

wwPDB EM Validation Summary Report (i)

May 14, 2024 - 12:54 am BST

PDB ID	:	6RQL
EMDB ID	:	EMD-4984
Title	:	RNA Polymerase I Closed Conformation 2 (CC2)
Authors	:	Mueller, C.W.; Sadian, Y.; Tafur, L.
Deposited on	:	2019-05-16
Resolution	:	2.90 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures
	(#Entries)	(#Entries)
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length		Q	uality of chain	
1	Т	70		53%	7%	40%
2	U	70		56%	•	40%
3	Q	514		75%		17% · 7%
4	S	894		53%	15%	32%
5	R	507		53%	12%	35%
6	М	415	21%	5%	74%	
7	А	1664		80	9%	12% 7%
8	В	1203		16% •		
9	С	335		77%	6	13% 9%

Continued on next page...

Mol	Chain	Length	Quality o	f chain	
10	D	137	38% 13%		49%
11	Е	215	90%		10%
12	F	155	57%	7%	35%
13	G	326	50%	11%	39%
14	Н	146	83%		8% • 8%
15	Ι	125	79%		19% ••
16	J	70	86%		11% ••
17	K	142	60%	13%	27%
18	L	70	56%	9%	36%
19	N	233	50%	9%	40%
20	0	627	68%		12% 20%

Continued from previous page...

2 Entry composition (i)

There are 20 unique types of molecules in this entry. The entry contains 51626 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a DNA chain called Template strand.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
1	Т	42	Total 842	C 405	N 141	0 254	Р 42	0	0

• Molecule 2 is a DNA chain called Nontemplate strand.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
2	U	42	Total 877	С 417	N 171	0 248	Р 41	0	0

• Molecule 3 is a protein called RNA polymerase I-specific transcription initiation factor RRN7.

Mol	Chain	Residues		At	AltConf	Trace			
3	Q	476	Total 3931	C 2526	N 674	0 711	S 20	0	0

• Molecule 4 is a protein called RNA polymerase I-specific transcription initiation factor RRN6.

Mol	Chain	Residues		At	AltConf	Trace			
4	S	610	Total 4963	C 3160	N 842	O 950	S 11	0	0

• Molecule 5 is a protein called RNA polymerase I-specific transcription initiation factor RRN11.

Mol	Chain	Residues		At	AltConf	Trace			
5	R	330	Total 2771	C 1791	N 489	0 480	S 11	0	0

• Molecule 6 is a protein called DNA-directed RNA polymerase I subunit RPA49.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
6	М	107	Total 850	C 540	N 141	O 169	0	0

• Molecule 7 is a protein called DNA-directed RNA polymerase I subunit RPA190.

Mol	Chain	Residues		A	AltConf	Trace			
7	Δ	1549	Total	С	Ν	Ο	\mathbf{S}	Ο	0
1	Л	1042	11953	7543	2086	2263	61	0	0

• Molecule 8 is a protein called DNA-directed RNA polymerase I subunit RPA135.

Mol	Chain	Residues		Α		AltConf	Trace		
8	В	1180	Total 9371	C 5923	N 1644	0 1754	S 50	0	0

• Molecule 9 is a protein called DNA-directed RNA polymerases I and III subunit RPAC1.

Mol	Chain	Residues		Ate		AltConf	Trace		
9	С	304	Total 2418	C 1536	N 414	0 460	S 8	0	0

• Molecule 10 is a protein called DNA-directed RNA polymerase I subunit RPA14.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
10	D	70	Total 551	C 340	N 100	O 109	${ m S} { m 2}$	0	0

• Molecule 11 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC1.

Mol	Chain	Residues		At		AltConf	Trace		
11	Е	215	Total 1759	C 1116	N 310	0 321	S 12	0	0

• Molecule 12 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC2.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	F	100	Total 823	C 522	N 144	0 154	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called DNA-directed RNA polymerase I subunit RPA43.

Mol	Chain	Residues		Ate	AltConf	Trace			
13	G	199	Total 1576	C 1012	N 273	O 286	${S \atop 5}$	0	0

• Molecule 14 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC3.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	Н	134	Total 1072	C 676	N 181	0 211	$\frac{S}{4}$	0	0

• Molecule 15 is a protein called DNA-directed RNA polymerase I subunit RPA12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	Ι	124	Total 942	C 584	N 160	O 189	S 9	0	0

• Molecule 16 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	J	69	Total 569	C 362	N 101	O 100	S 6	0	0

• Molecule 17 is a protein called DNA-directed RNA polymerases I and III subunit RPAC2.

