

Full wwPDB X-ray Structure Validation Report (i)

Jun 22, 2024 – 05:30 PM EDT

PDB ID	:	6SE3
Title	:	Crystal Structure of Ancestral Flavin-containing monooxygenase (FMO) 3-6
Authors	:	Nicoll, C.; Bailleul, G.; Fiorentini, F.; Mascotti, M.L.; Fraaije, M.; Mattevi,
		А.
Deposited on	:	2019-07-29
Resolution	:	2.80 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	•	2022.3.0. CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	2.37.1
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	130704	3140 (2.80-2.80)
Clashscore	141614	3569 (2.80-2.80)
Ramachandran outliers	138981	3498 (2.80-2.80)
Sidechain outliers	138945	3500 (2.80-2.80)
RSRZ outliers	127900	3078 (2.80-2.80)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
			21%		
1	А	532	70%	23%	6% •
			5%		
1	В	532	78%	16%	5% •
			2%		
1	С	532	79%	15%	••
			3%		
1	D	532	78%	16%	5%•
			4%		
1	Ε	532	80%	15%	••

Mol	Chain	Length	Quality of chain			
1	Б	5 00	3%			
	F'	532	79%	15%	• •	•

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 26163 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Л	528	Total	С	Ν	0	S	0	0	0
	D	528	4198	2718	689	767	24	0	0	0
1	Δ	528	Total	С	Ν	0	S	0	0	0
	A	528	4198	2718	689	767	24	0	0	0
1	Р	528	Total	С	Ν	0	S	0	0 0	0
	D	520	4198	2718	689	767	24	0	0	0
1	C	528	Total	С	Ν	0	S o	0	0	
	U	528	4198	2718	689	767	24	0	0	U
1	F	528	Total	С	Ν	0	S	0	0	0
1	Ľ	528	4198	2718	689	767	24	0	0	0
1	1 F	528	Total	С	Ν	Ο	S	0	0	0
		528	4198	2718	689	767	24	0	0	

• Molecule 1 is a protein called Ancestral Flavin-containing monooxygenase (FMO) 3-6.

• Molecule 2 is FLAVIN-ADENINE DINUCLEOTIDE (three-letter code: FAD) (formula: $C_{27}H_{33}N_9O_{15}P_2$).

6SE3

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	
2	Л	1	Total	С	Ν	Ο	Р	0	0	
	D	1	53	27	9	15	2	0	0	
2	Λ	1	Total	С	Ν	Ο	Р	0	0	
	Л	1	53	27	9	15	2	0	0	
2	В	1	Total	С	Ν	Ο	Р	0	0	
	2 D	1	53	27	9	15	2	0	0	
2	С	1	Total	С	Ν	Ο	Р	0	0	
2	U		53	27	9	15	2	0	0	
2	F	1	Total	С	Ν	Ο	Р	0	0	
2		1	53	27	9	15	2	0	0	
2	F	1	Total	С	Ν	Ο	Р	0	0	
	Ľ	1	53	27	9	15	2	0	0	

• Molecule 3 is NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NAP) (formula: $C_{21}H_{28}N_7O_{17}P_3$).

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	
2	Л	1	Total	С	Ν	0	Р	0	0	
0	D	1	48	21	7	17	3	0	0	
2	Λ	1	Total	С	Ν	Ο	Р	0	0	
5	Л	1	48	21	7	17	3	0	0	
3	B	1	Total	С	Ν	Ο	Р	0	Ο	
5	D	1	48	21	7	17	3		0	
2	С	1	Total	С	Ν	Ο	Р	0	0	
5	U	1	48 21		7	17	3	0	0	
2	F	1	Total	С	Ν	Ο	Р	0	0	
5	Ľ	ц		48	21	7	17	3	U	0

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf
3	F	1	Total 48	C 21	N 7	0 17	Р 3	0	0

• Molecule 4 is OXYGEN MOLECULE (three-letter code: OXY) (formula: O_2).

OXY	
01 () () 02	

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	D	1	Total O 2 2	0	0
4	А	1	Total O 2 2	0	0
4	В	1	Total O 2 2	0	0
4	С	1	Total O 2 2	0	0
4	Ε	1	Total O 2 2	0	0
4	F	1	Total O 2 2	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	D	74	Total O 74 74	0	0
5	А	32	$\begin{array}{ccc} \text{Total} & \text{O} \\ 32 & 32 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	В	52	$\begin{array}{cc} \text{Total} & \text{O} \\ 52 & 52 \end{array}$	0	0
5	С	75	Total O 75 75	0	0
5	Е	56	$\begin{array}{cc} {\rm Total} & {\rm O} \\ 56 & 56 \end{array}$	0	0
5	F	68	Total O 68 68	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Ancestral Flavin-containing monooxygenase (FMO) 3-6

[•] Molecule 1: Ancestral Flavin-containing monooxygenase (FMO) 3-6

• Molecule 1: Ancestral Flavin-containing monooxygenase (FMO) 3-6

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 31 2 1	Depositor
Cell constants	156.09Å 156.09 Å 370.61 Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	49.30 - 2.80	Depositor
Resolution (A)	49.30 - 2.80	EDS
% Data completeness	100.0 (49.30-2.80)	Depositor
(in resolution range)	$100.0 \ (49.30-2.80)$	EDS
R _{merge}	0.23	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.56 (at 2.81 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0230	Depositor
D D	0.217 , 0.266	Depositor
Λ, Λ_{free}	0.220 , 0.269	DCC
R_{free} test set	6492 reflections $(5.02%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	63.3	Xtriage
Anisotropy	0.028	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.32 , 40.0	EDS
L-test for twinning ²	$< L >=0.48, < L^2>=0.31$	Xtriage
Estimated twinning fraction	0.023 for -h,-k,l	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	26163	wwPDB-VP
Average B, all atoms $(Å^2)$	73.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.08% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FAD, OXY, NAP

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.54	0/4312	0.77	4/5843~(0.1%)
1	В	0.53	1/4312~(0.0%)	0.73	0/5843
1	С	0.53	0/4312	0.73	0/5843
1	D	0.52	0/4312	0.71	0/5843
1	Е	0.52	0/4312	0.72	0/5843
1	F	0.54	0/4312	0.73	0/5843
All	All	0.53	1/25872~(0.0%)	0.73	4/35058~(0.0%)

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
1	В	507	ARG	C-N	8.65	1.50	1.34

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
1	А	335	TYR	CB-CG-CD2	6.66	124.99	121.00
1	А	335	TYR	CB-CG-CD1	-6.04	117.38	121.00
1	А	357	PHE	CB-CG-CD1	5.63	124.74	120.80
1	А	357	PHE	CB-CG-CD2	-5.63	116.86	120.80

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4198	0	4172	147	0
1	В	4198	0	4172	93	0
1	С	4198	0	4172	97	0
1	D	4198	0	4172	98	0
1	Е	4198	0	4172	68	0
1	F	4198	0	4172	86	0
2	А	53	0	31	18	0
2	В	53	0	31	2	0
2	С	53	0	31	4	0
2	D	53	0	31	2	0
2	Е	53	0	31	3	0
2	F	53	0	31	4	0
3	А	48	0	25	4	0
3	В	48	0	25	3	0
3	С	48	0	25	3	0
3	D	48	0	25	5	0
3	Е	48	0	25	2	0
3	F	48	0	25	4	0
4	А	2	0	0	0	0
4	В	2	0	0	0	0
4	С	2	0	0	0	0
4	D	2	0	0	0	0
4	Е	2	0	0	0	0
4	F	2	0	0	0	0
5	А	32	0	0	19	0
5	В	52	0	0	5	0
5	С	75	0	0	11	0
5	D	74	0	0	8	0
5	Е	56	0	0	2	0
5	F	68	0	0	6	0
All	All	26163	0	25368	584	0

the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 11.

All (584) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:145:ILE:CG2	1:A:335:TYR:HE1	1.61	1.14
1:A:145:ILE:CG2	1:A:335:TYR:CE1	2.34	1.10

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:238:ARG:HE	1:C:470:GLN:NE2	1.51	1.08
1:A:145:ILE:HG21	1:A:335:TYR:CE1	1.89	1.07
1:A:145:ILE:HG22	1:A:335:TYR:HE1	1.16	1.05
1:A:51:ARG:HH11	1:A:51:ARG:HB3	1.24	1.03
1:E:238:ARG:HE	1:E:470:GLN:NE2	1.59	1.00
1:C:268:ASN:O	1:F:497:THR:HG23	1.61	1.00
1:D:238:ARG:HH11	1:D:470:GLN:HE21	1.07	0.98
1:B:33:ARG:HH11	1:B:33:ARG:HG3	1.29	0.98
1:F:19:ARG:HG2	1:F:19:ARG:HH11	1.30	0.97
1:F:238:ARG:HE	1:F:470:GLN:NE2	1.66	0.94
1:F:521:PRO:HA	5:F:713:HOH:O	1.67	0.93
1:C:359:PRO:HB3	1:C:405:MET:HE3	1.51	0.92
1:D:33:ARG:HG3	1:D:33:ARG:HH11	1.34	0.92
1:A:33:ARG:HB2	1:A:33:ARG:HH11	1.35	0.92
1:F:19:ARG:HG2	1:F:19:ARG:NH1	1.83	0.90
1:D:497:THR:HG23	1:B:268:ASN:O	1.73	0.89
1:C:300:LYS:HE3	5:C:752:HOH:O	1.72	0.88
1:A:33:ARG:CD	2:A:601:FAD:C5A	2.51	0.87
1:F:238:ARG:HH11	1:F:470:GLN:HE21	1.19	0.86
1:A:33:ARG:HD3	2:A:601:FAD:C4A	2.06	0.86
1:A:497:THR:HG23	1:E:268:ASN:O	1.76	0.85
1:A:51:ARG:HH11	1:A:51:ARG:CB	1.88	0.85
1:A:33:ARG:HH11	1:A:33:ARG:CB	1.89	0.85
1:C:238:ARG:HE	1:C:470:GLN:HE21	1.18	0.85
1:D:238:ARG:NH1	1:D:470:GLN:HE21	1.74	0.84
1:F:19:ARG:HH11	1:F:19:ARG:CG	1.90	0.84
1:D:167:LYS:HD2	1:D:308:GLU:HG3	1.60	0.84
1:A:145:ILE:HG21	1:A:335:TYR:CD1	2.13	0.83
1:C:238:ARG:NE	1:C:470:GLN:NE2	2.28	0.82
1:E:238:ARG:HE	1:E:470:GLN:HE21	1.26	0.80
1:F:309:THR:HG23	5:F:710:HOH:O	1.81	0.79
1:A:33:ARG:HD2	2:A:601:FAD:C5A	2.12	0.79
1:A:268:ASN:O	1:E:497:THR:HG23	1.82	0.79
1:C:359:PRO:HB3	1:C:405:MET:CE	2.13	0.79
1:A:145:ILE:HG22	1:A:335:TYR:CE1	2.07	0.78
1:B:19:ARG:HH12	1:B:472:ARG:NH2	1.82	0.77
1:E:524:LEU:O	1:E:528:LEU:HD23	1.84	0.77
1:D:99:ASN:HB2	5:D:753:HOH:O	1.85	0.77
1:A:19:ARG:HG2	1:A:19:ARG:HH11	1.51	0.76
1:A:33:ARG:CD	2:A:601:FAD:C4A	2.64	0.76
1:E:33:ARG:HG3	1:E:33:ARG:HH11	1.50	0.76

	louo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:33:ARG:HG3	1:D:33:ARG:NH1	1.99	0.76
1:B:237:THR:HG22	1:B:240:GLU:H	1.51	0.75
1:F:237:THR:HG22	1:F:240:GLU:H	1.51	0.75
1:D:237:THR:HG22	1:D:240:GLU:H	1.52	0.75
1:C:238:ARG:HG2	1:C:238:ARG:HH21	1.51	0.74
1:E:237:THR:HG22	1:E:240:GLU:H	1.52	0.74
1:E:108:THR:HG22	1:E:131:LYS:HD3	1.67	0.74
1:A:51:ARG:HB3	1:A:51:ARG:NH1	2.01	0.73
1:C:237:THR:HG22	1:C:240:GLU:H	1.52	0.73
1:A:447:ILE:HB	1:A:448:PRO:HD3	1.71	0.73
2:A:601:FAD:C6	3:A:602:NAP:C2N	2.66	0.73
1:A:237:THR:HG22	1:A:240:GLU:H	1.52	0.73
1:F:524:LEU:O	1:F:528:LEU:HD12	1.89	0.73
1:D:268:ASN:O	1:B:497:THR:HG23	1.88	0.72
1:F:238:ARG:NH1	1:F:470:GLN:HE21	1.87	0.72
1:B:33:ARG:HG3	1:B:33:ARG:NH1	1.99	0.72
1:A:33:ARG:HD3	2:A:601:FAD:N9A	2.04	0.72
1:C:497:THR:HG23	1:F:268:ASN:O	1.90	0.72
1:A:128:THR:HG23	5:A:722:HOH:O	1.90	0.71
1:C:77:ASP:CB	5:C:746:HOH:O	2.38	0.71
1:F:524:LEU:O	1:F:528:LEU:HB2	1.90	0.71
1:D:529:LEU:HD11	1:F:518:LEU:HD13	1.72	0.71
1:B:125:TRP:HZ3	1:B:365:THR:HG1	1.39	0.71
1:B:457:LEU:HD22	1:B:483:ARG:HG3	1.73	0.71
1:D:498:ARG:NH2	1:D:503:GLY:O	2.23	0.70
1:A:19:ARG:HH11	1:A:19:ARG:CG	2.04	0.70
1:E:457:LEU:HD22	1:E:483:ARG:HG3	1.73	0.70
1:C:125:TRP:HZ3	1:C:365:THR:HG1	1.40	0.70
1:A:512:TYR:CZ	5:A:701:HOH:O	2.44	0.70
1:A:524:LEU:O	1:A:528:LEU:HB2	1.92	0.69
1:F:457:LEU:HD22	1:F:483:ARG:HG3	1.74	0.69
1:D:125:TRP:HZ3	1:D:365:THR:HG1	1.37	0.69
1:D:457:LEU:HD22	1:D:483:ARG:HG3	1.74	0.69
1:A:498:ARG:NH2	1:A:503:GLY:O	2.25	0.69
1:B:19:ARG:HH12	1:B:472:ARG:HH21	1.37	0.69
1:B:19:ARG:NH1	1:B:472:ARG:NH2	2.41	0.69
2:E:601:FAD:HM73	3:E:602:NAP:C5N	2.23	0.69
1:A:119:PHE:CE2	1:A:362:GLU:HB2	2.27	0.69
1:F:106:PHE:O	1:F:108:THR:HG23	1.93	0.69
1:A:19:ARG:NH2	1:A:71:ASP:OD2	2.25	0.68
1:A:33:ARG:HD3	2:A:601:FAD:C8A	2.23	0.68

