

May 13, 2024 - 08:50 pm BST

PDB ID	:	6XZD
EMDB ID	:	EMD-10659
Title	:	Influenza C virus polymerase complex without chicken ANP32A - Subclass 2
Authors	:	Keown, J.R.; Carrique, L.; Fan, H.; Grimes, J.M.; Fodor, E.
Deposited on	:	2020-02-04
Resolution	:	3.40 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of cl	nain	
1	IN1	47	17% 17% 6% •	57%	
2	AP1	709	87%		11% •
2	DP1	709	62%	12%	26%
3	BP1	754	82%		12% 6%
3	EP1	754	63%	18%	• 18%
4	CP1	774	84%		16%
4	FP1	774	60%	17%	23%

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 63749 atoms, of which 31961 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called RNA (5'-R(*AP*GP*UP*AP*GP*AP*AP*AP*AP*CP*AP* AP*GP*GP*CP*CP*CP*CP*UP*GP*C)-3').

Mol	Chain	Residues			Aton	ns			AltConf	Trace
1	IN1	20	Total 650	C 193	Н 221	N 84	0 133	Р 19	0	0

• Molecule 2 is a protein called Polymerase acidic protein.

Mol	Chain	Residues			Atom	ıs			AltConf	Trace
2	ΔP1	606	Total	С	Η	Ν	0	\mathbf{S}	0	0
		090	11291	3599	5645	955	1049	43	0	0
0	DD1	525	Total	С	Н	Ν	Ο	S	0	0
		525	8558	2710	4306	729	779	34	0	0

• Molecule 3 is a protein called RNA-directed RNA polymerase catalytic subunit.

Mol	Chain	Residues			Atom	ıs			AltConf	Trace
3	RD1	719	Total	С	Η	Ν	0	S	0	0
5	DFI	112	11444	3602	5761	960	1068	53	0	0
2	FD1	615	Total	С	Н	Ν	0	S	0	0
3		015	9855	3116	4961	822	911	45	0	0

• Molecule 4 is a protein called Polymerase basic protein 2.

Mol	Chain	Residues			Atom	ns			AltConf	Trace
4	CD1	779	Total	С	Η	Ν	0	\mathbf{S}	0	0
4		112	12409	3888	6261	1080	1142	38	0	0
4	FD1	500	Total	С	Н	Ν	0	S	0	0
4		599	9542	3004	4806	820	884	28	0	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RNA (5'-R(*AP*GP*UP*AP*GP*AP*AP*AP*AP*CP*AP*AP*GP*GP*GP*CP*CP *CP*UP*GP*C)-3')

E595 E595

• Molecule 3: RNA-directed RNA polymerase catalytic subunit

Q62.6 1430 1246 L637 1430 1248 F04.6 1447 1248 F04.6 1447 1248 F04.6 1445 1248 F04.6 1445 1248 F04.6 1445 1248 F04.6 1443 1248 F04.6 1443 1248 F10.6 1443 1248 F70.6 1443 1248 F71.6 1443 1248 F71.6 1443 1241 F71.6 1443 1241 F71.6 1443 1241 F72.6 1449 1241 F74.6 1448 1342 F74.6 1498 1345 F74.7 1248 1345 F74.8 1246 1345 F74.9 1253 1356 F74.8 1344 1345 F74.8 1356 1345 F74.8 1356 1