Mol	Chain	Residues	Atoms					AltConf	Trace
17	K	103	Total 810	C 506	N 132	0 167	${ m S}{ m 5}$	0	0

• Molecule 18 is a protein called DNA-directed RNA polymerases I, II, and III subunit RPABC4.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
18	L	45	Total 359	C 221	N 71	O 63	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 19 is a protein called DNA-directed RNA polymerase I subunit RPA34.

Mol	Chain	Residues		At	oms		AltConf	Trace	
19	N	139	Total 1103	C 706	N 179	0 214	$\frac{S}{4}$	0	0

• Molecule 20 is a protein called RNA polymerase I-specific transcription initiation factor RRN3.

Mol	Chain	Residues	Atoms			AltConf	Trace		
20	О	499	Total 4086	C 2636	N 661	O 767	S 22	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Template strand

VET SER JLV JLV JLV JLV VLL VAL VAL LEU VAL

Chain F:

57%

R1 64 V155 V155 V155 V155 V155 N167 N167 N167 N155 N155 N155 N155 N210 N211
1425 1425 8429 8429 8429 8434 8434 8434 8434 8434 8434 8434 8531 1551 1558 8597 1558 8597 1558 1558 1558 8597 1558 8597 1558 1558 1558 1558 1558 1558 1558 155
R 11 1699 1699 1699 1699 1708 1714 1714 1714 1714 1714 1714 1714 171
C869 2863 2863 2863 2873 2874 2887 2882 2883 2835 2835 2835 2835 2835 2845
Y1014 Y1014 S1015 S1015 S1025 N1025 N1025 N1025 N1025 N1025 N1025 N1025 N1025 N1047 N1065 N1065 N1065 N1065 N1065 N1065 N1065 N1065 N1065 N1065 N1065 N1065 N1065 N1065 N1065 N1065 N1065 N1065 N1065 N1076 N1
ASP 01155 01155 01156 01157 11158 11158 11158 11158 11158 11158 11158 11158 11158 11158 11158 11158 11158 11158
• Molecule 9: DNA-directed RNA polymerases I and III subunit RPAC1
Chain C: 77% 13% 9%
MET MET SER ASN ASN ASN THE THE THE ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
• Molecule 10: DNA-directed RNA polymerase I subunit RPA14
Chain D: 38% 13% 49%
M1 K1 K1 K1 K1 K1 K1 K1 K1 K1 K
L199 P100 ALA ALA ALA ALA ALA ALA ALA ALA ALA CLU CITS CLU CI CITS C CITS C
• Molecule 11: DNA-directed RNA polymerases I, II, and III subunit RPABC1
Chain E: 90% 10%
M1 111 1228 1238 1328 1328 1328 1100 1100 1100 1100 1117 1117 1117 1117 1117 1117 1110 1110 1110 1110 1110 1117 117
• Molecule 12: DNA-directed RNA polymerases I, II, and III subunit RPABC2