	,	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:519:LEU:HD13	1:B:519:LEU:H	1.59	0.68
1:D:524:LEU:O	1:D:528:LEU:HG	1.93	0.68
1:E:125:TRP:HZ3	1:E:365:THR:HG1	1.39	0.68
1:A:130:GLU:HB2	1:A:135:LYS:NZ	2.09	0.68
1:A:433:TYR:HE2	1:A:437:LEU:HD22	1.58	0.68
1:C:457:LEU:HD22	1:C:483:ARG:HG3	1.75	0.68
1:A:33:ARG:HH11	1:A:33:ARG:CG	2.05	0.68
1:F:63:SER:HB3	1:F:232:ASP:OD1	1.94	0.67
1:A:181:ILE:HD13	1:A:181:ILE:H	1.60	0.67
1:C:172:HIS:HD2	1:C:174:ARG:HB2	1.58	0.67
1:F:450:LEU:HB3	1:F:458:ALA:HB2	1.77	0.67
1:A:51:ARG:HH11	1:A:51:ARG:CG	2.07	0.67
1:D:167:LYS:CD	1:D:308:GLU:HG3	2.25	0.66
1:C:106:PHE:O	1:C:108:THR:HG23	1.95	0.66
1:A:309:THR:HG22	5:A:711:HOH:O	1.95	0.66
1:A:457:LEU:HD22	1:A:483:ARG:HG3	1.76	0.66
1:A:361:LEU:HD23	1:A:363:LYS:O	1.95	0.66
1:E:106:PHE:O	1:E:108:THR:HG23	1.95	0.66
1:A:125:TRP:HZ3	1:A:365:THR:HG1	1.43	0.66
1:F:122:THR:HB	1:F:124:GLN:HG3	1.76	0.66
1:F:125:TRP:HZ3	1:F:365:THR:HG1	1.41	0.66
1:C:238:ARG:HG2	1:C:238:ARG:NH2	2.11	0.65
1:B:279:ARG:CG	1:B:279:ARG:HH11	2.10	0.65
1:B:106:PHE:O	1:B:108:THR:HG23	1.96	0.65
1:D:450:LEU:HB3	1:D:458:ALA:HB2	1.78	0.65
1:C:450:LEU:HB3	1:C:458:ALA:HB2	1.77	0.65
1:C:513:ASN:HB3	1:C:516:LYS:HB3	1.79	0.65
1:D:447:ILE:HB	1:D:448:PRO:HD3	1.79	0.65
1:C:279:ARG:HH11	1:C:279:ARG:CG	2.09	0.64
1:F:238:ARG:NE	1:F:470:GLN:NE2	2.40	0.64
1:D:122:THR:HB	1:D:124:GLN:HG3	1.80	0.64
1:B:519:LEU:HD22	1:B:520:PHE:H	1.62	0.64
1:E:513:ASN:HB3	1:E:516:LYS:HB3	1.81	0.63
1:D:521:PRO:HB2	5:D:711:HOH:O	1.97	0.63
1:A:410:ASP:HA	5:A:712:HOH:O	1.97	0.63
1:F:279:ARG:HH11	1:F:279:ARG:CG	2.11	0.63
1:A:19:ARG:HG2	1:A:19:ARG:NH1	2.11	0.63
1:A:119:PHE:HE2	1:A:362:GLU:HB2	1.61	0.63
1:C:519:LEU:HD13	1:C:519:LEU:N	2.14	0.63
1:E:33:ARG:HG3	1:E:33:ARG:NH1	2.11	0.63
1:F:172:HIS:HD2	1:F:174:ARG:HB2	1.64	0.63

	io ao pagom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:172:HIS:HD2	1:E:174:ARG:HB2	1.63	0.62
1:D:172:HIS:HD2	1:D:174:ARG:HB2	1.63	0.62
1:B:518:LEU:HD13	1:C:529:LEU:HD13	1.81	0.62
1:D:516:LYS:HD2	5:D:719:HOH:O	1.98	0.62
1:D:279:ARG:HH11	1:D:279:ARG:CG	2.12	0.62
1:B:172:HIS:HD2	1:B:174:ARG:HB2	1.64	0.62
1:D:524:LEU:O	1:D:528:LEU:CG	2.47	0.62
1:B:519:LEU:HD13	1:B:519:LEU:N	2.15	0.62
1:E:279:ARG:HH11	1:E:279:ARG:CG	2.13	0.62
1:A:515:LEU:C	1:A:519:LEU:HD21	2.19	0.62
1:D:238:ARG:HE	1:D:470:GLN:NE2	1.97	0.61
1:A:416:LYS:HG3	5:A:730:HOH:O	2.00	0.61
1:B:516:LYS:HA	1:B:519:LEU:HD21	1.82	0.61
1:A:33:ARG:HD3	2:A:601:FAD:C5A	2.28	0.61
1:C:447:ILE:HB	1:C:448:PRO:HD3	1.82	0.61
1:E:450:LEU:HB3	1:E:458:ALA:HB2	1.81	0.61
1:D:19:ARG:HH11	1:D:19:ARG:CG	2.14	0.61
1:A:12:VAL:HG11	1:A:379:ILE:HG12	1.82	0.61
1:D:156:PRO:HG2	3:D:602:NAP:N6A	2.16	0.61
1:F:238:ARG:HE	1:F:470:GLN:HE22	1.44	0.61
1:A:238:ARG:HH21	1:A:431:ILE:HG23	1.65	0.60
1:E:447:ILE:HB	1:E:448:PRO:HD3	1.82	0.60
1:C:82:MET:HE1	1:C:87:LEU:HA	1.83	0.60
1:D:82:MET:HE1	1:D:87:LEU:HA	1.84	0.60
1:A:238:ARG:HH21	1:A:431:ILE:CG2	2.14	0.60
1:B:450:LEU:HB3	1:B:458:ALA:HB2	1.82	0.60
1:F:516:LYS:HE2	5:F:762:HOH:O	1.99	0.60
1:E:255:TRP:HZ2	1:E:515:LEU:HD13	1.65	0.60
1:A:450:LEU:HB3	1:A:458:ALA:HB2	1.82	0.60
1:B:82:MET:HE1	1:B:87:LEU:HA	1.84	0.60
1:F:447:ILE:HB	1:F:448:PRO:HD3	1.84	0.60
1:A:498:ARG:O	1:A:498:ARG:HG2	2.02	0.60
1:A:333:TYR:CD1	1:A:333:TYR:N	2.68	0.59
1:A:238:ARG:HG3	1:A:462:PHE:HA	1.84	0.59
1:E:82:MET:HE1	1:E:87:LEU:HA	1.83	0.59
1:D:349:GLU:HG3	1:D:424:GLN:HE22	1.67	0.59
1:A:399:LEU:HD22	1:A:405:MET:SD	2.42	0.59
1:A:279:ARG:HH11	1:A:279:ARG:CG	2.16	0.59
1:F:82:MET:HE1	1:F:87:LEU:HA	1.83	0.59
1:F:222:SER:HB2	1:F:286:ASP:OD1	2.03	0.58
1:F:498:ARG:NH2	1:F:503:GLY:O	2.37	0.58

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:A:601:FAD:HM73	3:A:602:NAP:C5N	2.33	0.58
1:D:255:TRP:HZ2	1:D:515:LEU:HD13	1.68	0.58
1:A:516:LYS:O	1:A:521:PRO:HD3	2.03	0.58
1:D:222:SER:HB2	1:D:286:ASP:OD1	2.03	0.58
1:B:315:ASP:OD1	1:B:317:THR:OG1	2.21	0.58
1:B:451:PHE:HD1	1:B:458:ALA:HB1	1.67	0.58
1:A:182:PHE:HA	1:A:185:LYS:HD2	1.86	0.57
1:A:222:SER:HB2	1:A:286:ASP:OD1	2.04	0.57
1:B:447:ILE:HB	1:B:448:PRO:HD3	1.85	0.57
1:E:222:SER:HB2	1:E:286:ASP:OD1	2.04	0.57
1:A:19:ARG:HH22	1:A:71:ASP:CG	2.08	0.57
1:B:349:GLU:HG3	1:B:424:GLN:HE22	1.68	0.57
1:C:222:SER:HB2	1:C:286:ASP:OD1	2.04	0.57
1:A:520:PHE:O	1:A:524:LEU:HB2	2.05	0.57
1:D:167:LYS:HD2	1:D:308:GLU:CG	2.33	0.57
1:B:451:PHE:CD1	1:B:458:ALA:HB1	2.40	0.57
1:C:255:TRP:CZ2	1:C:515:LEU:HD22	2.40	0.57
1:A:333:TYR:N	1:A:333:TYR:HD1	2.02	0.57
1:A:336:PRO:HA	5:A:717:HOH:O	2.04	0.57
1:A:108:THR:HG23	1:A:131:LYS:HD3	1.86	0.56
1:E:520:PHE:O	1:E:524:LEU:HB2	2.05	0.56
1:D:125:TRP:HZ3	1:D:365:THR:OG1	1.88	0.56
1:B:518:LEU:HD13	1:C:529:LEU:CD1	2.35	0.56
1:A:33:ARG:HD2	2:A:601:FAD:C4A	2.35	0.56
1:A:180:GLY:N	5:A:704:HOH:O	2.31	0.56
1:E:125:TRP:HZ3	1:E:365:THR:OG1	1.88	0.56
1:D:453:THR:HB	5:D:706:HOH:O	2.06	0.56
1:B:19:ARG:HH11	1:B:19:ARG:CG	2.17	0.56
1:B:222:SER:HB2	1:B:286:ASP:OD1	2.04	0.56
1:C:19:ARG:NH2	1:C:71:ASP:OD1	2.38	0.56
1:F:34:SER:HB3	1:F:51:ARG:HE	1.71	0.56
1:F:520:PHE:O	1:F:524:LEU:HB2	2.06	0.56
1:C:34:SER:HB3	1:C:51:ARG:HE	1.70	0.56
1:C:238:ARG:NH2	5:C:703:HOH:O	2.39	0.56
1:B:359:PRO:O	1:B:360:LEU:HB2	2.05	0.56
1:E:524:LEU:O	1:E:528:LEU:HB2	2.06	0.56
1:F:513:ASN:HB3	1:F:516:LYS:HB3	1.88	0.56
1:C:506:LYS:HE3	5:C:725:HOH:O	2.05	0.56
1:E:172:HIS:CD2	1:E:174:ARG:H	2.24	0.56
1:A:172:HIS:CD2	1:A:174:ARG:H	2.24	0.55
1:B:172:HIS:CD2	1:B:174:ARG:H	2.24	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:172:HIS:CD2	1:F:174:ARG:H	2.24	0.55
1:C:125:TRP:HZ3	1:C:365:THR:OG1	1.89	0.55
1:D:359:PRO:O	1:D:360:LEU:HB2	2.06	0.55
1:D:172:HIS:CD2	1:D:174:ARG:H	2.25	0.55
1:B:238:ARG:HD3	5:B:747:HOH:O	2.07	0.55
1:A:18:ILE:HD11	1:A:30:CYS:HB2	1.89	0.55
1:C:172:HIS:CD2	1:C:174:ARG:H	2.25	0.55
1:D:527:VAL:O	1:D:528:LEU:HD23	2.06	0.55
1:A:334:ALA:O	1:A:335:TYR:HB2	2.07	0.55
1:B:122:THR:HB	1:B:124:GLN:HG3	1.88	0.55
1:F:125:TRP:HZ3	1:F:365:THR:OG1	1.90	0.55
1:A:348:ASN:HA	5:A:703:HOH:O	2.06	0.54
1:A:490:TRP:CE2	1:A:508:PRO:HG2	2.41	0.54
1:A:525:LEU:C	1:A:525:LEU:HD22	2.28	0.54
1:E:315:ASP:OD1	1:E:317:THR:OG1	2.24	0.54
1:E:359:PRO:O	1:E:360:LEU:HB2	2.06	0.54
1:F:525:LEU:C	1:F:525:LEU:HD22	2.28	0.54
1:F:527:VAL:HG12	1:F:527:VAL:O	2.07	0.54
1:D:525:LEU:C	1:D:525:LEU:HD22	2.28	0.54
1:C:359:PRO:CB	1:C:405:MET:CE	2.85	0.54
1:E:497:THR:HG21	5:E:705:HOH:O	2.07	0.54
1:E:525:LEU:HD22	1:E:525:LEU:C	2.28	0.54
1:B:524:LEU:O	1:B:528:LEU:HB2	2.07	0.54
1:E:34:SER:HB3	1:E:51:ARG:HE	1.73	0.54
1:B:125:TRP:HZ3	1:B:365:THR:OG1	1.89	0.54
1:E:19:ARG:NH2	1:E:71:ASP:OD1	2.41	0.54
1:A:150:HIS:HD2	2:A:601:FAD:O2'	1.90	0.54
1:B:525:LEU:C	1:B:525:LEU:HD22	2.28	0.54
1:E:527:VAL:HG12	1:E:527:VAL:O	2.08	0.54
1:F:315:ASP:OD1	1:F:317:THR:OG1	2.25	0.54
1:D:527:VAL:O	1:D:527:VAL:HG12	2.08	0.54
1:B:34:SER:HB3	1:B:51:ARG:HE	1.73	0.54
1:B:525:LEU:HD21	1:C:522:VAL:HG21	1.90	0.54
1:C:527:VAL:HG12	1:C:527:VAL:O	2.08	0.54
1:D:51:ARG:HH11	1:D:51:ARG:HB3	1.72	0.54
1:A:117:PRO:HA	5:A:713:HOH:O	2.08	0.54
1:A:527:VAL:HG12	1:A:527:VAL:O	2.08	0.53
1:B:279:ARG:HH11	1:B:279:ARG:HG2	1.73	0.53
1:D:19:ARG:NH2	1:D:71:ASP:OD1	2.42	0.53
1:D:315:ASP:OD1	1:D:317:THR:OG1	2.27	0.53
1:A:515:LEU:HD13	1:A:519:LEU:HD22	1.91	0.53