• Molecule 4: Polymerase basic protein 2

Chain FP1:	60%	17%	23%
MET SER LEU LEU LEU LEU LEU TTR LEU CYS CYS CYS CYS CIN ALA ALA ALA	MET MET THR THR VAL CIV SER ASN THR THR THR THR THR THR THR THR THR	THR SER ARG LYS CLU CLU CLU ARC PRO PRO FRO ARC	MET ARG ALA ALA MET SER SER SER SER SER
Ke5 R65 R65 R65 R65 R67 R67 R87 R82 R82 R82 R487 R487 R487 R487 R487 R487 R487 R487	898 8100 101 1112 1113 1114 1118 1118 1118 1118 1118 1118	R141 D146 ARG ARG ARG ARG ARG ARG ARG ARG THR THR CLN	PRO VAL GLU GLU ARG ARG ARG ARG CLY GLY GLU
LLE LYS LYS LYS ALN MET THR MET THR MET ALN ALU ALU ALU ALA ALA ALA ALA ALA LU LU LU LU LU LU LU LU LU CU LU CU LU CU LU CU CU CU CU CU CU CU CU CU CU CU CU CU	ASP ASP TYR GLY VAL LEU VAL LEU VAL LEU MET ARG SRG ASP ASV ASV ASV LYS LYS LYS LYS LYS LYS ALA	PRO LEU LEU ASN ASN CLU VAL VAL ALA HIS MET LEU GLU	LYS LYS GLN ASN PRO GLU SER ARG PHE PHE LEU
PRO VAL VAL PLE PLE ALA ALA ALA ALA ALC P233 P233 P233 P235 P235 P256 P256 P256 P256	L2/5 S280 1281 1282 1292 1292 1298 1298 1298 1298	E308 L309 L309 V316 V316 S315 L335 L335 L341	E342 K343 K343 C347 S348 S348 V361 V361 R362 E367
E371 E372 E373 E373 E373 E373 R388 R405 R405 R405 R405 R405 R418 R406 R419 G420 G420 C420 G420 C420 C420 C420 C420 C420 C420 C420 C	P 444 P 444 Y 445 Y 445 P 446 Y 447 P 446 P 446	T472 K476 K467 K486 K487 R487 R488 L493 L493 V496 V496	7506 1506 1510 1516 1518 1517 1518 1518 1518 1518 1518 1518
1529 464 464 4650 4651 4655 4655 1655 1655 1655 1655 1655	1682 1585 1589 1594 1594 1594 1685 1685 1685 1685 1685 1685 1685 1685	E636 E637 L637 L637 L639 L641 L641 F646 F646 N671 N671	0686 0686 0692 0693 0694 1695 1695 1695
L706 E710 E710 V714 C715 C715 Q727 Q736 Q736 Q736 C715 C715 C715 C715 C715 C715 C715 C715	SER CLIM ARG ALA ALA ALA SER SER SER ASN VAL LYS LYS LYS LYS LYS LYS LYS LYS	MET SER ASN	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	169000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	38.8	Depositor
Minimum defocus (nm)	2000	Depositor
Maximum defocus (nm)	3500	Depositor
Magnification	105000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	IN1	0.95	0/480	1.12	3/745~(0.4%)	
2	AP1	0.68	0/5764	0.59	0/7746	
2	DP1	0.65	0/4342	0.56	0/5835	
3	BP1	0.69	0/5780	0.63	0/7762	
3	EP1	0.43	0/4986	0.51	0/6707	
4	CP1	0.65	0/6259	0.60	0/8425	
4	FP1	0.31	0/4821	0.46	0/6493	
All	All	0.60	0/32432	0.58	3/43713~(0.0%)	

There are no bond length outliers.

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	IN1	39	G	O4'-C1'-N9	6.47	113.38	108.20
1	IN1	5	G	O4'-C1'-N9	5.29	112.43	108.20
1	IN1	39	G	C4-N9-C1'	5.04	133.05	126.50