7%

L D W I D E PDB IN DATA BANK

35%

• Molecule 13: DNA-directed RNA polymerase I subunit RPA43

Chain G:	50%	11%	39%	
MET SER SLN SLN VAL LYS LYS ALA ALA ALA ALA	N32 N35 S35 S35 S35 S35 S35 S35 S35 S35 S35 S	402 403 1093 1994 1275 1275 1275 1100 1100 1100 1104	1108 1111 1111 1137 1137	L148 1149 A152 F153 A155 A155 A155 K159
v166 N171 ASP ASP VAL GLU GLU ASP	ASP VAL THR ASN ASN ASN GLV ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	SER SER ASN GLY GLY GLY SER LEU LEU LEU LEU CLY SER PHE	PHE GLY ASN ASN ASN SER D219 D219 D219 B223	G227 B230 R234 R234 N235 T238
R241 1249 1250 8251 ASP ASP ASP ASP ASP ASP ASP	GLU GLY ASN ASN ASN TYR ALY SER ALA ALA ALA ALA ALA CLU CLN TLEU FLU FLU SER YAL	ASN LYS LYS LYS LYS LYS TLE VAL PHE ASP ASP ASP ASP ASP CLU VAL SER	GLU ASN LYS GLU SER HIS LYS GLU LEU ASP	LEU PRO GLU VAL LYS GLU ASP ASP GLY GLY
SER GLU TLE VAL TYR GLU GLU ASN THR SER	GLU SER ASP ASP GLY GLU SER SER SER SER ASP SER ASP			
• Molecule 14	4: DNA-directed RNA pol	ymerases I, II, ai	nd III subunit	RPABC3
Chain H:	83%		8%	8%
MET SER 14 14 13 13 13 13 13	159 861 861 861 861 861 861 864 864 864 876 875 875 875 876 876 876 876	1112 6119 6127 0128 0128 0133 1133 1142 1142 1142		
• Molecule 15	5: DNA-directed RNA pol	ymerase I subuni	it RPA12	
Chain I:	79%		19%	
MET S3 V4 V4 I8 I17 S26	C30 C30 C31 C33 C33 C33 C33 C33 C33 C33 C33 C33	D78 C79 A80 A80 A80 A80 A80 A80 A80 A80 A80 A80	T113 T115 T115 K120 N125	
• Molecule 16	5: DNA-directed RNA pol	ymerases I, II, ar	nd III subunit	RPABC5
Chain J:	86%		110	% ••
M1 K12 L36 G40 R47	L51 T52 K59 K59 F60 F60 A63 ASP			
• Molecule 17	7: DNA-directed RNA pol	ymerases I and I	II subunit RP	AC2
Chain K:	60%	13%	27%	
MET THR GLU ASP ILE GLU GLU CYS LYS THR	ALA CIUN VAL THR THR THR THR CIUN CIUN CIUN CIUN CIUN CIUN CIUN CIUN	VAL VAL ASP ASP GLV GLU GLU GLU GLU GLU	K46 S62 V66 E67 H70 N74	R77 K82 Y91 P96 S97

E98 N99 L100 L100 R104 R105 R105 R1105 R113 R113 M142

• Molecule 18: DNA-directed RNA polymerases I, II, and III subunit RPABC4

• Molecule 19: DNA-directed RNA polymerase I subunit RPA34

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	24482	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	1.1075	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bo	ond angles
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	Т	0.75	0/939	1.05	0/1442
2	U	0.64	0/988	0.92	0/1528
3	Q	0.36	0/4023	0.64	1/5434~(0.0%)
4	S	0.35	0/5065	0.63	0/6859
5	R	0.41	0/2836	0.65	0/3817
6	М	0.35	0/866	0.61	0/1162
7	А	0.47	0/12165	0.60	1/16450~(0.0%)
8	В	0.53	0/9578	0.65	0/12948
9	С	0.48	0/2469	0.61	0/3347
10	D	0.35	0/557	0.59	0/750
11	Е	0.41	0/1795	0.54	0/2416
12	F	0.52	0/838	0.60	0/1129
13	G	0.40	0/1613	0.59	0/2193
14	Н	0.49	0/1090	0.61	0/1476
15	Ι	0.37	0/955	0.61	0/1288
16	J	0.58	0/578	0.71	0/775
17	Κ	0.48	0/821	0.61	0/1108
18	L	0.49	0/361	0.77	0/478
19	N	0.32	0/1124	0.58	0/1512
20	0	0.36	0/4173	0.57	0/5645
All	All	0.46	0/52834	0.64	2/71757~(0.0%)

There are no bond length outliers.

All (2) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
3	Q	60	LEU	CA-CB-CG	5.55	128.07	115.30
7	А	1387	PRO	N-CA-CB	5.17	109.50	103.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	Т	842	0	476	9	0
2	U	877	0	475	2	0
3	Q	3931	0	3918	67	0
4	S	4963	0	4890	99	0
5	R	2771	0	2844	42	0
6	М	850	0	850	15	0
7	А	11953	0	11848	152	0
8	В	9371	0	9243	141	0
9	С	2418	0	2401	41	0
10	D	551	0	558	14	0
11	Е	1759	0	1788	13	0
12	F	823	0	841	7	0
13	G	1576	0	1581	24	0
14	Н	1072	0	1042	8	0
15	Ι	942	0	937	17	0
16	J	569	0	589	8	0
17	Κ	810	0	801	15	0
18	L	359	0	385	5	0
19	N	1103	0	1106	18	0
20	0	4086	0	4024	43	0
All	All	51626	0	50597	644	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

