (19%)
48	PSU	5	4579	48	18,20,22	1.00	1 (5%)	21,28,33	1.78	3 (14%)
48	PSU	5	1744	88,48	18,20,22	0.93	1 (5%)	21,28,33	1.90	3 (14%)
48	A2M	5	3867	48	18,25,26	4.11	6 (33%)	18,36,39	<mark>3.39</mark>	3 (16%)
48	PSU	5	1781	48	18,20,22	1.09	1 (5%)	21,28,33	1.85	4 (19%)
48	PSU	5	3853	48	18,20,22	1.15	1 (5%)	21,28,33	2.07	4 (19%)
51	PSU	9	1004	51	18,20,22	1.07	1 (5%)	21,28,33	1.88	4 (19%)

Mol	Type	Chain	Bos	Link	B	Bond lengths		B	Bond angles		
	туре	Chan	Ites		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
51	OMU	9	1326	51	19,22,23	2.76	7 (36%)	26,31,34	1.83	<mark>5 (19%)</mark>	
48	PSU	5	3734	48	18,20,22	1.12	1 (5%)	21,28,33	1.82	5 (23%)	
51	OMG	9	683	51	18,26,27	2.55	8 (44%)	19,38,41	1.72	4 (21%)	
48	OMU	5	3925	48	19,22,23	2.77	7 (36%)	26,31,34	1.77	4 (15%)	
51	G7M	9	1639	51,46	20,26,27	2.64	8 (40%)	17,39,42	1.08	2 (11%)	
51	OMC	9	517	51	19,22,23	2.97	8 (42%)	26,31,34	0.80	0	
51	A2M	9	512	51	18,25,26	4.21	<mark>6 (33%)</mark>	18,36,39	3.77	3 (16%)	
48	UR3	5	4530	48	19,22,23	2.60	7 (36%)	26,32,35	1.21	3 (11%)	
48	OMG	5	4370	48	18,26,27	2.40	8 (44%)	19,38,41	1.55	5 (26%)	
51	PSU	9	1174	51	18,20,22	1.06	1 (5%)	21,28,33	1.96	4 (19%)	
51	OMU	9	116	51	19,22,23	2.76	<mark>6 (31%)</mark>	26,31,34	1.68	5 (19%)	
51	MA6	9	1851	51	18,26,27	1.13	2 (11%)	19,38,41	5.08	3 (15%)	
48	PSU	5	4361	48	18,20,22	1.06	1 (5%)	21,28,33	1.90	3 (14%)	
48	PSU	5	4532	48	18,20,22	1.06	1 (5%)	21,28,33	1.67	2 (9%)	
48	OMC	5	3869	48	19,22,23	2.82	7 (36%)	26,31,34	0.74	0	
51	OMU	9	121	51	19,22,23	2.68	6 (31%)	26,31,34	1.79	6 (23%)	
48	A2M	5	4523	88,48	18,25,26	4.12	7 (38%)	18,36,39	3.52	3 (16%)	
51	PSU	9	1643	51	18,20,22	0.99	1 (5%)	21,28,33	1.97	3 (14%)	
48	PSU	5	3695	48	18,20,22	1.01	1 (5%)	21,28,33	1.86	4 (19%)	
48	PSU	5	4403	48	18,20,22	1.06	1 (5%)	21,28,33	1.78	3 (14%)	
48	PSU	5	1677	48	18,20,22	1.20	2 (11%)	21,28,33	2.06	3 (14%)	
48	PSU	5	3762	48	18,20,22	1.08	1 (5%)	21,28,33	2.01	4 (19%)	
48	PSU	5	4628	48	18,20,22	1.16	1 (5%)	21,28,33	2.07	5 (23%)	
51	MA6	9	1850	51	18,26,27	1.20	1 (5%)	19,38,41	4.33	3 (15%)	
48	OMU	5	2837	48	19,22,23	2.80	<mark>6 (31%)</mark>	26,31,34	1.90	6 (23%)	
48	A2M	5	3718	48	18,25,26	4.28	7 (38%)	18,36,39	3.45	4 (22%)	
48	PSU	5	3851	48	18,20,22	1.06	2 (11%)	21,28,33	1.94	4 (19%)	
51	OMG	9	436	51	18,26,27	2.49	8 (44%)	19,38,41	1.53	4 (21%)	
48	A2M	5	3825	48	18,25,26	4.21	8 (44%)	18,36,39	<mark>3.11</mark>	3 (16%)	
48	A2M	5	2787	48	18,25,26	4.14	8 (44%)	18,36,39	3.25	3 (16%)	
48	A2M	5	2815	48	18,25,26	4.12	7 (38%)	18,36,39	<mark>3.39</mark>	3 (16%)	
48	A2M	5	3760	88,48	18,25,26	4.26	7 (38%)	18,36,39	3.48	3 (16%)	
48	A2M	5	4571	48	18,25,26	4.29	8 (44%)	18,36,39	<mark>3.52</mark>	3 (16%)	
48	PSU	5	4423	48	18,20,22	0.97	1 (5%)	21,28,33	1.87	3 (14%)	
48	PSU	5	4353	48	18,20,22	1.07	1 (5%)	21,28,33	1.99	5 (23%)	