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:522:VAL:HA	1:A:525:LEU:CD1	2.38	0.53
1:C:19:ARG:CG	1:C:19:ARG:HH11	2.20	0.53
1:E:527:VAL:O	1:E:528:LEU:HD22	2.09	0.53
1:D:34:SER:HB3	1:D:51:ARG:HE	1.73	0.53
1:A:18:ILE:HD11	1:A:30:CYS:CB	2.39	0.53
1:B:525:LEU:HD21	1:C:522:VAL:CG2	2.39	0.53
1:A:125:TRP:HZ3	1:A:365:THR:OG1	1.91	0.53
1:A:135:LYS:CG	5:A:716:HOH:O	2.56	0.53
1:A:90:TYR:HA	5:A:728:HOH:O	2.08	0.53
1:A:145:ILE:CG2	1:A:335:TYR:CD1	2.85	0.53
1:C:349:GLU:HG3	1:C:424:GLN:HE22	1.73	0.53
1:D:19:ARG:HG2	1:D:19:ARG:NH1	2.24	0.52
1:C:524:LEU:HA	1:C:528:LEU:HD23	1.91	0.52
1:C:512:TYR:CE1	1:C:514:LEU:HB2	2.45	0.52
1:A:433:TYR:C	1:A:433:TYR:CD2	2.81	0.52
1:A:359:PRO:O	1:A:360:LEU:HB2	2.09	0.52
1:C:524:LEU:O	1:C:528:LEU:HB2	2.10	0.52
1:F:401:THR:HG22	1:F:404:GLU:CG	2.39	0.52
1:B:238:ARG:HH22	1:B:435:ASP:CG	2.12	0.52
1:C:359:PRO:O	1:C:360:LEU:HB2	2.08	0.52
1:E:51:ARG:HH11	1:E:51:ARG:HB3	1.75	0.52
1:F:119:PHE:CD1	1:F:123:GLY:HA2	2.45	0.52
1:B:527:VAL:HG12	1:B:527:VAL:O	2.10	0.52
1:F:108:THR:HG22	1:F:131:LYS:HD3	1.92	0.52
1:D:401:THR:HG22	1:D:404:GLU:CG	2.40	0.52
1:A:346:ARG:NH1	1:A:406:MET:HE3	2.25	0.52
1:C:300:LYS:CE	5:C:752:HOH:O	2.45	0.52
1:C:167:LYS:HD2	1:C:308:GLU:HG2	1.92	0.51
1:C:315:ASP:OD1	1:C:317:THR:OG1	2.27	0.51
1:D:61:ASN:C	1:D:61:ASN:HD22	2.14	0.51
1:A:33:ARG:HB2	1:A:33:ARG:NH1	2.16	0.51
1:C:156:PRO:HG3	3:C:602:NAP:N6A	2.26	0.51
1:A:53:SER:OG	1:A:174:ARG:O	2.26	0.51
1:A:172:HIS:HD2	1:A:174:ARG:H	1.59	0.51
1:C:401:THR:HG22	1:C:404:GLU:CG	2.41	0.51
1:F:61:ASN:C	1:F:61:ASN:HD22	2.14	0.51
1:B:51:ARG:HB3	1:B:51:ARG:HH11	1.76	0.51
1:A:33:ARG:HD2	2:A:601:FAD:C6A	2.40	0.51
1:A:401:THR:HG22	1:A:404:GLU:CG	2.40	0.51
1:B:19:ARG:NH1	1:B:19:ARG:CG	2.73	0.51
1:B:108:THR:HG22	1:B:131:LYS:HD3	1.93	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:255:TRP:HZ2	1:C:515:LEU:HD22	1.75	0.51
1:D:522:VAL:HG23	5:D:711:HOH:O	2.10	0.51
1:A:315:ASP:OD1	1:A:317:THR:OG1	2.29	0.51
1:B:401:THR:HG22	1:B:404:GLU:CG	2.41	0.51
1:C:41:TRP:CD2	1:C:87:LEU:HD23	2.45	0.51
1:E:229:TYR:CE2	1:E:508:PRO:HG3	2.46	0.51
1:F:41:TRP:CD2	1:F:87:LEU:HD23	2.46	0.51
1:D:167:LYS:CD	1:D:308:GLU:CG	2.88	0.50
1:D:41:TRP:CD2	1:D:87:LEU:HD23	2.46	0.50
1:D:524:LEU:O	1:D:528:LEU:HD12	2.11	0.50
1:A:279:ARG:HH11	1:A:279:ARG:HG3	1.76	0.50
1:E:19:ARG:CG	1:E:19:ARG:HH11	2.23	0.50
1:E:41:TRP:CD2	1:E:87:LEU:HD23	2.46	0.50
1:E:401:THR:HG22	1:E:404:GLU:CG	2.40	0.50
1:E:522:VAL:HA	1:E:525:LEU:CD1	2.41	0.50
1:F:172:HIS:HD2	1:F:174:ARG:H	1.59	0.50
1:F:490:TRP:CZ2	1:F:508:PRO:HG2	2.47	0.50
1:A:3:LYS:N	1:A:141:ASP:OD2	2.45	0.50
1:A:33:ARG:CG	1:A:33:ARG:NH1	2.72	0.50
1:A:349:GLU:CD	1:A:424:GLN:HE22	2.15	0.50
1:B:155:LEU:CD2	1:B:172:HIS:HB2	2.42	0.50
1:A:19:ARG:NH2	1:A:71:ASP:CG	2.65	0.50
1:B:41:TRP:CD2	1:B:87:LEU:HD23	2.45	0.50
1:B:516:LYS:HG2	1:B:519:LEU:HD21	1.92	0.50
1:F:156:PRO:HG2	3:F:602:NAP:H61A	1.77	0.50
1:F:359:PRO:O	1:F:360:LEU:HB2	2.11	0.50
2:D:601:FAD:C6	3:D:602:NAP:C2N	2.90	0.50
1:C:108:THR:HG22	1:C:131:LYS:HD3	1.94	0.50
1:F:51:ARG:HH11	1:F:51:ARG:HB3	1.77	0.50
1:A:19:ARG:HD2	1:A:19:ARG:O	2.12	0.50
1:A:490:TRP:CZ2	1:A:508:PRO:HG2	2.46	0.50
1:C:519:LEU:HD13	1:C:519:LEU:H	1.77	0.50
1:D:238:ARG:NE	1:D:470:GLN:NE2	2.60	0.50
1:A:114:ASN:HB2	5:A:706:HOH:O	2.12	0.50
1:A:68:CYS:HG	1:A:469:TYR:HE1	1.58	0.50
1:A:433:TYR:C	1:A:433:TYR:HD2	2.15	0.50
1:F:524:LEU:HB2	5:F:713:HOH:O	2.10	0.50
1:A:61:ASN:HD22	1:A:61:ASN:C	2.15	0.49
1:A:527:VAL:O	1:A:528:LEU:HD22	2.12	0.49
1:C:238:ARG:NE	1:C:470:GLN:HE21	1.96	0.49
1:E:172:HIS:HD2	1:E:174:ARG:H	1.60	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:C:51:ARG:HH11	1:C:51:ARG:HB3	1.76	0.49
1:F:215:ARG:NH1	5:F:703:HOH:O	2.42	0.49
1:A:41:TRP:CD2	1:A:87:LEU:HD23	2.47	0.49
1:B:238:ARG:NH2	1:B:435:ASP:OD2	2.45	0.49
1:A:346:ARG:HD3	1:A:406:MET:HE1	1.95	0.49
2:C:601:FAD:HM73	3:C:602:NAP:C5N	2.42	0.49
1:D:518:LEU:CD2	1:F:525:LEU:HD23	2.43	0.49
1:F:345:SER:O	1:F:346:ARG:HB2	2.13	0.49
1:A:51:ARG:NH1	1:A:51:ARG:CG	2.72	0.49
2:B:601:FAD:C6	3:B:602:NAP:C2N	2.91	0.49
1:E:238:ARG:HE	1:E:470:GLN:HE22	1.51	0.49
1:D:172:HIS:HD2	1:D:174:ARG:H	1.60	0.49
1:C:172:HIS:HD2	1:C:174:ARG:H	1.60	0.49
1:B:238:ARG:HH11	1:B:470:GLN:HE21	1.59	0.48
1:C:527:VAL:O	1:C:528:LEU:HD22	2.12	0.48
1:A:123:GLY:O	1:A:141:ASP:O	2.30	0.48
1:B:61:ASN:C	1:B:61:ASN:HD22	2.16	0.48
1:F:238:ARG:HE	1:F:470:GLN:HE21	1.58	0.48
1:F:401:THR:HG22	1:F:404:GLU:HG3	1.95	0.48
1:A:180:GLY:CA	5:A:704:HOH:O	2.60	0.48
1:A:522:VAL:HA	1:A:525:LEU:HD12	1.95	0.48
1:B:451:PHE:HD1	1:B:458:ALA:CB	2.26	0.48
1:C:172:HIS:CD2	1:C:174:ARG:HB2	2.45	0.48
1:D:516:LYS:O	1:D:521:PRO:HD3	2.13	0.48
1:C:61:ASN:C	1:C:61:ASN:HD22	2.16	0.48
1:E:491:ASP:OD1	1:E:507:ARG:NH2	2.40	0.48
1:D:108:THR:HG23	1:D:131:LYS:HD3	1.94	0.48
1:D:518:LEU:HD13	1:F:529:LEU:CD1	2.44	0.48
2:D:601:FAD:HM73	3:D:602:NAP:C5N	2.43	0.48
1:B:172:HIS:HD2	1:B:174:ARG:H	1.59	0.48
1:C:522:VAL:HG23	5:C:747:HOH:O	2.14	0.48
1:D:518:LEU:HD22	1:F:529:LEU:HD13	1.96	0.48
1:A:356:ILE:HD11	1:A:385:GLN:HG2	1.96	0.48
1:B:510:LEU:HD21	5:B:712:HOH:O	2.13	0.48
1:A:348:ASN:CA	5:A:703:HOH:O	2.61	0.47
1:C:77:ASP:HB3	5:C:746:HOH:O	2.06	0.47
1:C:238:ARG:NE	1:C:470:GLN:HE22	2.07	0.47
1:C:519:LEU:HD22	1:C:520:PHE:H	1.78	0.47
1:E:401:THR:HG22	1:E:404:GLU:HB2	1.96	0.47
1:A:137:SER:HB2	5:A:722:HOH:O	2.14	0.47
1:F:156:PRO:HG2	3:F:602:NAP:N6A	2.29	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:279:ARG:HH11	1:C:279:ARG:HG2	1.79	0.47
1:D:19:ARG:CG	1:D:19:ARG:NH1	2.73	0.47
1:F:349:GLU:HG3	1:F:424:GLN:HE22	1.80	0.47
1:D:520:PHE:N	1:D:521:PRO:CD	2.78	0.47
1:B:33:ARG:HH11	1:B:33:ARG:CG	2.10	0.47
1:C:512:TYR:CD2	1:C:513:ASN:N	2.83	0.47
1:E:61:ASN:C	1:E:61:ASN:HD22	2.16	0.47
1:A:33:ARG:NE	2:A:601:FAD:N7A	2.62	0.47
2:C:601:FAD:C6	3:C:602:NAP:C2N	2.93	0.47
1:F:279:ARG:CG	1:F:279:ARG:NH1	2.78	0.47
1:A:101:LEU:HA	1:A:104:ILE:HD12	1.96	0.47
1:B:401:THR:HG22	1:B:404:GLU:HB2	1.97	0.47
5:B:715:HOH:O	1:C:529:LEU:HD21	2.14	0.47
1:D:101:LEU:HD12	5:D:774:HOH:O	2.15	0.47
1:D:345:SER:O	1:D:346:ARG:HB2	2.15	0.47
1:A:130:GLU:HB2	1:A:135:LYS:HZ1	1.76	0.47
1:A:150:HIS:CD2	2:A:601:FAD:O2'	2.67	0.47
1:C:397:CYS:HA	5:C:713:HOH:O	2.15	0.47
1:E:512:TYR:CD2	1:E:513:ASN:N	2.82	0.47
1:D:522:VAL:HA	1:D:525:LEU:CD1	2.45	0.46
1:B:527:VAL:O	1:B:528:LEU:HD22	2.14	0.46
1:D:454:ASP:N	5:D:706:HOH:O	2.47	0.46
1:D:3:LYS:N	1:D:141:ASP:OD2	2.48	0.46
1:D:156:PRO:HG2	3:D:602:NAP:H61A	1.79	0.46
1:D:516:LYS:O	1:D:516:LYS:HG2	2.14	0.46
1:A:236:ILE:HD11	1:A:375:LEU:HB3	1.98	0.46
1:C:40:LEU:HD11	2:C:601:FAD:C8M	2.46	0.46
1:B:522:VAL:HA	1:B:525:LEU:CD1	2.45	0.46
1:C:345:SER:O	1:C:346:ARG:HB2	2.15	0.46
1:D:304:LYS:HA	1:D:304:LYS:HD2	1.76	0.46
1:D:216:SER:OG	3:D:602:NAP:O2X	2.34	0.46
1:D:401:THR:HG22	1:D:404:GLU:HG3	1.97	0.46
1:B:520:PHE:O	1:B:524:LEU:HB2	2.15	0.46
1:F:512:TYR:CD2	1:F:513:ASN:N	2.82	0.46
1:E:238:ARG:NE	1:E:470:GLN:NE2	2.43	0.46
1:D:512:TYR:CD2	1:D:513:ASN:N	2.83	0.46
1:B:512:TYR:CD2	1:B:513:ASN:N	2.83	0.46
1:B:519:LEU:HD22	1:B:520:PHE:N	2.30	0.46
1:C:279:ARG:CG	1:C:279:ARG:NH1	2.76	0.46
2:E:601:FAD:C6	3:E:602:NAP:C2N	2.93	0.46