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	IN1	429	221	221	7	0
2	AP1	5646	5645	5645	55	0
2	DP1	4252	4306	4305	71	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	BP1	5683	5761	5759	63	0
3	EP1	4894	4961	4959	106	0
4	CP1	6148	6261	6261	83	0
4	FP1	4736	4806	4806	94	0
All	All	31788	31961	31956	439	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (439) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom_2	Interatomic	Clash
	Atom-2	distance (Å)	overlap (Å)
3:BP1:303:ASN:ND2	3:BP1:488:PRO:O	1.89	1.05
4:FP1:575:LEU:HD12	4:FP1:582:ILE:HD13	1.45	0.97
2:DP1:449:CYS:SG	2:DP1:490:LYS:NZ	2.45	0.89
3:BP1:237:LYS:NZ	3:BP1:307:ASP:OD1	2.06	0.88
4:CP1:44:GLU:OE1	4:CP1:50:ARG:NH2	2.06	0.88
4:FP1:710:GLU:OE1	4:FP1:710:GLU:N	2.06	0.88
3:EP1:609:GLU:OE1	3:EP1:609:GLU:N	2.11	0.82
2:AP1:59:ASP:OD2	4:CP1:769:LYS:NZ	2.13	0.81
3:EP1:299:GLN:O	4:FP1:488:ARG:NH1	2.13	0.81
3:EP1:489:GLU:OE1	3:EP1:489:GLU:N	2.13	0.81
2:AP1:498:ASP:OD1	2:AP1:499:ASP:N	2.13	0.81
4:CP1:575:LEU:HD13	4:CP1:582:ILE:HD11	1.62	0.81
2:AP1:86:GLU:N	2:AP1:86:GLU:OE1	2.13	0.80
4:CP1:367:GLU:OE1	4:CP1:367:GLU:N	2.16	0.79
2:DP1:242:GLU:O	2:DP1:245:LYS:NZ	2.17	0.76
4:FP1:66:ARG:NH2	4:FP1:67:MET:SD	2.59	0.75
3:BP1:103:GLU:N	3:BP1:103:GLU:OE1	2.20	0.75
2:AP1:110:LYS:NZ	2:AP1:177:ASP:OD2	2.20	0.75
4:CP1:151:ARG:NH2	4:CP1:507:GLU:OE2	2.19	0.74
3:EP1:166:LEU:O	3:EP1:170:ASN:ND2	2.20	0.74
3:EP1:65:ARG:NH2	3:EP1:348:ASN:OD1	2.20	0.74
4:CP1:245:GLU:HG3	4:CP1:246:THR:HG23	1.70	0.73
3:EP1:505:ASN:OD1	3:EP1:506:LEU:N	2.21	0.73
2:DP1:526:GLU:OE1	2:DP1:526:GLU:N	2.22	0.73
3:EP1:308:ASN:ND2	3:EP1:477:ASN:O	2.22	0.72
3:BP1:410:MET:SD	3:BP1:410:MET:N	2.62	0.72
2:DP1:356:THR:HG22	2:DP1:357:GLN:H	1.55	0.72
2:DP1:473:GLU:OE2	4:FP1:615:TYR:OH	2.07	0.71
4:FP1:727:GLN:N	4:FP1:727:GLN:OE1	2.23	0.71