Mol	Tuno	Chain	Dog	Tink	Bond lengths			Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
51	PSU	9	814	51	18,20,22	1.03	1 (5%)	21,28,33	1.93	5 (23%)
51	PSU	9	1244	51	18,20,22	1.11	1 (5%)	21,28,33	1.95	4 (19%)
48	OMU	5	4498	48	19,22,23	2.77	8 (42%)	26,31,34	1.81	5 (19%)
48	OMC	5	2804	48	19,22,23	2.78	8 (42%)	26,31,34	0.71	0
48	OMC	5	2861	48	19,22,23	2.93	8 (42%)	26,31,34	0.82	1 (3%)
48	OMC	5	2351	48	19,22,23	2.73	8 (42%)	26,31,34	0.81	0
48	OMC	5	3808	48	19,22,23	2.73	8 (42%)	26,31,34	0.64	0
48	OMG	5	4392	48	18,26,27	2.33	8 (44%)	19,38,41	1.50	4 (21%)
51	PSU	9	649	51	18,20,22	1.01	1 (5%)	21,28,33	1.79	3 (14%)
48	B9B	5	237	48	21,28,29	1.99	3 (14%)	23,40,43	2.04	8 (34%)
51	PSU	9	218	51	18,20,22	1.08	1 (5%)	21,28,33	2.16	6 (28%)
48	PSU	5	4299	48	18,20,22	0.96	1 (5%)	21,28,33	1.83	3 (14%)
51	A2M	9	27	51	18,25,26	4.12	6 (33%)	18,36,39	3.44	3 (16%)
51	A2M	9	668	88,51	18,25,26	4.18	7 (38%)	18,36,39	<mark>3.53</mark>	4 (22%)
48	PSU	5	1683	88,48	18,20,22	1.17	1 (5%)	21,28,33	1.91	4 (19%)
48	PSU	5	4500	48	18,20,22	1.06	2 (11%)	21,28,33	1.96	5 (23%)
48	OMC	5	2422	88,48	19,22,23	2.92	8 (42%)	26,31,34	0.70	0
51	PSU	9	119	51	18,20,22	1.01	1 (5%)	21,28,33	1.90	5 (23%)
48	PSU	5	4521	88,48	18,20,22	1.18	2 (11%)	21,28,33	2.12	6 (28%)
48	OMG	5	2424	48	18,26,27	2.41	8 (44%)	19,38,41	1.53	4 (21%)
48	OMG	5	4499	48	18,26,27	2.52	8 (44%)	19,38,41	1.56	4 (21%)
51	OMG	9	509	88,51	18,26,27	2.41	7 (38%)	19,38,41	1.45	4 (21%)
48	OMC	5	4536	48	19,22,23	2.77	8 (42%)	26,31,34	0.85	0
48	OMC	5	2365	48	19,22,23	2.83	8 (42%)	26,31,34	0.66	0
48	OMC	5	4456	48	19,22,23	2.79	8 (42%)	26,31,34	0.76	0
48	OMG	5	4623	48	18,26,27	2.49	8 (44%)	19,38,41	1.64	4 (21%)
48	PSU	5	2508	48	18,20,22	1.03	1 (5%)	21,28,33	1.81	4 (19%)
48	PSU	5	4420	48	18,20,22	1.07	1 (5%)	21,28,33	1.95	4 (19%)
48	OMG	5	3899	48	18,26,27	2.40	8 (44%)	19,38,41	1.44	4 (21%)
48	A2M	5	1524	48	18,25,26	4.08	7 (38%)	18,36,39	3.44	3 (16%)
51	A2M	9	1383	51	18,25,26	4.27	7 (38%)	18,36,39	3.63	4 (22%)
48	OMG	5	4196	46,48	18,26,27	2.47	7 (38%)	19,38,41	1.49	4 (21%)
48	OMG	5	4637	48	18,26,27	2.40	8 (44%)	19,38,41	1.55	4 (21%)
48	PSU	5	1792	48	18,20,22	1.00	1 (5%)	21,28,33	1.79	3 (14%)
48	OMC	5	3841	48	19,22,23	2.81	8 (42%)	26,31,34	0.88	0