1:D:524:LEU:O	1:D:528:LEU:CD1	2.64	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:19:ARG:CG	1:C:19:ARG:NH1	2.78	0.46
1:E:229:TYR:CZ	1:E:508:PRO:HG3	2.51	0.46
2:F:601:FAD:HM73	3:F:602:NAP:C5N	2.46	0.46
1:B:156:PRO:HG2	3:B:602:NAP:H61A	1.80	0.45
1:C:359:PRO:CB	1:C:405:MET:HE3	2.33	0.45
1:B:345:SER:O	1:B:346:ARG:HB2	2.16	0.45
1:D:49:GLU:OE2	1:D:49:GLU:HA	2.16	0.45
1:A:512:TYR:CE1	1:A:514:LEU:HB2	2.51	0.45
1:C:521:PRO:HB2	5:C:747:HOH:O	2.16	0.45
1:A:33:ARG:CD	2:A:601:FAD:N7A	2.79	0.45
1:A:512:TYR:CD2	1:A:513:ASN:N	2.83	0.45
1:E:401:THR:HG22	1:E:404:GLU:HG3	1.99	0.45
1:A:401:THR:HG22	1:A:404:GLU:HG3	1.99	0.45
1:D:83:HIS:HD2	1:D:85:SER:OG	2.00	0.45
1:D:401:THR:HG22	1:D:404:GLU:HB2	1.98	0.45
1:B:173:SER:HB3	1:B:328:ALA:HA	1.99	0.45
1:C:33:ARG:HG2	2:C:601:FAD:C4A	2.46	0.45
1:F:158:GLU:O	1:F:158:GLU:HG3	2.17	0.45
1:C:3:LYS:N	1:C:141:ASP:OD2	2.50	0.45
1:C:516:LYS:HA	1:C:519:LEU:HD21	1.99	0.45
1:B:516:LYS:HA	1:B:519:LEU:HD11	1.99	0.45
2:B:601:FAD:HM73	3:B:602:NAP:C5N	2.46	0.45
1:E:498:ARG:NH2	1:E:503:GLY:O	2.50	0.45
1:D:19:ARG:HH11	1:D:19:ARG:HG2	1.82	0.44
1:D:63:SER:HB3	1:D:232:ASP:OD1	2.17	0.44
1:A:119:PHE:O	1:A:122:THR:O	2.34	0.44
1:B:520:PHE:N	1:B:521:PRO:CD	2.80	0.44
1:B:529:LEU:CD1	1:C:518:LEU:HD22	2.48	0.44
1:E:122:THR:HB	1:E:124:GLN:HG3	1.98	0.44
1:A:357:PHE:CD2	1:A:399:LEU:HD21	2.52	0.44
1:C:19:ARG:NH1	1:C:19:ARG:HG2	2.33	0.44
1:C:401:THR:HG22	1:C:404:GLU:HB2	1.98	0.44
1:B:529:LEU:HD22	5:C:757:HOH:O	2.17	0.44
1:E:522:VAL:HA	1:E:525:LEU:HD12	1.98	0.44
1:F:171:PHE:CZ	1:F:326:ILE:HD13	2.52	0.44
1:F:401:THR:HG22	1:F:404:GLU:HB2	2.00	0.44
1:C:205:HIS:HE1	1:C:287:GLU:OE1	2.01	0.44
1:E:19:ARG:CG	1:E:19:ARG:NH1	2.79	0.44
2:F:601:FAD:C6	3:F:602:NAP:C2N	2.95	0.44
1:A:63:SER:HB3	1:A:232:ASP:OD1	2.18	0.44
1:B:63:SER:HB3	1:B:232:ASP:OD1	2.17	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:173:SER:HB3	1:E:328:ALA:HA	2.00	0.44
1:D:279:ARG:HH11	1:D:279:ARG:HG2	1.81	0.44
1:A:181:ILE:H	1:A:181:ILE:CD1	2.21	0.44
3:A:602:NAP:O2A	3:A:602:NAP:O5D	2.35	0.44
1:C:63:SER:HB3	1:C:232:ASP:OD1	2.18	0.44
1:C:520:PHE:O	1:C:524:LEU:HB2	2.18	0.44
1:E:345:SER:O	1:E:346:ARG:HB2	2.18	0.44
1:E:520:PHE:N	1:E:521:PRO:CD	2.81	0.44
1:F:524:LEU:CB	5:F:713:HOH:O	2.66	0.44
1:A:135:LYS:HB2	5:A:716:HOH:O	2.18	0.43
1:A:401:THR:HG22	1:A:404:GLU:HB2	2.00	0.43
1:E:3:LYS:N	1:E:141:ASP:OD2	2.51	0.43
1:B:3:LYS:N	1:B:141:ASP:OD2	2.51	0.43
1:D:93:ALA:HA	5:D:758:HOH:O	2.16	0.43
1:B:495:LYS:HB3	1:B:496:PRO:HD3	2.00	0.43
5:B:715:HOH:O	1:C:529:LEU:CD2	2.65	0.43
1:E:83:HIS:HD2	1:E:85:SER:OG	2.01	0.43
1:D:173:SER:HB3	1:D:328:ALA:HA	1.99	0.43
1:D:238:ARG:CZ	1:D:470:GLN:HE21	2.29	0.43
1:B:82:MET:HE2	1:B:87:LEU:HB2	2.00	0.43
1:F:279:ARG:HH11	1:F:279:ARG:HG2	1.80	0.43
1:D:529:LEU:CD1	1:F:518:LEU:HD13	2.45	0.43
1:B:516:LYS:HA	1:B:519:LEU:CD2	2.46	0.43
1:B:345:SER:HB3	5:B:704:HOH:O	2.19	0.43
1:B:359:PRO:O	1:B:360:LEU:CB	2.66	0.43
1:F:238:ARG:CZ	1:F:470:GLN:HE21	2.32	0.43
1:F:401:THR:HG22	1:F:404:GLU:CB	2.49	0.43
1:B:519:LEU:N	1:B:519:LEU:CD1	2.79	0.43
1:E:63:SER:HB3	1:E:232:ASP:OD1	2.18	0.43
1:A:26:LEU:HD21	1:A:394:ALA:HB2	2.00	0.43
1:B:236:ILE:HD11	1:B:375:LEU:HB3	2.01	0.43
1:C:401:THR:HG22	1:C:404:GLU:HG3	2.00	0.43
1:D:529:LEU:HD11	1:F:518:LEU:CD1	2.45	0.43
2:A:601:FAD:HM73	3:A:602:NAP:C6N	2.49	0.43
1:B:401:THR:HG22	1:B:404:GLU:CB	2.48	0.43
1:E:288:LEU:HB3	1:E:289:PRO:HD3	2.01	0.43
1:F:238:ARG:NE	1:F:470:GLN:HE22	2.12	0.43
1:B:19:ARG:NH1	1:B:19:ARG:HG2	2.33	0.42
1:E:279:ARG:CG	1:E:279:ARG:NH1	2.79	0.42
1:E:359:PRO:O	1:E:360:LEU:CB	2.67	0.42
1:F:83:HIS:HD2	1:F:85:SER:OG	2.02	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:F:216:SER:O	1:F:273:PRO:HA	2.19	0.42
1:D:33:ARG:HH11	1:D:33:ARG:CG	2.12	0.42
1:D:288:LEU:HB3	1:D:289:PRO:HD3	2.01	0.42
1:D:520:PHE:O	1:D:524:LEU:HB2	2.19	0.42
1:E:19:ARG:NH1	1:E:472:ARG:NH2	2.67	0.42
1:F:520:PHE:N	1:F:521:PRO:CD	2.82	0.42
1:A:83:HIS:HD2	1:A:85:SER:OG	2.02	0.42
1:C:173:SER:HB3	1:C:328:ALA:HA	2.01	0.42
1:C:516:LYS:HA	1:C:519:LEU:CD2	2.49	0.42
1:E:401:THR:HG22	1:E:404:GLU:CB	2.48	0.42
1:D:401:THR:HG22	1:D:404:GLU:CB	2.48	0.42
1:A:520:PHE:N	1:A:521:PRO:CD	2.82	0.42
1:D:205:HIS:HE1	1:D:287:GLU:OE1	2.03	0.42
1:B:83:HIS:HD2	1:B:85:SER:OG	2.02	0.42
1:B:401:THR:HG22	1:B:404:GLU:HG3	2.00	0.42
1:F:33:ARG:HG2	2:F:601:FAD:C4A	2.49	0.42
1:F:172:HIS:CD2	1:F:174:ARG:HB2	2.50	0.42
1:F:205:HIS:HE1	1:F:287:GLU:OE1	2.02	0.42
1:F:513:ASN:O	1:F:517:ILE:HD13	2.19	0.42
1:D:359:PRO:O	1:D:360:LEU:CB	2.67	0.42
1:F:3:LYS:N	1:F:141:ASP:OD2	2.53	0.42
1:F:158:GLU:O	1:F:158:GLU:CG	2.67	0.42
1:B:172:HIS:CD2	1:B:174:ARG:HB2	2.50	0.42
1:C:83:HIS:HD2	1:C:85:SER:OG	2.03	0.42
1:C:401:THR:HG22	1:C:404:GLU:CB	2.49	0.42
1:A:359:PRO:O	1:A:360:LEU:CB	2.68	0.42
1:E:364:PRO:HA	5:E:741:HOH:O	2.19	0.42
1:F:236:ILE:HD11	1:F:375:LEU:HB3	2.02	0.42
1:A:135:LYS:CB	5:A:716:HOH:O	2.68	0.42
1:B:498:ARG:NH2	1:B:503:GLY:O	2.53	0.42
1:C:105:GLN:HG3	5:C:739:HOH:O	2.20	0.42
1:C:520:PHE:N	1:C:521:PRO:CD	2.83	0.42
1:D:171:PHE:CZ	1:D:326:ILE:HD13	2.55	0.41
1:D:236:ILE:HD11	1:D:375:LEU:HB3	2.01	0.41
1:A:18:ILE:HG22	1:A:100:LEU:HD22	2.01	0.41
1:A:401:THR:HG22	1:A:404:GLU:CB	2.50	0.41
1:A:495:LYS:N	1:A:496:PRO:HD2	2.35	0.41
1:A:507:ARG:H	1:A:507:ARG:HG2	1.47	0.41
1:F:125:TRP:CH2	1:F:366:LEU:HB2	2.55	0.41
1:A:116:ARG:NH2	1:A:139:VAL:HG21	2.35	0.41
1:B:33:ARG:NH1	1:B:33:ARG:CG	2.73	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:116:ARG:HG3	1:D:124:GLN:HB2	2.03	0.41
1:B:529:LEU:HD13	1:C:518:LEU:HD22	2.01	0.41
1:A:82:MET:HE2	1:A:82:MET:HB2	1.68	0.41
1:A:116:ARG:HB2	1:A:124:GLN:O	2.21	0.41
1:F:279:ARG:HH11	1:F:279:ARG:HG3	1.85	0.41
1:D:216:SER:O	1:D:273:PRO:HA	2.21	0.41
1:D:491:ASP:HA	1:D:507:ARG:HH12	1.86	0.41
1:A:378:THR:HG21	2:A:601:FAD:C5'	2.50	0.41
1:C:83:HIS:CD2	1:C:85:SER:H	2.39	0.41
1:E:279:ARG:HH11	1:E:279:ARG:HG3	1.85	0.41
1:D:522:VAL:HA	1:D:525:LEU:HD12	2.03	0.41
1:A:155:LEU:CD2	1:A:172:HIS:HB2	2.50	0.41
1:A:288:LEU:HB3	1:A:289:PRO:HD3	2.02	0.41
1:B:495:LYS:N	1:B:496:PRO:HD2	2.36	0.41
1:C:236:ILE:HD11	1:C:375:LEU:HB3	2.03	0.41
1:F:49:GLU:OE2	1:F:49:GLU:HA	2.21	0.41
1:A:512:TYR:OH	5:A:701:HOH:O	2.22	0.41
1:B:205:HIS:HE1	1:B:287:GLU:OE1	2.02	0.41
1:B:279:ARG:HG2	1:B:279:ARG:NH1	2.34	0.41
1:E:83:HIS:CD2	1:E:85:SER:H	2.39	0.41
1:D:356:ILE:HD11	1:D:385:GLN:HG2	2.03	0.41
1:B:216:SER:O	1:B:273:PRO:HA	2.20	0.41
1:B:516:LYS:HE3	1:B:516:LYS:HB3	1.92	0.41
1:C:49:GLU:OE2	1:C:49:GLU:HA	2.20	0.41
1:C:152:TYR:CE2	1:C:334:ALA:HB3	2.56	0.41
1:E:216:SER:O	1:E:273:PRO:HA	2.20	0.41
1:F:516:LYS:O	1:F:516:LYS:HG2	2.21	0.41
1:B:451:PHE:CE1	1:B:459:LEU:HD23	2.56	0.41
1:F:238:ARG:NE	1:F:470:GLN:HE21	2.16	0.41
1:A:158:GLU:O	1:A:158:GLU:CG	2.68	0.40
1:A:216:SER:O	1:A:273:PRO:HA	2.21	0.40
1:A:519:LEU:HD23	1:A:519:LEU:N	2.36	0.40
1:B:171:PHE:CZ	1:B:326:ILE:HD13	2.56	0.40
1:D:41:TRP:CE2	1:D:87:LEU:HD23	2.56	0.40
1:A:125:TRP:CH2	1:A:366:LEU:HB2	2.56	0.40
1:C:279:ARG:HH11	1:C:279:ARG:HG3	1.83	0.40
1:D:504:GLU:O	1:D:506:LYS:HD3	2.21	0.40
1:A:125:TRP:HH2	1:A:361:LEU:HD21	1.85	0.40
1:D:238:ARG:NH1	1:D:470:GLN:NE2	2.56	0.40
1:D:529:LEU:CD1	1:F:518:LEU:CD1	2.99	0.40
1:A:33:ARG:NE	2:A:601:FAD:C5A	2.85	0.40