	At arra 0	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:CP1:44:GLU:OE2	4:CP1:46:ASN:N	2.23	0.71
2:AP1:578:VAL:HG21	2:AP1:621:LEU:HD22	1.71	0.71
2:DP1:189:LYS:O	2:DP1:189:LYS:NZ	2.23	0.71
3:BP1:481:GLU:OE1	3:BP1:481:GLU:N	2.24	0.70
3:EP1:481:GLU:N	3:EP1:481:GLU:OE1	2.23	0.70
2:DP1:694:LEU:HD22	3:EP1:6:TYR:HB3	1.74	0.69
4:CP1:258:ASN:O	4:CP1:258:ASN:ND2	2.26	0.69
3:EP1:424:THR:HG21	3:EP1:471:CYS:SG	2.33	0.68
4:CP1:575:LEU:CD1	4:CP1:582:ILE:HD11	2.22	0.68
4:CP1:620:ARG:NH2	4:CP1:646:PHE:O	2.27	0.68
4:FP1:371:GLU:OE1	4:FP1:371:GLU:N	2.28	0.67
2:AP1:33:ARG:NH2	2:AP1:173:ILE:O	2.27	0.67
3:EP1:410:MET:SD	3:EP1:410:MET:N	2.69	0.66
4:CP1:76:GLU:OE1	4:CP1:76:GLU:N	2.29	0.66
4:FP1:371:GLU:O	4:FP1:388:ARG:NH2	2.28	0.65
3:BP1:83:GLY:O	3:BP1:316:GLN:NE2	2.29	0.65
2:DP1:608:LYS:HB3	2:DP1:613:ILE:HD11	1.79	0.65
3:BP1:678:MET:SD	3:BP1:678:MET:N	2.70	0.65
1:IN1:7:A:O2'	1:IN1:8:A:OP2	2.13	0.64
4:FP1:295:THR:HG23	4:FP1:306:LEU:HB2	1.77	0.64
4:FP1:373:GLU:OE1	4:FP1:528:ARG:NH2	2.30	0.64
3:EP1:358:ARG:NH1	3:EP1:367:GLU:OE2	2.30	0.64
4:FP1:561:LYS:O	4:FP1:565:THR:HG23	1.97	0.64
2:AP1:657:LYS:NZ	3:BP1:12:ASN:O	2.32	0.63
3:BP1:358:ARG:NH1	3:BP1:367:GLU:OE2	2.30	0.63
4:FP1:732:VAL:O	4:FP1:752:ARG:NH1	2.32	0.63
2:AP1:50:ASP:OD1	2:AP1:152:ARG:NH2	2.32	0.63
4:CP1:159:GLN:OE1	4:CP1:302:THR:OG1	2.16	0.62
3:BP1:36:THR:HG23	3:BP1:354:GLY:O	1.99	0.62
3:BP1:212:ASP:OD1	3:BP1:213:SER:N	2.32	0.62
3:EP1:626:PHE:O	4:FP1:114:ASN:ND2	2.30	0.62
3:BP1:431:GLU:OE1	3:BP1:466:ARG:NH1	2.32	0.62
2:DP1:298:ILE:HG23	2:DP1:527:ALA:HB1	1.82	0.62
4:CP1:234:GLU:CG	4:CP1:257:SER:HB3	2.30	0.60
3:EP1:239:GLN:N	3:EP1:239:GLN:OE1	2.33	0.60
3:EP1:8:MET:O	3:EP1:12:ASN:ND2	2.34	0.60
3:BP1:25:THR:O	3:BP1:25:THR:HG22	2.01	0.60
2:AP1:578:VAL:CG2	2:AP1:621:LEU:HD22	2.32	0.60
4:FP1:620:ARG:NH2	4:FP1:646:PHE:O	2.32	0.59
4:FP1:590:ASP:OD2	4:FP1:593:SER:OG	2.16	0.59
4:CP1:371:GLU:O	4:CP1:388:ARG:NH2	2.33	0.59