Mol	Type	Chain	Bos	Link	B	Bond lengths		Bond angles		
	туре	Cilaili	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
48	A2M	5	400	48	18,25,26	4.17	8 (44%)	18,36,39	3.04	3 (16%)
48	OMG	5	4228	48	$18,\!26,\!27$	2.37	8 (44%)	19,38,41	1.46	3 (15%)
48	OMU	5	4306	48	19,22,23	2.82	7 (36%)	26,31,34	1.74	4 (15%)
51	PSU	9	34	51	18,20,22	1.10	1 (5%)	21,28,33	1.85	4 (19%)
48	OMG	5	373	48	18,26,27	2.42	8 (44%)	19,38,41	1.57	3 (15%)
51	PSU	9	609	51	18,20,22	1.01	1 (5%)	21,28,33	1.90	4 (19%)
48	OMC	5	2824	48	19,22,23	2.83	8 (42%)	26,31,34	0.93	1 (3%)
48	OMG	5	2364	48	18,26,27	2.43	8 (44%)	19,38,41	1.54	3 (15%)
48	OMG	5	3627	48	18,26,27	2.43	8 (44%)	19,38,41	1.50	3 (15%)
48	2MG	5	1517	48	18,26,27	2.22	7 (38%)	16,38,41	1.52	3 (18%)
51	PSU	9	105	51	18,20,22	1.08	1 (5%)	21,28,33	1.88	3 (14%)
48	PSU	5	3920	48	18,20,22	1.02	1 (5%)	21,28,33	2.06	4 (19%)
48	5MC	5	4447	88,48	18,22,23	<mark>3.35</mark>	7 (38%)	26,32,35	1.16	2 (7%)
51	A2M	9	484	51	18,25,26	4.28	7 (38%)	18,36,39	3.68	3 (16%)
48	PSU	5	3764	48	18,20,22	1.12	1 (5%)	21,28,33	1.93	4 (19%)
48	PSU	5	1860	48	18,20,22	0.98	1 (5%)	21,28,33	1.81	4 (19%)
48	A2M	5	3830	48	18,25,26	4.11	7 (38%)	18,36,39	3.42	3 (16%)
51	A2M	9	1678	51	18,25,26	4.17	6 (33%)	18,36,39	3.61	3 (16%)
51	A2M	9	468	51	18,25,26	4.25	8 (44%)	18,36,39	3.43	4 (22%)
48	A2M	5	2363	88,48	18,25,26	4.21	7 (38%)	18,36,39	3.47	3 (16%)
48	A2M	5	1534	88,48	18,25,26	4.26	7 (38%)	18,36,39	3.43	3 (16%)
51	A2M	9	1031	51	18,25,26	4.21	7 (38%)	18,36,39	3.30	3 (16%)
48	OMG	5	1625	88,48	18,26,27	2.56	8 (44%)	19,38,41	1.72	4 (21%)
51	OMG	9	1328	51	18,26,27	2.42	8 (44%)	19,38,41	1.46	4 (21%)
48	PSU	5	1862	48	18,20,22	1.06	1 (5%)	21,28,33	1.88	4 (19%)
48	OMG	5	1522	48	18,26,27	2.43	8 (44%)	19,38,41	1.54	4 (21%)
48	OMU	5	4227	48	19,22,23	2.79	7 (36%)	26,31,34	1.74	5 (19%)
51	PSU	9	1045	51	18,20,22	1.09	1 (5%)	21,28,33	2.02	5 (23%)
51	PSU	9	686	51	18,20,22	0.98	1 (5%)	21,28,33	2.16	4 (19%)
51	4AC	9	1842	51	21,24,25	<mark>3.03</mark>	10 (47%)	29,34,37	1.04	2 (6%)
48	1MA	5	1322	88,48	16,25,26	<mark>3.53</mark>	4 (25%)	18,37,40	1.84	3 (16%)
48	PSU	5	4552	48	18,20,22	1.11	1 (5%)	21,28,33	1.83	3 (14%)
48	PSU	5	3639	48	18,20,22	1.10	1 (5%)	21,28,33	1.80	3 (14%)
48	OMG	5	4494	48	18,26,27	2.33	8 (44%)	19,38,41	1.48	5 (26%)
51	OMC	9	1391	51	19,22,23	2.95	8 (42%)	26,31,34	0.96	1 (3%)