6SE3

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:164:LYS:HE3	5:A:727:HOH:O	2.21	0.40
1:C:510:LEU:O	1:C:512:TYR:N	2.54	0.40
1:E:82:MET:HE2	1:E:87:LEU:HB2	2.04	0.40
1:F:359:PRO:O	1:F:360:LEU:CB	2.69	0.40
1:B:518:LEU:HD21	1:C:525:LEU:HD12	2.04	0.40
1:C:171:PHE:CZ	1:C:326:ILE:HD13	2.56	0.40
1:E:150:HIS:HD2	2:E:601:FAD:O2'	2.04	0.40
2:F:601:FAD:H5'1	2:F:601:FAD:O2'	2.22	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	А	526/532~(99%)	481 (91%)	41 (8%)	4 (1%)	19	49
1	В	526/532~(99%)	487 (93%)	34 (6%)	5 (1%)	15	44
1	С	526/532~(99%)	489 (93%)	32 (6%)	5 (1%)	15	44
1	D	526/532~(99%)	484 (92%)	38 (7%)	4 (1%)	19	49
1	Е	526/532~(99%)	487 (93%)	34 (6%)	5 (1%)	15	44
1	F	526/532~(99%)	485 (92%)	37 (7%)	4 (1%)	19	49
All	All	3156/3192 (99%)	2913 (92%)	216 (7%)	27 (1%)	17	46

All (27) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	D	511	PHE
1	А	511	PHE
1	В	511	PHE
1	С	511	PHE

Mol	Chain	Res	Type
1	Е	511	PHE
1	D	346	ARG
1	D	529	LEU
1	А	529	LEU
1	В	346	ARG
1	В	529	LEU
1	С	346	ARG
1	С	529	LEU
1	Е	346	ARG
1	Е	529	LEU
1	F	346	ARG
1	F	511	PHE
1	F	529	LEU
1	В	513	ASN
1	С	513	ASN
1	Е	513	ASN
1	D	513	ASN
1	А	513	ASN
1	А	346	ARG
1	F	513	ASN
1	Е	527	VAL
1	С	527	VAL
1	В	527	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perc	entiles
1	А	459/462~(99%)	402 (88%)	57 (12%)	4	14
1	В	459/462~(99%)	408 (89%)	51 (11%)	6	19
1	С	459/462~(99%)	416 (91%)	43~(9%)	8	26
1	D	459/462~(99%)	414 (90%)	45 (10%)	8	24
1	Ε	459/462~(99%)	415 (90%)	44 (10%)	8	24
1	F	459/462~(99%)	410 (89%)	49 (11%)	6	20

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
All	All	2754/2772 (99%)	2465 (90%)	289 (10%)	7 20

All (289) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	D	12	VAL
1	D	19	ARG
1	D	33	ARG
1	D	51	ARG
1	D	54	ILE
1	D	56	GLN
1	D	61	ASN
1	D	77	ASP
1	D	82	MET
1	D	108	THR
1	D	125	TRP
1	D	167	LYS
1	D	170	CYS
1	D	173	SER
1	D	178	GLU
1	D	216	SER
1	D	237	THR
1	D	251	ILE
1	D	252	SER
1	D	258	LYS
1	D	272	MET
1	D	279	ARG
1	D	285	ASN
1	D	304	LYS
1	D	308	GLU
1	D	312	ILE
1	D	317	THR
1	D	326	ILE
1	D	349	GLU
1	D	373	GLN
1	D	375	LEU
1	D	384	LEU
1	D	401	THR
1	D	403	ASN
1	D	450	LEU
1	D	480	ASP
1	D	494	LEU

Mol	Chain	Res	Type
1	D	499	THR
1	D	507	ARG
1	D	512	TYR
1	D	513	ASN
1	D	520	PHE
1	D	523	LEU
1	D	525	LEU
1	D	529	LEU
1	А	12	VAL
1	А	19	ARG
1	А	22	LEU
1	А	33	ARG
1	А	49	GLU
1	А	51	ARG
1	А	54	ILE
1	А	56	GLN
1	А	61	ASN
1	А	108	THR
1	А	116	ARG
1	А	121	VAL
1	А	125	TRP
1	А	132	ASP
1	А	147	SER
1	А	155	LEU
1	А	158	GLU
1	А	170	CYS
1	А	173	SER
1	А	178	GLU
1	А	181	ILE
1	А	215	ARG
1	A	216	SER
1	А	237	THR
1	A	240	GLU
1	Α	252	SER
1	A	258	LYS
1	А	279	ARG
1	A	285	ASN
1	А	312	ILE
1	A	317	THR
1	А	333	TYR
1	A	338	LEU
1	А	340	ASP

Mol	Chain	Res	Type
1	А	349	GLU
1	А	373	GLN
1	А	375	LEU
1	А	384	LEU
1	А	398	THR
1	А	403	ASN
1	А	413	MET
1	А	433	TYR
1	А	480	ASP
1	А	494	LEU
1	А	497	THR
1	А	498	ARG
1	А	499	THR
1	А	506	LYS
1	А	512	TYR
1	А	513	ASN
1	А	514	LEU
1	А	515	LEU
1	А	516	LYS
1	А	517	ILE
1	А	519	LEU
1	А	523	LEU
1	А	525	LEU
1	В	12	VAL
1	В	19	ARG
1	В	33	ARG
1	В	40	LEU
1	В	51	ARG
1	В	54	ILE
1	В	56	GLN
1	В	61	ASN
1	В	77	ASP
1	В	82	MET
1	В	108	THR
1	В	121	VAL
1	В	125	TRP
1	В	155	LEU
1	В	167	LYS
1	В	169	LYS
1	В	170	CYS
1	В	173	SER
1	В	178	GLU

Mol	Chain	Res	Type
1	В	216	SER
1	В	237	THR
1	В	252	SER
1	В	279	ARG
1	В	280	LYS
1	В	285	ASN
1	В	304	LYS
1	В	308	GLU
1	В	312	ILE
1	В	317	THR
1	В	326	ILE
1	В	341	SER
1	В	343	ILE
1	В	349	GLU
1	В	373	GLN
1	В	375	LEU
1	В	384	LEU
1	В	403	ASN
1	В	444	LYS
1	В	480	ASP
1	В	494	LEU
1	В	499	THR
1	В	506	LYS
1	В	507	ARG
1	В	511	PHE
1	В	512	TYR
1	В	516	LYS
1	В	519	LEU
1	В	520	PHE
1	В	523	LEU
1	В	525	LEU
1	В	529	LEU
1	С	12	VAL
1	С	19	ARG
1	С	33	ARG
1	С	51	ARG
1	С	54	ILE
1	С	56	GLN
1	С	61	ASN
1	C	77	ASP
1	С	82	MET
1	С	108	THR

Mol	Chain	Res	Type
1	С	125	TRP
1	С	170	CYS
1	С	173	SER
1	С	178	GLU
1	С	209	LYS
1	С	216	SER
1	С	237	THR
1	С	240	GLU
1	С	252	SER
1	С	258	LYS
1	С	274	LEU
1	С	279	ARG
1	С	285	ASN
1	С	308	GLU
1	С	312	ILE
1	С	317	THR
1	С	326	ILE
1	С	349	GLU
1	С	373	GLN
1	С	375	LEU
1	С	384	LEU
1	С	403	ASN
1	С	478	LYS
1	С	480	ASP
1	С	494	LEU
1	С	499	THR
1	С	507	ARG
1	С	512	TYR
1	С	513	ASN
1	С	514	LEU
1	С	519	LEU
1	С	525	LEU
1	С	529	LEU
1	Е	12	VAL
1	Е	19	ARG
1	Е	33	ARG
1	Е	40	LEU
1	Е	51	ARG
1	Е	54	ILE
1	Е	56	GLN
1	E	61	ASN
1	Е	82	MET

Mol	Chain	Res	Type
1	Е	108	THR
1	Е	125	TRP
1	Е	155	LEU
1	Е	167	LYS
1	Е	170	CYS
1	Е	173	SER
1	Е	178	GLU
1	Е	216	SER
1	Е	237	THR
1	Е	252	SER
1	Е	258	LYS
1	Е	279	ARG
1	Е	285	ASN
1	Е	300	LYS
1	Е	304	LYS
1	Е	312	ILE
1	Е	317	THR
1	Е	326	ILE
1	Е	343	ILE
1	Е	373	GLN
1	Е	375	LEU
1	Е	384	LEU
1	Е	403	ASN
1	Е	480	ASP
1	Е	494	LEU
1	Е	499	THR
1	Е	506	LYS
1	Е	507	ARG
1	Е	511	PHE
1	E	512	TYR
1	Е	516	LYS
1	E	519	LEU
1	Е	520	PHE
1	E	523	LEU
1	Е	525	LEU
1	F	19	ARG
1	F	33	ARG
1	F	49	GLU
1	F	51	ARG
1	F	54	ILE
1	F	56	GLN
1	F	61	ASN

Mol	Chain	Res	Type
1	F	63	SER
1	F	77	ASP
1	F	82	MET
1	F	108	THR
1	F	120	SER
1	F	121	VAL
1	F	122	THR
1	F	125	TRP
1	F	132	ASP
1	F	169	LYS
1	F	170	CYS
1	F	173	SER
1	F	178	GLU
1	F	181	ILE
1	F	216	SER
1	F	237	THR
1	F	252	SER
1	F	258	LYS
1	F	274	LEU
1	F	279	ARG
1	F	285	ASN
1	F	312	ILE
1	F	317	THR
1	F	326	ILE
1	F	344	LYS
1	F	349	GLU
1	F	373	GLN
1	F	375	LEU
1	F	384	LEU
1	F	403	ASN
1	F	480	ASP
1	F'	494	LEU
1	F'	498	ARG
1	F'	506	LYS
1	F'	507	ARG
1	F'	511	PHE
1	F'	512	TYR
1	F'	513	ASN
1	F'	516	LYS
1	F	523	LEU
1	F	525	LEU
1	F	529	LEU

Continued from previous page...