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:EP1:163:THR:HG22	3:EP1:163:THR:O	2.03	0.59
3:EP1:624:ARG:NH2	4:FP1:107:PHE:O	2.36	0.59
4:CP1:3:LEU:HD12	4:CP1:4:LEU:N	2.17	0.59
3:EP1:603:SER:OG	4:FP1:132:ARG:NH2	2.35	0.58
2:AP1:178:ASN:OD1	2:AP1:179:GLU:N	2.37	0.58
2:DP1:396:THR:HG23	2:DP1:428:GLY:HA2	1.84	0.57
3:EP1:355:GLN:OE1	3:EP1:356:GLY:N	2.36	0.57
2:AP1:50:ASP:O	4:CP1:757:ARG:NH2	2.38	0.57
2:DP1:356:THR:HG22	2:DP1:357:GLN:N	2.18	0.57
2:AP1:152:ARG:NH2	4:CP1:762:ASP:OD2	2.27	0.57
4:FP1:282:MET:SD	4:FP1:282:MET:N	2.77	0.57
3:EP1:108:HIS:NE2	3:EP1:112:GLU:OE2	2.38	0.57
3:BP1:237:LYS:NZ	3:BP1:446:ASP:OD1	2.37	0.57
3:EP1:579:GLU:O	3:EP1:582:LYS:NZ	2.38	0.57
4:CP1:285:LYS:NZ	4:CP1:516:LEU:O	2.36	0.57
4:FP1:112:VAL:HG12	4:FP1:113:ASN:N	2.20	0.56
2:DP1:197:GLU:OE2	3:EP1:65:ARG:NH2	2.38	0.56
4:FP1:565:THR:HG22	4:FP1:686:CYS:SG	2.45	0.56
4:CP1:544:PHE:HB3	4:CP1:547:VAL:HG21	1.88	0.56
3:EP1:30:MET:O	3:EP1:31:SER:OG	2.17	0.56
3:EP1:30:MET:SD	3:EP1:30:MET:N	2.80	0.55
3:BP1:211:ILE:O	3:BP1:211:ILE:HG22	2.06	0.55
2:DP1:204:GLN:N	2:DP1:204:GLN:OE1	2.40	0.55
4:CP1:427:PRO:HD2	4:CP1:430:ILE:HD12	1.88	0.55
3:EP1:23:PRO:O	3:EP1:235:ARG:NH1	2.40	0.55
3:BP1:131:THR:HG22	3:BP1:251:ARG:HH22	1.71	0.55
4:CP1:590:ASP:OD2	4:CP1:593:SER:OG	2.21	0.55
3:BP1:308:ASN:ND2	3:BP1:477:ASN:O	2.39	0.55
4:CP1:354:ASP:OD1	4:CP1:355:THR:N	2.35	0.55
3:BP1:671:LEU:HD13	3:BP1:671:LEU:O	2.07	0.55
2:DP1:657:LYS:NZ	3:EP1:12:ASN:O	2.40	0.55
3:EP1:32:HIS:O	3:EP1:230:ALA:HB1	2.06	0.55
2:AP1:2:SER:OG	2:AP1:3:LYS:N	2.37	0.54
3:BP1:429:ASP:OD1	3:BP1:430:GLU:N	2.37	0.54
4:CP1:316:VAL:HG23	4:CP1:316:VAL:O	2.07	0.54
2:DP1:339:PHE:O	2:DP1:343:ILE:HG23	2.07	0.54
3:EP1:83:GLY:O	3:EP1:316:GLN:NE2	2.41	0.54
2:AP1:456:ILE:HG23	2:AP1:490:LYS:O	2.07	0.54
4:FP1:740:LEU:HD12	4:FP1:741:PHE:H	1.71	0.54
2:AP1:356:THR:HG22	2:AP1:357:GLN:N	2.23	0.54
2:AP1:471:MET:SD	2:AP1:471:MET:N	2.80	0.54