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	Bond angles			
IVIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2	
48	A2M	5	3724	48	18,25,26	4.28	7 (38%)	18,36,39	3.23	3 (16%)	
51	OMC	9	1703	51	19,22,23	2.95	8 (42%)	26,31,34	0.79	0	
48	A2M	5	3785	48	18,25,26	<mark>3.97</mark>	7 (38%)	18,36,39	<mark>3.37</mark>	3 (16%)	
48	PSU	5	4293	48	18,20,22	1.16	1 (5%)	21,28,33	1.78	3 (14%)	
51	B8N	9	1248	51	24,29,30	3.01	6 (25%)	29,42,45	1.89	5 (17%)	
48	PSU	5	4442	48	18,20,22	1.04	1 (5%)	21,28,33	1.97	5 (23%)	
51	PSU	9	1367	51	18,20,22	1.09	1 (5%)	21,28,33	1.80	4 (19%)	
48	PSU	5	2632	48	18,20,22	1.08	1 (5%)	21,28,33	1.86	4 (19%)	
51	PSU	9	109	51	18,20,22	1.13	1 (5%)	21,28,33	1.91	4 (19%)	
51	PSU	9	1232	51	18,20,22	1.14	1 (5%)	21,28,33	1.82	3 (14%)	
51	PSU	9	815	51	18,20,22	1.00	1 (5%)	21,28,33	2.05	5 (23%)	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
51	A2M	9	166	51	-	2/5/27/28	0/3/3/3
48	OMG	5	2876	48	-	0/5/27/28	0/3/3/3
51	PSU	9	1046	51	-	0/6/24/26	0/2/2/2
51	A2M	9	99	88,51	-	2/5/27/28	0/3/3/3
51	OMU	9	1442	51	-	2/9/27/28	0/2/2/2
51	4AC	9	1337	51	-	0/11/29/30	0/2/2/2
51	6MZ	9	1832	88,51	-	0/5/27/28	0/3/3/3
51	OMG	9	1490	88,51	-	2/5/27/28	0/3/3/3
51	OMC	9	174	51	-	0/9/27/28	0/2/2/2
48	OMC	5	1340	48	-	0/9/27/28	0/2/2/2
51	PSU	9	1238	51	-	0/6/24/26	0/2/2/2
48	OMG	5	4618	48	-	0/5/27/28	0/3/3/3
51	PSU	9	863	51	-	2/6/24/26	0/2/2/2
51	PSU	9	822	51	-	2/6/24/26	0/2/2/2
48	OMU	5	4620	48	-	0/9/27/28	0/2/2/2
51	OMG	9	644	51	-	1/5/27/28	0/3/3/3
48	PSU	5	3715	48	-	0/6/24/26	0/2/2/2
51	PSU	9	1081	51	-	0/6/24/26	0/2/2/2
50	OMG	8	75	50	-	0/5/27/28	0/3/3/3
48	6MZ	5	4220	48	-	0/5/27/28	0/3/3/3
51	OMU	9	172	51	-	2/9/27/28	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
51	PSU	9	1177	51	-	0/6/24/26	0/2/2/2
48	5MC	5	3782	88,48	-	0/7/25/26	0/2/2/2
48	OMG	5	3792	48	-	2/5/27/28	0/3/3/3
48	PSU	5	1782	48	_	0/6/24/26	0/2/2/2
48	A2M	5	1326	48	-	1/5/27/28	0/3/3/3
51	A2M	9	159	51	-	0/5/27/28	0/3/3/3
48	PSU	5	4457	48	-	0/6/24/26	0/2/2/2
48	OMC	5	3701	88,48	-	4/9/27/28	0/2/2/2
51	OMU	9	428	51	-	4/9/27/28	0/2/2/2
51	PSU	9	1692	51	-	0/6/24/26	0/2/2/2
48	OMC	5	3887	48	-	0/9/27/28	0/2/2/2
51	PSU	9	1347	51	-	0/6/24/26	0/2/2/2
48	UY1	5	3818	88,48	-	3/9/27/28	0/2/2/2
48	PSU	5	4296	48	-	0/6/24/26	0/2/2/2
48	A2M	5	1871	88,48	-	0/5/27/28	0/3/3/3
48	A2M	5	398	48	-	0/5/27/28	0/3/3/3
48	OMG	5	1316	48	-	0/5/27/28	0/3/3/3
51	PSU	9	572	51	-	0/6/24/26	0/2/2/2
51	PSU	9	1445	51	-	1/6/24/26	0/2/2/2
51	PSU	9	801	51	-	2/6/24/26	0/2/2/2
48	PSU	5	4579	48	-	0/6/24/26	0/2/2/2
48	PSU	5	1744	88,48	-	0/6/24/26	0/2/2/2
48	A2M	5	3867	48	-	1/5/27/28	0/3/3/3
48	PSU	5	1781	48	-	2/6/24/26	0/2/2/2
48	PSU	5	3853	48	-	0/6/24/26	0/2/2/2
51	PSU	9	1004	51	-	0/6/24/26	0/2/2/2
51	OMU	9	1326	51	-	0/9/27/28	0/2/2/2
48	PSU	5	3734	48	-	0/6/24/26	0/2/2/2
51	OMG	9	683	51	-	2/5/27/28	0/3/3/3
48	OMU	5	3925	48	-	0/9/27/28	0/2/2/2
51	G7M	9	1639	51,46	-	2/3/25/26	0/3/3/3
51	OMC	9	517	51	-	0/9/27/28	0/2/2/2
51	A2M	9	512	51	-	1/5/27/28	0/3/3/3
48	UR3	5	4530	48	-	0/7/25/26	0/2/2/2
48	OMG	5	4370	48	-	0/5/27/28	0/3/3/3
51	PSU	9	1174	51	-	0/6/24/26	0/2/2/2
51	OMU	9	116	51	-	0/9/27/28	0/2/2/2
51	MA6	9	1851	51	-	3/7/29/30	0/3/3/3
48	PSU	5	4361	48	-	0/6/24/26	0/2/2/2
48	PSU	5	4532	48	-	0/6/24/26	0/2/2/2