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (50) such sidechains are listed below:

Mol	Chain	Res	Type
1	D	56	GLN
1	D	61	ASN
1	D	83	HIS
1	D	150	HIS
1	D	172	HIS
1	D	205	HIS
1	D	285	ASN
1	D	373	GLN
1	D	470	GLN
1	А	56	GLN
1	А	83	HIS
1	A	150	HIS
1	A	172	HIS
1	A	205	HIS
1	A	285	ASN
1	А	395	ASN
1	В	56	GLN
1	В	61	ASN
1	В	83	HIS
1	В	150	HIS
1	В	172	HIS
1	В	205	HIS
1	В	285	ASN
1	В	373	GLN
1	В	470	GLN
1	В	513	ASN
1	С	56	GLN
1	С	61	ASN
1	C	83	HIS
1	C	150	HIS
1	C	172	HIS
1	C	205	HIS
1	C	285	ASN
1	С	470	GLN
1	Е	56	GLN
1	E	61	ASN
1	Е	83	HIS
1	E	150	HIS
1	Е	172	HIS
1	E	205	HIS
1	E	285	ASN

\mathbf{Mol}	Chain	Res	Type
1	Е	470	GLN
1	F	56	GLN
1	F	61	ASN
1	F	83	HIS
1	F	150	HIS
1	F	172	HIS
1	F	205	HIS
1	F	285	ASN
1	F	470	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

18 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Type	Chain	Dec	Tiple	Bond lengths			Bond angles			
INIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
2	FAD	F	601	-	54,58,58	1.40	11 (20%)	71,89,89	1.63	15 (21%)
3	NAP	В	602	-	46,52,52	1.01	1 (2%)	61,80,80	1.62	7 (11%)
4	OXY	С	603	-	$1,\!1,\!1$	0.03	0	-		
2	FAD	А	601	-	54,58,58	2.13	10 (18%)	71,89,89	2.32	24 (33%)

Mal	Jol Type Chain Res		Dog	Link	В	Bond lengths			Bond angles		
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
4	OXY	F	603	-	$1,\!1,\!1$	0.05	0	-			
3	NAP	Е	602	-	$46,\!52,\!52$	1.13	3 (6%)	61,80,80	1.76	12 (19%)	
4	OXY	D	603	-	$1,\!1,\!1$	0.14	0	-			
2	FAD	С	601	-	$54,\!58,\!58$	1.51	11 (20%)	71,89,89	1.60	17 (23%)	
3	NAP	С	602	-	46,52,52	0.90	2 (4%)	61,80,80	1.87	15 (24%)	
4	OXY	А	603	-	$1,\!1,\!1$	0.04	0	-			
4	OXY	В	603	-	$1,\!1,\!1$	0.06	0	-			
2	FAD	Е	601	-	$54,\!58,\!58$	1.20	4 (7%)	71,89,89	1.37	11 (15%)	
2	FAD	В	601	-	54,58,58	1.53	8 (14%)	71,89,89	1.68	16 (22%)	
3	NAP	D	602	-	46,52,52	1.11	3 (6%)	61,80,80	1.39	8 (13%)	
3	NAP	F	602	-	$46,\!52,\!52$	1.23	1 (2%)	61,80,80	1.64	14 (22%)	
2	FAD	D	601	-	54,58,58	1.56	10 (18%)	71,89,89	1.74	15 (21%)	
3	NAP	А	602	-	46,52,52	1.14	4 (8%)	61,80,80	1.90	18 (29%)	
4	OXY	Е	603	-	$1,\!1,\!1$	0.05	0	-			

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	FAD	F	601	-	-	7/30/50/50	0/6/6/6
3	NAP	В	602	-	-	4/31/67/67	0/5/5/5
2	FAD	А	601	-	-	15/30/50/50	0/6/6/6
3	NAP	Е	602	-	-	6/31/67/67	0/5/5/5
2	FAD	С	601	-	-	6/30/50/50	0/6/6/6
3	NAP	С	602	-	-	7/31/67/67	0/5/5/5
2	FAD	Е	601	-	-	6/30/50/50	0/6/6/6
2	FAD	В	601	-	-	4/30/50/50	0/6/6/6
3	NAP	D	602	-	-	2/31/67/67	0/5/5/5
3	NAP	F	602	-	-	5/31/67/67	0/5/5/5
2	FAD	D	601	-	-	7/30/50/50	0/6/6/6
3	NAP	А	602	-	-	7/31/67/67	0/5/5/5

All (68) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	А	601	FAD	P-O3P	8.38	1.68	1.59
3	F	602	NAP	PN-O3	6.01	1.66	1.59
2	А	601	FAD	C9A-C5X	5.86	1.50	1.41
2	С	601	FAD	C9A-C5X	5.53	1.50	1.41
2	А	601	FAD	PA-O3P	5.41	1.65	1.59
2	Е	601	FAD	C9A-C5X	5.01	1.49	1.41
2	А	601	FAD	C5'-C4'	4.75	1.58	1.51
2	В	601	FAD	C9A-C5X	4.67	1.48	1.41
2	D	601	FAD	C9A-C5X	4.28	1.48	1.41
2	D	601	FAD	PA-O3P	4.21	1.64	1.59
2	С	601	FAD	C8-C7	3.82	1.50	1.40
2	F	601	FAD	C9A-C5X	3.76	1.47	1.41
3	В	602	NAP	PN-O3	3.65	1.63	1.59
2	В	601	FAD	P-O3P	3.64	1.63	1.59
2	А	601	FAD	C8-C7	3.63	1.49	1.40
2	D	601	FAD	O4B-C1B	3.56	1.45	1.40
3	D	602	NAP	PA-O3	3.54	1.63	1.59
2	В	601	FAD	C5X-N5	-3.42	1.33	1.39
2	F	601	FAD	P-O3P	3.38	1.63	1.59
2	А	601	FAD	O4B-C1B	3.32	1.45	1.40
2	В	601	FAD	C4-N3	-3.23	1.32	1.38
3	А	602	NAP	O4D-C1D	3.17	1.45	1.40
2	В	601	FAD	C6-C5X	-2.97	1.35	1.40
3	А	602	NAP	C2A-N3A	2.96	1.36	1.32
2	С	601	FAD	C5X-N5	-2.95	1.34	1.39
2	D	601	FAD	C4-N3	-2.92	1.33	1.38
3	Е	602	NAP	O4D-C1D	2.91	1.44	1.40
2	D	601	FAD	C6-C7	-2.89	1.35	1.39
2	F	601	FAD	C5X-N5	-2.75	1.34	1.39
2	F	601	FAD	C6-C5X	-2.70	1.35	1.40
3	Ε	602	NAP	PN-O3	2.60	1.62	1.59
2	Ε	601	FAD	C8-C7	2.57	1.47	1.40
2	D	601	FAD	C8-C7	2.51	1.47	1.40
2	D	601	FAD	C2-N3	-2.47	1.33	1.39
2	С	601	FAD	C10-N10	2.45	1.42	1.37
2	С	601	FAD	C4'-C3'	-2.44	1.49	1.53
2	A	601	FAD	C4A-N3A	2.43	1.38	1.35
2	F	601	FAD	PA-O3P	2.40	1.62	1.59
2	С	601	FAD	C4X-N5	2.38	1.35	1.30
2	D	601	FAD	C2A-N3A	2.31	1.35	1.32
2	С	601	FAD	P-O3P	2.31	1.62	1.59
2	В	601	FAD	C8-C7	2.29	1.46	1.40
3	С	602	NAP	C2D-C3D	-2.29	1.47	1.53

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	Е	602	NAP	C5D-C4D	2.28	1.58	1.51
2	F	601	FAD	C9-C8	-2.27	1.36	1.39
2	А	601	FAD	C2A-N3A	2.26	1.35	1.32
2	F	601	FAD	O4B-C1B	2.25	1.43	1.40
3	D	602	NAP	C2A-N3A	2.23	1.35	1.32
2	F	601	FAD	C6-C7	-2.22	1.36	1.39
2	С	601	FAD	C10-N1	2.22	1.37	1.33
2	D	601	FAD	C5'-C4'	2.21	1.54	1.51
2	А	601	FAD	C2'-C3'	2.18	1.57	1.53
2	В	601	FAD	C5'-C4'	2.18	1.54	1.51
2	F	601	FAD	C8-C7	2.15	1.46	1.40
2	Е	601	FAD	PA-O3P	2.12	1.61	1.59
3	А	602	NAP	PN-O5D	2.12	1.67	1.59
2	А	601	FAD	C4X-N5	2.11	1.35	1.30
3	А	602	NAP	C8A-N7A	2.11	1.38	1.34
2	D	601	FAD	C4'-C3'	2.10	1.57	1.53
2	С	601	FAD	O4-C4	2.09	1.27	1.23
2	F	601	FAD	C4X-N5	2.06	1.35	1.30
2	С	601	FAD	O2-C2	2.04	1.28	1.24
2	Е	601	FAD	C5A-N7A	-2.04	1.32	1.39
3	С	602	NAP	O4B-C1B	2.04	1.43	1.40
2	F	601	FAD	C9-C9A	-2.02	1.36	1.39
2	С	601	FAD	PA-O3P	2.01	1.61	1.59
3	D	602	NAP	O4B-C1B	2.01	1.43	1.40
2	В	601	FAD	C4X-N5	2.00	1.35	1.30

All (172) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	А	601	FAD	O4B-C1B-N9A	8.33	119.79	108.75
3	А	602	NAP	N3A-C2A-N1A	-5.90	120.66	128.67
2	D	601	FAD	C4-C4X-N5	5.74	126.13	118.21
2	А	601	FAD	N3A-C2A-N1A	-5.72	120.91	128.67
2	F	601	FAD	N3A-C2A-N1A	-5.64	121.02	128.67
3	Е	602	NAP	C4B-O4B-C1B	-5.62	104.78	109.92
3	С	602	NAP	O7N-C7N-C3N	-5.45	112.94	119.60
2	С	601	FAD	N3A-C2A-N1A	-5.40	121.34	128.67
3	Е	602	NAP	N3A-C2A-N1A	-5.37	121.38	128.67
2	А	601	FAD	O5'-C5'-C4'	5.14	123.08	109.36
3	С	602	NAP	O4B-C1B-N9A	5.11	115.53	108.75
3	C	602	NAP	N3A-C2A-N1A	-5.08	121.77	128.67
3	В	602	NAP	N3A-C2A-N1A	-4.84	122.11	128.67

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	F	602	NAP	N3A-C2A-N1A	-4.82	122.13	128.67
2	F	601	FAD	O4-C4-C4X	-4.66	114.22	126.53
3	D	602	NAP	N3A-C2A-N1A	-4.66	122.35	128.67
2	А	601	FAD	O5'-P-O1P	-4.50	91.08	108.94
3	F	602	NAP	C1B-N9A-C4A	-4.37	118.97	126.64
3	С	602	NAP	O3-PA-O1A	-4.30	97.78	110.70
3	В	602	NAP	O4B-C1B-N9A	4.24	114.36	108.75
2	А	601	FAD	C1B-N9A-C4A	-4.19	119.28	126.64
2	А	601	FAD	O2'-C2'-C3'	4.19	119.05	109.25
3	С	602	NAP	C1B-N9A-C4A	-4.17	119.31	126.64
2	В	601	FAD	C4-C4X-N5	4.13	123.91	118.21
3	В	602	NAP	O2N-PN-O3	-4.04	96.34	107.27
2	D	601	FAD	C10-C4X-N5	-4.02	116.60	124.81
3	А	602	NAP	C4B-O4B-C1B	4.01	113.59	109.92
3	А	602	NAP	C3N-C7N-N7N	3.95	122.61	117.74
3	А	602	NAP	C6N-N1N-C2N	-3.95	118.52	121.88
2	В	601	FAD	C5'-C4'-C3'	3.79	119.36	112.22
2	D	601	FAD	C4X-C10-N10	3.78	121.89	116.48
2	D	601	FAD	O2-C2-N1	-3.70	115.65	121.80
2	А	601	FAD	O4-C4-C4X	-3.64	116.91	126.53
2	А	601	FAD	C4B-O4B-C1B	-3.61	106.62	109.92
2	В	601	FAD	C4A-C5A-N7A	-3.60	105.53	109.34
3	Е	602	NAP	C1B-N9A-C4A	-3.60	120.32	126.64
2	А	601	FAD	C4-C4X-N5	3.59	123.16	118.21
2	D	601	FAD	C5X-N5-C4X	3.50	123.75	118.09
2	С	601	FAD	O4-C4-C4X	-3.43	117.47	126.53
2	В	601	FAD	O4'-C4'-C5'	-3.41	102.47	109.99
2	С	601	FAD	C10-N1-C2	3.39	124.19	116.85
2	В	601	FAD	N3A-C2A-N1A	-3.37	124.11	128.67
2	Ε	601	FAD	O4-C4-C4X	-3.34	117.73	126.53
3	В	602	NAP	C3N-C7N-N7N	3.34	121.85	117.74
3	A	602	NAP	C1B-N9A-C4A	-3.33	120.79	126.64
2	В	601	FAD	C4B-O4B-C1B	-3.27	106.93	109.92
2	А	601	FAD	O3'-C3'-C2'	3.22	116.24	108.93
3	D	602	NAP	C5N-C4N-C3N	-3.18	117.23	120.36
3	А	602	NAP	O7N-C7N-C3N	-3.17	115.73	119.60
2	В	601	FAD	C4X-C4-N3	3.16	121.31	113.25
2	D	601	FAD	O4'-C4'-C5'	-3.12	103.11	109.99
3	С	602	NAP	O3X-P2B-O2X	3.11	119.45	107.80
2	В	601	FAD	C1'-C2'-C3'	3.09	118.03	109.66
3	А	602	NAP	C4A-C5A-N7A	-3.09	106.08	109.34
2	С	601	FAD	C4'-C3'-C2'	-3.05	108.50	113.57