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:BP1:250:VAL:HG12	3:BP1:250:VAL:O	2.07	0.54
4:CP1:656:ARG:HD2	4:CP1:664:PHE:CE1	2.43	0.54
4:CP1:85:ASP:O	4:CP1:86:THR:HG23	2.08	0.54
2:DP1:274:ILE:HD12	2:DP1:274:ILE:N	2.22	0.54
3:EP1:574:MET:O	3:EP1:578:ASN:N	2.39	0.54
3:EP1:330:ASP:OD1	3:EP1:330:ASP:N	2.37	0.53
2:DP1:190:THR:HG22	3:EP1:177:ASP:OD1	2.08	0.53
4:FP1:510:GLU:OE2	4:FP1:510:GLU:N	2.42	0.53
4:CP1:514:LEU:HD13	4:CP1:522:ALA:HB1	1.90	0.53
4:CP1:86:THR:H	4:CP1:95:VAL:HG23	1.73	0.53
2:DP1:320:ILE:HD11	2:DP1:489:VAL:CG2	2.38	0.53
2:DP1:694:LEU:HD11	3:EP1:10:LEU:HD21	1.90	0.53
4:FP1:316:VAL:O	4:FP1:317:SER:OG	2.23	0.53
2:DP1:353:ILE:H	2:DP1:353:ILE:HD12	1.73	0.53
4:CP1:234:GLU:HG2	4:CP1:257:SER:HB3	1.90	0.53
2:AP1:267:GLU:OE1	2:AP1:267:GLU:N	2.41	0.53
2:DP1:396:THR:HG22	2:DP1:397:GLY:H	1.74	0.53
4:FP1:408:ARG:NH2	4:FP1:454:GLN:OE1	2.42	0.53
4:CP1:592:LEU:HD23	4:CP1:592:LEU:O	2.09	0.52
3:EP1:180:GLU:C	3:EP1:181:ILE:HD12	2.29	0.52
4:FP1:82:LEU:HD22	4:FP1:101:CYS:HA	1.91	0.52
2:DP1:396:THR:HG22	2:DP1:397:GLY:N	2.25	0.52
4:CP1:44:GLU:OE2	4:CP1:45:LYS:N	2.43	0.52
2:DP1:653:LEU:C	2:DP1:653:LEU:HD23	2.30	0.52
2:DP1:660:LYS:HE2	3:EP1:489:GLU:HB2	1.92	0.51
3:BP1:156:THR:HG21	3:BP1:178:TRP:CZ3	2.44	0.51
2:DP1:267:GLU:OE1	2:DP1:519:HIS:NE2	2.43	0.51
2:DP1:678:LEU:O	2:DP1:679:ILE:HG23	2.11	0.51
4:FP1:281:ILE:HD12	4:FP1:281:ILE:N	2.26	0.51
3:BP1:51:ARG:NH1	3:BP1:76:ASP:O	2.40	0.51
3:EP1:13:ASP:OD1	3:EP1:16:SER:N	2.39	0.51
4:FP1:457:GLU:N	4:FP1:457:GLU:OE2	2.43	0.51
4:FP1:472:THR:HG23	4:FP1:476:LYS:HD2	1.92	0.51
3:BP1:599:MET:O	3:BP1:612:LEU:HD23	2.11	0.51
3:EP1:496:MET:SD	3:EP1:505:ASN:ND2	2.83	0.51
1:IN1:4:A:H1'	1:IN1:7:A:H61	1.75	0.51
2:AP1:16:GLU:OE2	4:CP1:767:VAL:HG11	2.11	0.51
3:BP1:279:GLU:N	3:BP1:279:GLU:OE1	2.43	0.51
4:CP1:490:ILE:N	4:CP1:490:ILE:HD12	2.26	0.51
2:DP1:335:ASP:OD1	2:DP1:335:ASP:N	2.43	0.51
3:EP1:432:LEU:HD13	3:EP1:462:TRP:HZ3	1.75	0.51