001100	itaca jio	In preetoe	te page.				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
48	OMC	5	3869	48	-	0/9/27/28	0/2/2/2
51	OMU	9	121	51	-	1/9/27/28	0/2/2/2
48	A2M	5	4523	88,48	-	0/5/27/28	0/3/3/3
51	PSU	9	1643	51	-	0/6/24/26	0/2/2/2
48	PSU	5	3695	48	-	0/6/24/26	0/2/2/2
48	PSU	5	4403	48	-	0/6/24/26	0/2/2/2
48	PSU	5	1677	48	-	0/6/24/26	0/2/2/2
48	PSU	5	3762	48	-	0/6/24/26	0/2/2/2
48	PSU	5	4628	48	-	0/6/24/26	0/2/2/2
51	MA6	9	1850	51	-	0/7/29/30	0/3/3/3
48	OMU	5	2837	48	-	1/9/27/28	0/2/2/2
48	A2M	5	3718	48	-	0/5/27/28	0/3/3/3
48	PSU	5	3851	48	-	1/6/24/26	0/2/2/2
51	OMG	9	436	51	-	0/5/27/28	0/3/3/3
48	A2M	5	3825	48	-	0/5/27/28	0/3/3/3
48	A2M	5	2787	48	-	0/5/27/28	0/3/3/3
48	A2M	5	2815	48	-	2/5/27/28	0/3/3/3
48	A2M	5	3760	88,48	-	3/5/27/28	0/3/3/3
48	A2M	5	4571	48	-	0/5/27/28	0/3/3/3
48	PSU	5	4423	48	-	0/6/24/26	0/2/2/2
48	PSU	5	4353	48	-	0/6/24/26	0/2/2/2
51	PSU	9	814	51	-	0/6/24/26	0/2/2/2
51	PSU	9	1244	51	-	0/6/24/26	0/2/2/2
48	OMU	5	4498	48	-	0/9/27/28	0/2/2/2
48	OMC	5	2804	48	-	0/9/27/28	0/2/2/2
48	OMC	5	2861	48	-	0/9/27/28	0/2/2/2
48	OMC	5	2351	48	-	2/9/27/28	0/2/2/2
48	OMC	5	3808	48	-	0/9/27/28	0/2/2/2
48	OMG	5	4392	48	-	0/5/27/28	0/3/3/3
51	PSU	9	649	51	-	0/6/24/26	0/2/2/2
48	B9B	5	237	48	-	2/7/29/30	0/3/3/3
51	PSU	9	218	51	_	0/6/24/26	0/2/2/2
48	PSU	5	4299	48	-	0/6/24/26	0/2/2/2
51	A2M	9	27	51	-	0/5/27/28	0/3/3/3
51	A2M	9	668	88,51	-	2/5/27/28	0/3/3/3
48	PSU	5	1683	88,48	-	0/6/24/26	0/2/2/2
48	PSU	5	4500	48	-	2/6/24/26	0/2/2/2
48	OMC	5	2422	88,48	-	1/9/27/28	0/2/2/2
51	PSU	9	119	51	-	0/6/24/26	$\frac{1}{0/2/2/2}$
48	PSU	5	4521	88,48	-	0/6/24/26	$\frac{1}{0/2/2/2}$
48	OMG	5	2424	48	_	3/5/27/28	$\frac{1}{0/3/3/3}$