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	F	601	FAD	C4X-C4-N3	3.03	120.97	113.25
3	В	602	NAP	C4D-O4D-C1D	-3.01	107.17	109.92
2	D	601	FAD	C5'-C4'-C3'	3.00	117.89	112.22
3	F	602	NAP	C4D-O4D-C1D	-2.96	107.22	109.92
3	В	602	NAP	C1B-N9A-C4A	-2.95	121.45	126.64
2	А	601	FAD	O2A-PA-O5B	-2.94	94.24	107.57
3	А	602	NAP	O3X-P2B-O2X	2.94	118.81	107.80
3	Ε	602	NAP	N6A-C6A-N1A	2.91	124.56	118.33
2	Е	601	FAD	O2'-C2'-C1'	-2.91	98.24	110.20
2	Е	601	FAD	C4-C4X-N5	2.86	122.16	118.21
2	А	601	FAD	C9A-C5X-N5	-2.85	119.43	122.45
2	С	601	FAD	C5'-C4'-C3'	2.85	117.59	112.22
3	С	602	NAP	O7N-C7N-N7N	2.81	126.68	122.62
2	D	601	FAD	N3A-C2A-N1A	-2.81	124.86	128.67
3	F	602	NAP	O3X-P2B-O2B	-2.80	94.95	105.85
3	С	602	NAP	O3X-P2B-O2B	-2.79	94.97	105.85
3	А	602	NAP	O2N-PN-O3	-2.75	99.84	107.27
2	F	601	FAD	C4-N3-C2	-2.75	120.76	125.64
3	Е	602	NAP	O4B-C4B-C3B	2.75	110.60	105.15
2	Е	601	FAD	C4A-C5A-N7A	-2.73	106.45	109.34
3	F	602	NAP	O3X-P2B-O1X	2.72	121.44	110.83
2	А	601	FAD	C4X-C4-N3	2.70	120.11	113.25
2	В	601	FAD	O4-C4-C4X	-2.69	119.43	126.53
2	А	601	FAD	C7M-C7-C6	2.69	124.31	119.57
2	Е	601	FAD	C10-N1-C2	2.69	122.67	116.85
2	Ε	601	FAD	O2'-C2'-C3'	2.68	115.52	109.25
3	А	602	NAP	O5D-C5D-C4D	2.68	118.10	108.99
3	А	602	NAP	C3B-C2B-C1B	2.67	107.92	102.81
2	F	601	FAD	C4'-C3'-C2'	-2.67	109.12	113.57
3	D	602	NAP	O3X-P2B-O2X	2.67	117.81	107.80
3	F	$60\overline{2}$	NAP	O7N-C7N-C3N	-2.67	$116.3\overline{4}$	119.60
2	A	601	FAD	O2-C2-N1	-2.66	117.37	121.80
2	В	601	FAD	C1'-N10-C9A	$2.6\overline{5}$	125.78	120.63
2	D	601	FAD	C4X-C10-N1	-2.65	118.10	124.59
3	Ε	602	NAP	O2A-PA-O1A	2.63	124.70	112.44
3	C	$60\overline{2}$	NAP	C2N-C3N-C4N	$2.6\overline{3}$	121.31	$118.\overline{26}$
3	С	602	NAP	O3-PN-O1N	-2.62	102.82	110.70
2	F	601	FAD	C10-N1-C2	2.61	122.51	116.85
2	A	$60\overline{1}$	FAD	C1'-N10-C9A	2.61	$125.7\overline{0}$	120.63
2	В	601	FAD	C1B-N9A-C4A	-2.59	122.10	126.64
3	F	602	NAP	O2A-PA-O1A	2.58	124.44	112.44
2	Ε	601	FAD	O4B-C4B-C3B	2.57	110.25	105.15

Mol	Chain	Res	Tvne	Atoms	7	Observed $(^{o})$	Ideal(°)
0		601	FAD	$\bigcirc 3P_PA \cap 1A$	2 56	118.40	110 70
2 2		601	FAD	0.01 - 1 - 0.1 - 0.1 - 0.1 - 0.01 -	_2.00 _2.50	00.80	110.70
$\frac{2}{2}$	F E	601	FAD	$\frac{02 \cdot 02 \cdot 01}{04 \cdot C4 \text{ N3}}$	2.01 2.50	99.09 194.81	120.20
2	F F	602	NAP	04-04-103	$\frac{2.50}{2.50}$	124.01	105.15
<u>ງ</u>	F B	601	FAD	04D-04D-03D	2.30	00.07	100.10
2	D F	602	NAP	$\frac{02 - 02 - 01}{02 - 02 - 01}$	-2.49	99.97 100.54	100.20
<u>-</u>	F P	602	NAI NAD	$\begin{array}{c} 02D-1 \ 2D-01X \\ \hline 02X \ P2B \ 01X \end{array}$	-2.41	100.34	109.33
<u></u>	D F	602	NAI NAD	$\begin{array}{c} 03\text{A-1} 2\text{D-01A} \\ \hline 03\text{B} C3\text{B} C3\text{B} C2\text{B} \end{array}$	2.41	120.44	110.00
<u>-</u>		602	NAD	C6N N1N C2N	2.44 2.42	110.00	111.19
<u>ງ</u>	E D	601	FAD	$\frac{\text{CON-N1N-C2N}}{\text{N3A} \text{ C2A} \text{ N1A}}$	-2.43	119.01	121.00 128.67
2		601	FAD FAD	$C2^{\circ}$ $C1^{\circ}$ $N10$	-2.42	120.00	120.07
$\frac{2}{2}$	C	602	FAD NAD	$\frac{02 \cdot 01 \cdot 110}{024 \text{ PA} \cdot 014}$	2.42 2.41	121.04	110.20
<u></u> ვ		602	NAF NAD	02A-1A-01A	2.41 2.40	118 42	112.44
<u>.</u> ე		601		$O_{3}D$ -FIN-OIIN	2.40 2.20	110.40	100.94
$\frac{2}{2}$		601	FAD FAD	$\begin{array}{c} 04 - 04 - 00 \\ 020 D D 02D \end{array}$	-2.30	104.75	109.99
2		601	FAD FAD	$\begin{array}{c} 0.2\Gamma - \Gamma - 0.5\Gamma \\ \hline 0.2\Gamma - \Gamma - 0.5\Gamma \\ \hline \end{array}$	-2.31	100.80	107.27
2		601	FAD	$\bigcirc 4 - \bigcirc 4 \land - 1 \lor 0$	2.31	121.48	110.21
2	Г D	001 601	FAD	O_2A - ΓA - O_1A	2.31	120.40	112.44
2		001 601	FAD	$\begin{array}{c} 0.1 - \text{N10} - 0.9\text{A} \\ \hline 0.4\text{V} = 0.10 \text{ N1} \\ \end{array}$	2.37	120.20	120.03
2		602	FAD NAD	O2N DN OFD	-2.33	110.00	124.59
3 	A	602	NAP	O_{2N} -PN- O_{2D}	2.34	118.19	107.37
<u>3</u>		602 601	NAP FAD	OPD D OPD	2.34	111.84	108.75
<u></u>	B A	001 C02	FAD	O2P-P-O3P	-2.33	100.97	107.27
3	A	602 601	NAP FAD	O2X-P2B-O2B	-2.33	90.70	105.85
2	A	001 C02	FAD	$\frac{02 - 02 - 01}{100}$	-2.32	100.07	110.20
3	r D	602 C01		NOA-COA-NIA	2.31	123.28	118.33
2	B	601 C01	FAD	U2A-PA-U3P	2.28	113.44	107.27
2		600	FAD NAD	NO-UZ-INI	2.28	124.33	119.50
<u> </u>	E C	601	NAP FAD	$\frac{O(N-O(N-N)(N)}{O(N-D)(N-N)}$	2.28	125.91	122.02
2		001 601	FAD FAD	$O_{3}P_{-}P_{-}O_{1}A$	2.28	117.57	110.70
2		001 601	FAD FAD	OZA-PA-OIA	2.28	123.04	112.44
2		601	FAD	C4X-C4-N3	2.27	119.04	113.25
2		601 601	FAD	$\frac{\text{U8}\text{W}\text{-}\text{U8}\text{-}\text{U7}}{\text{O}\text{D}\text{-}\text{D}\text{-}\text{O}\text{1}\text{D}}$	-2.27	110.13	120.76
2		600	FAD	O2P-P-OIP	2.26	122.98	112.44
3		602		U2B-C2B-CIB	-2.26	102.10	110.05
2	E	601	FAD	C1D NOA C44	2.26	119.00	113.25
3	D	602	NAP	CIB-N9A-C4A	-2.25	122.68	126.64
2	Γ, Γ	601	FAD	C5'-C4'-C3'	2.25	116.45	112.22
2		601	FAD	N6A-C6A-N1A	2.24	123.13	118.33
2	D	601	FAD	C9-C9A-N10	2.24	124.87	121.85
2	F	601	FAD	C1B-N9A-C4A	-2.24	122.71	126.64
2	В	601	FAD	C10-N1-C2	2.23	121.68	116.85
2	Е	601	FAD	C4B-O4B-C1B	-2.23	107.88	109.92

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	А	601	FAD	C10-N1-C2	2.22	121.66	116.85
3	Е	602	NAP	O4B-C4B-C5B	-2.22	102.23	109.33
2	F	601	FAD	O3P-PA-O1A	-2.20	104.07	110.70
3	А	602	NAP	O4B-C1B-C2B	-2.20	102.85	106.61
2	F	601	FAD	O5'-C5'-C4'	-2.19	103.52	109.36
3	F	602	NAP	O3X-P2B-O2X	2.19	116.00	107.80
2	D	601	FAD	O3P-P-O1P	2.18	117.28	110.70
2	А	601	FAD	O5B-C5B-C4B	2.18	116.42	108.99
2	F	601	FAD	C4X-C10-N1	-2.18	119.25	124.59
3	А	602	NAP	P2B-O2B-C2B	-2.17	117.64	123.43
3	D	602	NAP	C4B-O4B-C1B	-2.17	107.94	109.92
2	С	601	FAD	C1'-C2'-C3'	2.16	115.52	109.66
2	А	601	FAD	C7M-C7-C8	-2.16	116.34	120.76
2	А	601	FAD	O2A-PA-O1A	2.16	122.50	112.44
3	Е	602	NAP	C4D-O4D-C1D	2.15	111.90	109.92
3	А	602	NAP	O2D-C2D-C3D	2.15	118.70	111.82
3	F	602	NAP	C2B-C1B-N9A	2.14	117.30	112.56
3	А	602	NAP	O3-PA-O1A	-2.13	104.30	110.70
2	D	601	FAD	C4A-C5A-N7A	-2.13	107.09	109.34
2	В	601	FAD	C4-C4X-C10	-2.12	113.30	116.93
3	D	602	NAP	O3X-P2B-O2B	-2.11	97.62	105.85
2	F	601	FAD	C4B-O4B-C1B	2.11	111.86	109.92
2	F	601	FAD	O2'-C2'-C1'	-2.11	101.54	110.20
2	А	601	FAD	N6A-C6A-N1A	2.11	122.83	118.33
3	А	602	NAP	C4D-O4D-C1D	2.09	111.84	109.92
3	С	602	NAP	C5N-C4N-C3N	-2.08	118.32	120.36
3	F	602	NAP	O7N-C7N-N7N	2.08	125.62	122.62
2	Ε	601	FAD	C9A-C5X-N5	-2.07	120.26	122.45
3	E	602	NAP	C2D-C3D-C4D	2.06	106.60	102.61
3	С	602	NAP	C6A-C5A-C4A	-2.05	113.92	117.90
3	C	602	NAP	C3N-C7N-N7N	2.02	120.23	117.74
2	Α	601	FAD	O2-C2-N3	2.01	122.45	118.58
3	D	602	NAP	O2B-C2B-C3B	-2.00	104.49	111.68

Continued from previous page...

There are no chirality outliers.

All (76) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	D	601	FAD	C5B-O5B-PA-O1A
2	D	601	FAD	C5B-O5B-PA-O3P
2	D	601	FAD	N10-C1'-C2'-O2'
2	D	601	FAD	N10-C1'-C2'-C3'

Mol	Chain	Res	Type	Atoms
2	А	601	FAD	C5B-O5B-PA-O1A
2	А	601	FAD	C5B-O5B-PA-O3P
2	А	601	FAD	N10-C1'-C2'-O2'
2	А	601	FAD	N10-C1'-C2'-C3'
2	А	601	FAD	C2'-C3'-C4'-O4'
2	А	601	FAD	C2'-C3'-C4'-C5'
2	В	601	FAD	N10-C1'-C2'-O2'
2	В	601	FAD	N10-C1'-C2'-C3'
2	С	601	FAD	C5B-O5B-PA-O1A
2	С	601	FAD	N10-C1'-C2'-O2'
2	С	601	FAD	N10-C1'-C2'-C3'
2	Е	601	FAD	C5B-O5B-PA-O1A
2	Е	601	FAD	N10-C1'-C2'-O2'
2	Е	601	FAD	N10-C1'-C2'-C3'
2	F	601	FAD	N10-C1'-C2'-O2'
2	F	601	FAD	N10-C1'-C2'-C3'
2	F	601	FAD	C5'-O5'-P-O2P
2	F	601	FAD	PA-O3P-P-O5'
3	А	602	NAP	O4D-C4D-C5D-O5D
3	F	602	NAP	C5B-O5B-PA-O1A
3	F	602	NAP	C5B-O5B-PA-O3
3	А	602	NAP	C3D-C4D-C5D-O5D
2	А	601	FAD	O3'-C3'-C4'-O4'
2	А	601	FAD	O3'-C3'-C4'-C5'
3	А	602	NAP	C3B-C2B-O2B-P2B
3	В	602	NAP	C3B-C2B-O2B-P2B
2	E	601	FAD	O4B-C4B-C5B-O5B
3	В	602	NAP	C1B-C2B-O2B-P2B
2	Е	601	FAD	C3B-C4B-C5B-O5B
2	С	601	FAD	O4B-C4B-C5B-O5B
2	D	601	FAD	O4B-C4B-C5B-O5B
2	С	601	FAD	C3B-C4B-C5B-O5B
2	F	601	FAD	P-O3P-PA-O1A
3	С	602	NAP	PN-O3-PA-O1A
2	A	601	FAD	C4'-C5'-O5'-P
3	C	602	NAP	C2N-C3N-C7N-O7N
2	A	601	FAD	P-O3P-PA-O5B
2	В	601	FAD	PA-O3P-P-O5'
3	A	602	NAP	PA-O3-PN-O5D
3	B	602	NAP	PA-O3-PN-O5D
3	С	602	NAP	PA-O3-PN-O5D
3	E	602	NAP	C4N-C3N-C7N-N7N

Continued from previous page...