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:BP1:489:GLU:OE1	3:BP1:489:GLU:HA	2.11	0.51
2:DP1:374:GLU:OE1	2:DP1:374:GLU:N	2.42	0.51
3:BP1:359:LEU:HD13	3:BP1:370:ILE:HD12	1.94	0.50
1:IN1:7:A:O2'	1:IN1:8:A:P	2.70	0.50
3:EP1:499:ASP:OD1	3:EP1:500:GLY:N	2.41	0.50
4:FP1:429:THR:OG1	4:FP1:452:TRP:NE1	2.45	0.50
2:DP1:470:SER:HB2	2:DP1:477:VAL:HG21	1.93	0.50
1:IN1:38:U:H2'	1:IN1:39:G:C4	2.47	0.50
4:FP1:82:LEU:O	4:FP1:83:TRP:HB3	2.11	0.50
4:FP1:672:ASN:OD1	4:FP1:673:VAL:N	2.45	0.50
4:FP1:740:LEU:HD12	4:FP1:741:PHE:N	2.27	0.50
3:BP1:487:LEU:HB3	3:BP1:488:PRO:CD	2.42	0.50
3:BP1:652:GLU:OE1	3:BP1:653:ASN:N	2.44	0.50
4:FP1:402:ILE:O	4:FP1:406:ARG:NE	2.45	0.50
2:AP1:355:LEU:HD23	2:AP1:356:THR:N	2.27	0.50
4:FP1:367:GLU:OE1	4:FP1:367:GLU:N	2.44	0.50
3:EP1:78:LEU:O	3:EP1:472:LYS:NZ	2.35	0.49
3:EP1:253:PHE:CE1	3:EP1:341:VAL:HG11	2.47	0.49
4:FP1:65:LYS:HD2	4:FP1:65:LYS:N	2.27	0.49
4:FP1:419:ASP:OD2	4:FP1:420:GLY:N	2.45	0.49
4:CP1:421:ASP:O	4:CP1:424:LYS:N	2.43	0.49
3:EP1:13:ASP:OD2	3:EP1:16:SER:OG	2.25	0.49
4:FP1:671:ASN:OD1	4:FP1:672:ASN:N	2.45	0.49
2:AP1:302:ASP:OD2	2:AP1:302:ASP:N	2.46	0.49
3:BP1:725:LYS:O	3:BP1:729:GLY:N	2.44	0.49
4:CP1:574:ARG:HG3	4:CP1:599:GLU:HG3	1.93	0.49
3:EP1:268:LEU:HD13	3:EP1:422:VAL:HG11	1.95	0.49
3:EP1:494:THR:O	3:EP1:495:SER:OG	2.21	0.49
2:DP1:570:CYS:O	2:DP1:573:THR:OG1	2.26	0.49
4:CP1:398:ILE:HG21	4:CP1:406:ARG:HG2	1.95	0.49
4:CP1:692:ARG:NH1	4:CP1:710:GLU:OE2	2.43	0.49
3:EP1:156:THR:HG23	3:EP1:157:GLU:N	2.26	0.49
4:FP1:280:SER:O	4:FP1:441:ARG:NH2	2.40	0.49
3:BP1:692:PHE:HD2	3:BP1:710:ILE:HG23	1.78	0.49
2:DP1:352:GLU:OE1	3:EP1:374:LYS:HD2	2.13	0.49
3:EP1:270:GLU:N	3:EP1:270:GLU:OE1	2.45	0.49
4:CP1:349:GLY:HA2	4:CP1:371:GLU:HB2	1.94	0.49
4:CP1:483:ILE:N	4:CP1:483:ILE:HD12	2.28	0.49
2:AP1:186:LYS:O	3:BP1:173:ILE:HG21	2.12	0.49
4:CP1:179:ALA:O	4:CP1:726:ARG:NH2	2.46	0.49
3:BP1:503:VAL:HG13	3:BP1:503:VAL:O	2.13	0.49