0 0.000			pago.				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
48	OMG	5	4499	48	-	2/5/27/28	0/3/3/3
51	OMG	9	509	88,51	_	0/5/27/28	0/3/3/3
48	OMC	5	4536	48	-	0/9/27/28	0/2/2/2
48	OMC	5	2365	48	-	0/9/27/28	0/2/2/2
48	OMC	5	4456	48	-	0/9/27/28	0/2/2/2
48	OMG	5	4623	48	-	0/5/27/28	0/3/3/3
48	PSU	5	2508	48	-	0/6/24/26	0/2/2/2
48	PSU	5	4420	48	-	0/6/24/26	0/2/2/2
48	OMG	5	3899	48	-	0/5/27/28	0/3/3/3
48	A2M	5	1524	48	-	1/5/27/28	0/3/3/3
51	A2M	9	1383	51	-	0/5/27/28	0/3/3/3
48	OMG	5	4196	46,48	-	0/5/27/28	0/3/3/3
48	OMG	5	4637	48	-	0/5/27/28	0/3/3/3
48	PSU	5	1792	48	-	0/6/24/26	0/2/2/2
48	OMC	5	3841	48	-	0/9/27/28	0/2/2/2
48	A2M	5	400	48	-	0/5/27/28	0/3/3/3
48	OMG	5	4228	48	-	1/5/27/28	0/3/3/3
48	OMU	5	4306	48	-	0/9/27/28	0/2/2/2
51	PSU	9	34	51	-	4/6/24/26	0/2/2/2
48	OMG	5	373	48	-	1/5/27/28	0/3/3/3
51	PSU	9	609	51	-	0/6/24/26	0/2/2/2
48	OMC	5	2824	48	-	0/9/27/28	0/2/2/2
48	OMG	5	2364	48	-	3/5/27/28	0/3/3/3
48	OMG	5	3627	48	-	0/5/27/28	0/3/3/3
48	2MG	5	1517	48	-	0/5/27/28	0/3/3/3
51	PSU	9	105	51	-	0/6/24/26	0/2/2/2
48	PSU	5	3920	48	-	0/6/24/26	0/2/2/2
48	5MC	5	4447	88,48	-	4/7/25/26	0/2/2/2
51	A2M	9	484	51	_	0/5/27/28	0/3/3/3
48	PSU	5	3764	48	_	0/6/24/26	0/2/2/2
48	PSU	5	1860	48	_	0/6/24/26	0/2/2/2
48	A2M	5	3830	48	-	0/5/27/28	0/3/3/3
51	A2M	9	1678	51	-	0/5/27/28	0/3/3/3
51	A2M	9	468	51	_	1/5/27/28	0/3/3/3
48	A2M	5	2363	88,48	_	0/5/27/28	0/3/3/3
48	A2M	5	1534	88,48	-	2/5/27/28	0/3/3/3
51	A2M	9	1031	51	_	1/5/27/28	0/3/3/3
48	OMG	5	1625	88,48	-	1/5/27/28	$\frac{1}{0/3/3/3}$
51	OMG	9	1328	51	-	1/5/27/28	$\frac{1}{0/3/3/3}$
48	PSU	5	1862	48	-	0/6/24/26	$\frac{1}{0/2/2/2}$
48	OMG	5	1522	48	-	0/5/27/28	0/3/3/3