Mol	Chain	Res	Type	Atoms
2	D	601	FAD	C3B-C4B-C5B-O5B
2	А	601	FAD	PA-O3P-P-O1P
3	Е	602	NAP	C4N-C3N-C7N-O7N
3	Е	602	NAP	C2N-C3N-C7N-N7N
2	D	601	FAD	C5B-O5B-PA-O2A
2	А	601	FAD	C5B-O5B-PA-O2A
2	Е	601	FAD	C5B-O5B-PA-O3P
3	А	602	NAP	C5B-O5B-PA-O1A
3	F	602	NAP	C5B-O5B-PA-O2A
2	F	601	FAD	P-O3P-PA-O2A
2	А	601	FAD	O4B-C4B-C5B-O5B
2	А	601	FAD	C3B-C4B-C5B-O5B
3	F	602	NAP	O4B-C4B-C5B-O5B
3	D	602	NAP	C2B-O2B-P2B-O1X
3	А	602	NAP	C2B-O2B-P2B-O1X
3	С	602	NAP	C2B-O2B-P2B-O1X
2	С	601	FAD	O4'-C4'-C5'-O5'
3	Е	602	NAP	C2N-C3N-C7N-O7N
3	А	602	NAP	C1B-C2B-O2B-P2B
3	С	602	NAP	C4N-C3N-C7N-O7N
3	В	602	NAP	O4B-C4B-C5B-O5B
2	А	601	FAD	PA-O3P-P-O2P
3	С	602	NAP	PN-O3-PA-O2A
2	В	601	FAD	O4B-C4B-C5B-O5B
3	Е	602	NAP	O4B-C4B-C5B-O5B
3	D	602	NAP	O4B-C4B-C5B-O5B
3	F	602	NAP	C2B-O2B-P2B-O1X
3	C	602	NAP	C2N-C3N-C7N-N7N
3	Е	602	NAP	PN-O3-PA-O2A
2	F	601	FAD	O4B-C4B-C5B-O5B

Continued from previous page...

There are no ring outliers.

12 monomers are involved in 41 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	F	601	FAD	4	0
3	В	602	NAP	3	0
2	А	601	FAD	18	0
3	Е	602	NAP	2	0
2	С	601	FAD	4	0
3	С	602	NAP	3	0
2	Е	601	FAD	3	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	В	601	FAD	2	0
3	D	602	NAP	5	0
3	F	602	NAP	4	0
2	D	601	FAD	2	0
3	А	602	NAP	4	0

Continued from previous page...

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	528/532~(99%)	1.24	110 (20%) 1 0	44, 110, 162, 232	0
1	В	528/532~(99%)	0.15	27 (5%) 28 19	41, 65, 112, 180	0
1	С	528/532~(99%)	-0.02	9 (1%) 70 63	35, 59, 100, 163	0
1	D	528/532~(99%)	0.10	18 (3%) 45 35	39, 62, 115, 155	0
1	Ε	528/532~(99%)	0.03	23 (4%) 34 24	37, 62, 111, 184	0
1	F	528/532~(99%)	-0.02	17 (3%) 47 37	36, 59, 100, 169	0
All	All	3168/3192~(99%)	0.25	204 (6%) 19 12	35, 65, 139, 232	0

All (204) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	142	ALA	11.6
1	А	367	ALA	10.3
1	А	405	MET	9.7
1	А	365	THR	8.8
1	С	527	VAL	8.3
1	А	25	GLY	8.3
1	А	359	PRO	8.2
1	А	113	VAL	7.6
1	А	474	MET	7.3
1	F	530	ALA	6.3
1	Е	514	LEU	6.2
1	А	143	VAL	6.2
1	А	343	ILE	6.0
1	А	390	ALA	5.8
1	А	351	THR	5.7
1	A	5	VAL	5.3
1	А	530	ALA	5.3
1	A	342	ILE	5.1
1	А	251	ILE	5.1

6SE3

Continued from previous page						
Mol	Chain	Res	Type	RSRZ		
1	D	527	VAL	5.0		
1	А	527	VAL	5.0		
1	В	527	VAL	5.0		
1	А	10	ALA	4.9		
1	А	451	PHE	4.8		
1	А	27	GLU	4.8		
1	А	22	LEU	4.8		
1	А	24	GLU	4.8		
1	А	353	PHE	4.7		
1	А	140	PHE	4.6		
1	А	366	LEU	4.6		
1	А	123	GLY	4.6		
1	А	388	TRP	4.6		
1	А	452	LEU	4.5		
1	В	523	LEU	4.4		
1	А	338	LEU	4.4		
1	А	345	SER	4.4		
1	В	530	ALA	4.4		
1	F	449	TRP	4.4		
1	А	141	ASP	4.3		
1	Е	530	ALA	4.3		
1	А	3	LYS	4.3		
1	А	364	PRO	4.3		
1	А	360	LEU	4.3		
1	А	341	SER	4.3		
1	В	457	LEU	4.2		
1	А	339	ASP	4.2		
1	F	527	VAL	4.2		
1	А	445	PRO	4.2		
1	А	449	TRP	4.2		
1	А	306	PHE	4.2		
1	А	158	GLU	4.2		
1	В	158	GLU	4.2		
1	А	26	LEU	4.1		
1	А	134	LYS	4.0		
1	А	121	VAL	4.0		
1	F	528	LEU	4.0		
1	А	6	ALA	4.0		
1	А	7	ILE	3.9		
1	А	139	VAL	3.9		
1	В	452	LEU	3.9		
1	А	357	PHE	3.9		

Mol	Chain	Res	Type	RSRZ
1	А	362	GLU	3.9
1	Е	527	VAL	3.7
1	F	347	ASN	3.7
1	А	94	PHE	3.7
1	А	363	LYS	3.7
1	А	31	PHE	3.7
1	В	157	LYS	3.6
1	D	160	PHE	3.6
1	Е	306	PHE	3.6
1	Е	511	PHE	3.6
1	А	250	ALA	3.6
1	А	41	TRP	3.5
1	А	4	LYS	3.5
1	А	28	PRO	3.5
1	D	169	LYS	3.5
1	В	164	LYS	3.5
1	А	164	LYS	3.5
1	А	453	THR	3.5
1	А	368	VAL	3.5
1	В	456	GLN	3.4
1	А	335	TYR	3.4
1	В	453	THR	3.4
1	А	347	ASN	3.4
1	А	124	GLN	3.3
1	С	165	HIS	3.3
1	D	324	CYS	3.3
1	А	470	GLN	3.3
1	С	519	LEU	3.3
1	F	447	ILE	3.3
1	В	160	PHE	3.2
1	А	29	THR	3.2
1	F	445	PRO	3.2
1	Е	452	LEU	3.2
1	Е	310	SER	3.2
1	А	23	GLU	3.2
1	В	449	TRP	3.1
1	А	515	LEU	3.1
1	F	519	LEU	3.1
1	F	446	ASN	3.1
1	А	476	PRO	3.1
1	А	395	ASN	3.1
1	Е	187	VAL	3.1

Mol	Chain	Res	Type	RSRZ
1	А	446	ASN	3.1
1	А	475	GLY	3.0
1	А	473	LEU	3.0
1	В	526	ALA	3.0
1	F	452	LEU	3.0
1	D	326	ILE	3.0
1	А	333	TYR	3.0
1	F	158	GLU	3.0
1	Е	171	PHE	3.0
1	А	514	LEU	2.9
1	А	122	THR	2.9
1	А	159	SER	2.9
1	А	349	GLU	2.9
1	В	182	PHE	2.9
1	Е	165	HIS	2.8
1	А	166	PHE	2.8
1	А	125	TRP	2.8
1	А	331	TYR	2.8
1	А	358	PRO	2.8
1	С	167	LYS	2.8
1	А	348	ASN	2.7
1	Е	168	GLY	2.7
1	А	118	ASP	2.7
1	А	399	LEU	2.7
1	В	249	THR	2.7
1	Е	453	THR	2.7
1	А	424	GLN	2.7
1	F	511	PHE	2.7
1	А	400	PRO	2.7
1	Е	170	CYS	2.7
1	А	213	SER	2.7
1	А	127	VAL	2.7
1	А	249	THR	2.6
1	F	25	GLY	2.6
1	В	510	LEU	2.6
1	D	171	PHE	2.6
1	А	165	HIS	2.6
1	D	286	ASP	2.6
1	А	248	PRO	2.6
1	Е	326	ILE	2.6
1	F	517	ILE	2.6
1	А	394	ALA	2.5

6SE3

Mol	Chain	Res	Type	RSRZ	
1	Е	251	ILE	2.5	
1	С	518	LEU	2.5	
1	Е	308	GLU	2.5	
1	D	167	LYS	2.5	
1	D	327	PHE	2.5	
1	Е	324	CYS	2.5	
1	В	294	CYS	2.5	
1	А	254	TRP	2.5	
1	А	324	CYS	2.5	
1	А	144	MET	2.4	
1	А	337	PHE	2.4	
1	А	247	LEU	2.4	
1	A	506	LYS	2.4	
1	D	451	PHE	2.4	
1	A	9	GLY	2.4	
1	В	250	ALA	2.4	
1	А	393	PHE	2.4	
1	В	286	ASP	2.4	
1	А	356	ILE	2.4	
1	D	157	LYS	2.4	
1	F	350	VAL	2.4	
1	А	328	ALA	2.4	
1	D	511	PHE	2.3	
1	Ε	248	PRO	2.3	
1	А	15	LEU	2.3	
1	А	391	LYS	2.3	
1	С	520	PHE	2.3	
1	D	224	VAL	2.3	
1	А	190	ILE	2.3	
1	В	159	SER	2.2	
1	D	452	LEU	2.2	
1	С	523	LEU	2.2	
1	А	310	SER	2.2	
1	F	349	GLU	2.2	
1	Е	249	THR	2.2	
1	А	513	ASN	2.1	
1	В	474	MET	2.1	
1	Е	515	LEU	2.1	
1	В	49	GLU	2.1	
1	С	446	ASN	2.1	
1	Е	312	ILE	2.1	
1	А	103	TYR	2.1	

Mol	Chain	Res	Type	RSRZ
1	В	522	VAL	2.1
1	Е	169	LYS	2.1
1	F	451	PHE	2.1
1	D	181	ILE	2.1
1	В	324	CYS	2.1
1	С	452	LEU	2.1
1	D	158	GLU	2.1
1	D	528	LEU	2.0
1	А	148	GLY	2.0
1	Е	502	VAL	2.0
1	В	513	ASN	2.0
1	D	140	PHE	2.0
1	В	166	PHE	2.0
1	А	46	HIS	2.0
1	В	248	PRO	2.0
1	А	163	LEU	2.0
1	А	454	ASP	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
4	OXY	А	603	2/2	0.71	0.37	72,72,72,74	0
2	FAD	А	601	53/53	0.83	0.24	55,88,147,158	0
4	OXY	В	603	2/2	0.86	0.52	58, 58, 58, 59	0
3	NAP	А	602	48/48	0.88	0.19	65,94,126,138	0
4	OXY	С	603	2/2	0.91	0.50	52,52,52,56	0
3	NAP	В	602	48/48	0.93	0.18	45,57,75,77	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
2	FAD	В	601	53/53	0.94	0.19	44,54,62,69	0
3	NAP	Е	602	48/48	0.95	0.17	45,67,99,105	0
4	OXY	D	603	2/2	0.95	0.50	54,54,54,60	0
3	NAP	D	602	48/48	0.95	0.15	45,64,86,94	0
2	FAD	D	601	53/53	0.95	0.16	37,48,62,67	0
2	FAD	С	601	53/53	0.95	0.17	32,50,63,69	0
4	OXY	F	603	2/2	0.95	0.41	47,47,47,51	0
3	NAP	F	602	48/48	0.96	0.15	$35,\!55,\!74,\!79$	0
2	FAD	Е	601	53/53	0.96	0.19	33,42,50,52	0
3	NAP	С	602	48/48	0.97	0.14	47,57,72,79	0
4	OXY	Е	603	2/2	0.97	0.42	52,52,52,56	0
2	FAD	F	601	53/53	0.97	0.14	39,47,56,61	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