The worst 5 of 644 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
7:A:232:LYS:HG2	7:A:239:PHE:CD1	1.59	1.36
4:S:442:LEU:HD21	4:S:444:PRO:CG	1.63	1.27
4:S:623:LEU:HD12	4:S:624:GLN:N	1.56	1.19
7:A:30:LYS:HD2	7:A:53:ALA:HB1	1.29	1.15
4:S:442:LEU:HD23	4:S:444:PRO:HD2	1.32	1.11

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
3	Q	468/514~(91%)	409 (87%)	58 (12%)	1 (0%)	47	78
4	S	594/894~(66%)	509~(86%)	85 (14%)	0	100	100
5	R	322/507~(64%)	292 (91%)	30 (9%)	0	100	100
6	М	105/415~(25%)	98~(93%)	7 (7%)	0	100	100
7	А	1524/1664~(92%)	1416 (93%)	108 (7%)	0	100	100
8	В	1174/1203 (98%)	1095 (93%)	79 (7%)	0	100	100
9	С	300/335~(90%)	283 (94%)	17 (6%)	0	100	100
10	D	66/137~(48%)	62 (94%)	4 (6%)	0	100	100
11	Е	213/215~(99%)	208 (98%)	5 (2%)	0	100	100
12	F	98/155~(63%)	93~(95%)	5 (5%)	0	100	100
13	G	193/326~(59%)	178 (92%)	15 (8%)	0	100	100
14	Н	130/146~(89%)	118 (91%)	12 (9%)	0	100	100
15	Ι	122/125~(98%)	104 (85%)	18 (15%)	0	100	100
16	J	67/70~(96%)	64 (96%)	3 (4%)	0	100	100
17	Κ	101/142~(71%)	95~(94%)	6 (6%)	0	100	100
18	L	43/70~(61%)	41 (95%)	2(5%)	0	100	100
19	Ν	131/233~(56%)	115 (88%)	16 (12%)	0	100	100
20	Ο	493/627~(79%)	453 (92%)	40 (8%)	0	100	100
All	All	6144/7778~(79%)	5633 (92%)	510 (8%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
3	Q	281	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
3	Q	436/476~(92%)	427 (98%)	9(2%)	53	81	
4	S	563/828~(68%)	555~(99%)	8 (1%)	67	89	
5	R	313/474~(66%)	305~(97%)	8 (3%)	46	77	
6	М	97/371~(26%)	97~(100%)	0	100	100	
7	А	1297/1465~(88%)	1293 (100%)	4 (0%)	92	98	
8	В	1030/1053~(98%)	1026 (100%)	4 (0%)	91	97	
9	С	269/296~(91%)	268 (100%)	1 (0%)	91	97	
10	D	65/116~(56%)	65 (100%)	0	100	100	
11	Е	197/197~(100%)	195~(99%)	2 (1%)	76	92	
12	F	90/137~(66%)	89~(99%)	1 (1%)	73	92	
13	G	177/291~(61%)	177 (100%)	0	100	100	
14	Н	116/128 (91%)	115 (99%)	1 (1%)	78	93	
15	Ι	109/110~(99%)	108 (99%)	1 (1%)	78	93	
16	J	64/65~(98%)	63~(98%)	1 (2%)	62	86	
17	Κ	93/130~(72%)	93~(100%)	0	100	100	
18	L	40/57~(70%)	40 (100%)	0	100	100	
19	Ν	128/220~(58%)	128 (100%)	0	100	100	
20	Ο	$45\overline{7}/576~(79\%)$	457 (100%)	0	100	100	
All	All	5541/6990 (79%)	5501 (99%)	40 (1%)	84	95	

5 of 40 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
7	А	590	ASN
11	Е	200	ARG
8	В	95	LEU
8	В	783	MET
14	Н	142	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 65 such sidechains are listed below:

Mol	Chain	Res	Type
15	Ι	95	ASN
20	0	66	ASN
7	А	592	GLN
7	А	431	GLN
20	0	94	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-4984. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

This section was not generated.

6.2 Central slices (i)

This section was not generated.

6.3 Largest variance slices (i)

This section was not generated.

6.4 Orthogonal standard-deviation projections (False-color) (i)

This section was not generated.

6.5 Orthogonal surface views (i)

This section was not generated.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

This section was not generated.

7.2 Volume estimate versus contour level (i)

This section was not generated.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section was not generated.