	J	1	- I - J -				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
48	OMU	5	4227	48	-	0/9/27/28	0/2/2/2
51	PSU	9	1045	51	-	2/6/24/26	0/2/2/2
51	PSU	9	686	51	-	0/6/24/26	0/2/2/2
51	4AC	9	1842	51	-	0/11/29/30	0/2/2/2
48	1MA	5	1322	88,48	-	0/3/25/26	0/3/3/3
48	PSU	5	4552	48	-	0/6/24/26	0/2/2/2
48	PSU	5	3639	48	-	0/6/24/26	0/2/2/2
48	OMG	5	4494	48	-	2/5/27/28	0/3/3/3
51	OMC	9	1391	51	-	0/9/27/28	0/2/2/2
48	A2M	5	3724	48	-	0/5/27/28	0/3/3/3
51	OMC	9	1703	51	-	2/9/27/28	0/2/2/2
48	A2M	5	3785	48	-	2/5/27/28	0/3/3/3
48	PSU	5	4293	48	-	0/6/24/26	0/2/2/2
51	B8N	9	1248	51	-	4/16/34/35	0/2/2/2
48	PSU	5	4442	48	-	0/6/24/26	0/2/2/2
51	PSU	9	1367	51	-	0/6/24/26	0/2/2/2
48	PSU	5	2632	48	-	0/6/24/26	0/2/2/2
51	PSU	9	109	51	-	0/6/24/26	0/2/2/2
51	PSU	9	1232	51	-	0/6/24/26	0/2/2/2
51	PSU	9	815	51	-	0/6/24/26	0/2/2/2

The worst 5 of 788 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
51	9	1383	A2M	O4'-C1'	15.51	1.62	1.41
48	5	3724	A2M	O4'-C1'	15.46	1.62	1.41
51	9	99	A2M	O4'-C1'	15.44	1.62	1.41
48	5	398	A2M	O4'-C1'	15.43	1.62	1.41
51	9	159	A2M	O4'-C1'	15.36	1.62	1.41

The worst 5 of 554 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
51	9	1851	MA6	N1-C6-N6	-18.65	97.42	117.06
51	9	1850	MA6	N1-C6-N6	-15.52	100.72	117.06
51	9	512	A2M	C5-C6-N6	11.97	138.54	120.35
51	9	484	A2M	C5-C6-N6	11.70	138.13	120.35
51	9	1678	A2M	C5-C6-N6	11.45	137.75	120.35

There are no chirality outliers.

5 of 97 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
48	5	237	B9B	C5-C6-O6-C61
48	5	237	B9B	N1-C6-O6-C61
48	5	1781	PSU	C3'-C4'-C5'-O5'
48	5	2424	OMG	O4'-C4'-C5'-O5'
48	5	2424	OMG	C1'-C2'-O2'-CM2

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 323 ligands modelled in this entry, 320 are monoatomic - leaving 3 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Turno Cha		Chain	Bos	Bos	Dog	Dog	Dog	Dog	Dec	Dec	Dec	Dog	Tink	B	ond leng	gths	B	ond ang	les
MOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2									
91	SF4	jj	602	87	$0,\!12,\!12$	-	-	-											
90	ZVM	ii	501	88	29,31,31	4.74	20 (68%)	31,46,46	2.79	8 (25%)									
91	SF4	jj	601	87	0,12,12	-	-	-											

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
91	SF4	jj	602	87	-	-	0/6/5/5
90	ZVM	ii	501	88	2/2/8/8	2/4/50/50	0/3/5/5
91	SF4	jj	601	87	-	-	0/6/5/5

The worst 5 of 20 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
90	ii	501	ZVM	O01-C01	12.06	1.39	1.22
90	ii	501	ZVM	O02-C15	9.72	1.39	1.22
90	ii	501	ZVM	C03-N01	7.44	1.38	1.27
90	ii	501	ZVM	C10-C09	7.21	1.53	1.39
90	ii	501	ZVM	C13-C14	6.59	1.52	1.38

The worst 5 of 8 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
90	ii	501	ZVM	C05-C04-N01	12.11	121.33	109.90
90	ii	501	ZVM	C02-C03-N03	4.39	121.20	114.49
90	ii	501	ZVM	N02-C04-N01	4.29	119.25	113.37
90	ii	501	ZVM	C07-C06-C05	-3.70	85.41	88.34
90	ii	501	ZVM	C07-C08-C05	-3.25	85.77	88.34

All (2) chirality outliers are listed below:

Mol	Chain	Res	Type	Atom
90	ii	501	ZVM	C02
90	ii	501	ZVM	C04

All (2) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
90	ii	501	ZVM	C10-C09-N02-C04
90	ii	501	ZVM	C14-C09-N02-C04

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
48	5	23
51	9	3
47	3	2
46	2	1

The worst 5 of 29 chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	5	2113:G	O3'	2258:C	Р	41.98
1	5	1219:G	O3'	1233:G	Р	19.96
1	5	1406(C):G	O3'	1411:C	Р	16.99
1	5	1696:C	O3'	1720:C	Р	16.41
1	5	990:C	O3'	1064:G	Р	15.53

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-40344. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 240

Z Index: 240

6.2.2 Raw map

X Index: 240

Y Index: 240

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 261

Z Index: 227

6.3.2 Raw map

X Index: 261

Y Index: 250

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.005. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1812 nm^3 ; this corresponds to an approximate mass of 1637 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.400 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.400 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.50	-	-
Author-provided FSC curve	2.51	2.91	2.56
Unmasked-calculated*	2.76	3.15	2.81

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.76 differs from the reported value 2.5 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-40344 and PDB model 8SCB. Per-residue inclusion information can be found in section 3 on page 27.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.005 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.005).

9.4 Atom inclusion (i)

At the recommended contour level, 90% of all backbone atoms, 91% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.005) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9140	0.5890
1	0.9590	0.6230
2	0.9490	0.5410
3	0.5710	0.3940
5	0.9750	0.6070
7	0.9950	0.6350
8	0.9630	0.6010
9	0.9380	0.5680
А	0.9860	0.6570
AA	0.8810	0.5860
В	0.9700	0.6410
BB	0.9000	0.5920
\mathbf{C}	0.9670	0.6410
$\mathbf{C}\mathbf{C}$	0.9270	0.6040
D	0.9380	0.6090
DD	0.8180	0.5420
Е	0.9520	0.6100
EE	0.9280	0.5870
F	0.9690	0.6450
FF	0.9060	0.5780
G	0.9140	0.5970
GG	0.7990	0.5030
Н	0.9330	0.6160
HH	0.5830	0.4750
Ι	0.9590	0.6300
II	0.8730	0.5680
J	0.9180	0.5910
JJ	0.9020	0.5760
KK	0.8390	0.5400
L	0.9210	0.6130
LL	0.9440	0.6250
Μ	0.9470	0.6130
MM	0.1120	0.3190
N	0.9900	0.6560
NN	0.9280	0.6010

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
0	0.9690	0.6370
00	0.9570	0.6170
Р	0.9640	0.6460
PP	0.8780	0.5590
Q	0.9730	0.6490
QQ	0.9080	0.5780
R	0.9000	0.6030
RR	0.7450	0.5440
S	0.9760	0.6450
SS	0.8830	0.5660
Т	0.9440	0.6210
TT	0.9120	0.5790
U	0.8820	0.5490
UU	0.7490	0.5170
V	0.9730	0.6440
VV	0.8760	0.5780
W	0.9490	0.6300
WW	0.9550	0.6150
X	0.9530	0.6240
XX	0.9590	0.6230
Y	0.9390	0.6220
YY	0.8960	0.5620
Z	0.9460	0.6140
ZZ	0.8430	0.5540
a	0.9660	0.6480
aa	0.9420	0.6160
b	0.8450	0.5830
bb	0.8470	0.5730
с	0.9440	0.6220
cc	0.8400	0.5680
d	0.9650	0.6330
dd	0.9490	0.5990
e	0.9830	0.6530
ee	0.9060	0.5680
f	0.9790	0.6560
ff	0.2530	0.3490
g	0.9350	0.6170
gg	0.7550	0.5030
h	0.9380	0.6160
hh	0.9920	0.6100
i	0.9210	0.6070
ii	0.7390	0.5290

Continued on next page...

Chain	Atom inclusion	Q-score
j	0.9940	0.6520
jj	0.4420	0.5120
k	0.8460	0.5750
1	0.9860	0.6370
m	0.9490	0.6270
n	0.9750	0.6320
0	0.9610	0.6380
р	0.9580	0.6370
r	0.9660	0.6340
S	0.1770	0.2900
t	0.4670	0.3450

Continued from previous page...