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:CP1:704:THR:OG1	4:CP1:705:SER:N	2.45	0.49
2:DP1:394:ASP:OD2	2:DP1:394:ASP:N	2.47	0.48
2:AP1:104:GLU:C	2:AP1:105:ILE:HD12	2.34	0.48
2:AP1:105:ILE:HD12	2:AP1:105:ILE:N	2.29	0.48
4:FP1:493:LEU:HB2	4:FP1:496:VAL:HG21	1.96	0.48
2:AP1:63:LEU:O	2:AP1:67:ARG:NH2	2.46	0.48
2:AP1:350:ILE:HB	3:BP1:368:VAL:HG22	1.96	0.48
4:FP1:98:SER:OG	4:FP1:99:ALA:N	2.47	0.48
4:FP1:334:THR:C	4:FP1:335:LEU:HD12	2.34	0.48
4:FP1:409:LEU:C	4:FP1:409:LEU:HD23	2.34	0.48
2:DP1:306:GLN:NE2	2:DP1:519:HIS:O	2.47	0.48
4:FP1:694:PRO:C	4:FP1:695:LEU:HD12	2.34	0.48
4:FP1:742:VAL:HG22	4:FP1:742:VAL:O	2.13	0.48
3:EP1:78:LEU:O	3:EP1:78:LEU:HD23	2.14	0.48
3:EP1:225:THR:HG22	3:EP1:226:ILE:N	2.28	0.48
3:EP1:409:LEU:N	3:EP1:409:LEU:HD12	2.29	0.48
2:AP1:592:ASN:OD1	4:CP1:142:PHE:CE2	2.66	0.47
2:DP1:608:LYS:CB	2:DP1:613:ILE:HD11	2.44	0.47
4:CP1:516:LEU:N	4:CP1:516:LEU:HD23	2.29	0.47
3:EP1:655:ALA:O	4:FP1:122:TYR:OH	2.23	0.47
3:EP1:303:ASN:ND2	3:EP1:490:LEU:O	2.47	0.47
2:AP1:16:GLU:OE1	4:CP1:764:ASN:HA	2.15	0.47
3:BP1:486:SER:OG	3:BP1:487:LEU:N	2.47	0.47
4:CP1:626:GLN:OE1	4:CP1:637:LEU:HD21	2.14	0.47
2:DP1:232:SER:O	2:DP1:235:LYS:NZ	2.47	0.47
4:FP1:429:THR:HG1	4:FP1:452:TRP:HE1	1.62	0.47
2:DP1:298:ILE:HG23	2:DP1:527:ALA:CB	2.44	0.47
4:FP1:275:LEU:O	4:FP1:275:LEU:HD23	2.14	0.47
4:FP1:700:GLU:OE1	4:FP1:700:GLU:N	2.40	0.47
3:BP1:180:GLU:C	3:BP1:181:ILE:HD12	2.35	0.47
4:CP1:264:ASN:OD1	4:CP1:265:ASP:N	2.47	0.47
4:FP1:444:PRO:O	4:FP1:448:VAL:HG23	2.15	0.47
3:BP1:584:ILE:HG22	3:BP1:585:GLU:N	2.30	0.47
3:EP1:50:SER:OG	3:EP1:68:PHE:HB3	2.14	0.47
3:EP1:623:ASN:HB2	4:FP1:112:VAL:O	2.14	0.47
3:BP1:625:VAL:O	3:BP1:659:THR:HG23	2.15	0.47
4:CP1:662:ASP:OD2	4:FP1:736:GLN:NE2	2.48	0.47
3:EP1:444:SER:OG	3:EP1:445:SER:N	2.47	0.47
2:AP1:201:LEU:HD22	3:BP1:71:CYS:SG	2.55	0.47
2:AP1:393:SER:HB3	2:AP1:430:ASN:OD1	2.15	0.47
4:CP1:117:VAL:HG11	4:CP1:205:LEU:HD21	1.96	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:FP1:292:ILE:O	4:FP1:295:THR:HG22	2.14	0.47
4:CP1:139:GLU:OE1	4:CP1:139:GLU:N	2.43	0.47
4:CP1:140:LEU:HD12	4:CP1:248:ILE:O	2.15	0.47
3:EP1:357:ILE:HG13	3:EP1:370:ILE:HD11	1.97	0.47
4:FP1:574:ARG:NE	4:FP1:599:GLU:OE2	2.43	0.47
1:IN1:35:C:O5'	1:IN1:35:C:H6	1.98	0.46
3:EP1:495:SER:HB2	3:EP1:506:LEU:HB3	1.96	0.46
2:AP1:330:VAL:HG12	2:AP1:331:ILE:N	2.30	0.46
2:AP1:580:THR:HG23	2:AP1:584:ARG:HH11	1.80	0.46
2:AP1:187:LYS:HB3	2:AP1:192:LEU:HD21	1.97	0.46
3:EP1:76:ASP:OD1	3:EP1:76:ASP:N	2.48	0.46
4:FP1:517:SER:OG	4:FP1:518:ASP:N	2.48	0.46
2:DP1:677:CYS:O	2:DP1:678:LEU:HD12	2.16	0.46
4:CP1:168:ASP:OD1	4:CP1:169:LEU:N	2.49	0.46
2:DP1:680:ASN:ND2	2:DP1:680:ASN:O	2.49	0.46
3:EP1:156:THR:OG1	3:EP1:157:GLU:OE2	2.30	0.46
4:FP1:61:ILE:O	4:FP1:97:ALA:N	2.49	0.46
3:BP1:181:ILE:HD12	3:BP1:181:ILE:N	2.31	0.46
2:DP1:320:ILE:HD11	2:DP1:489:VAL:HG21	1.97	0.46
2:DP1:377:SER:OG	2:DP1:378:PHE:N	2.49	0.46
3:EP1:253:PHE:CD1	3:EP1:341:VAL:HG11	2.50	0.46
3:EP1:337:ASP:OD1	3:EP1:338:LEU:N	2.48	0.46
3:BP1:115:THR:O	3:BP1:115:THR:HG22	2.16	0.46
4:CP1:524:ASP:OD1	4:CP1:524:ASP:N	2.48	0.46
2:DP1:604:TRP:CD2	2:DP1:612:LEU:HD23	2.51	0.46
4:FP1:112:VAL:CG1	4:FP1:113:ASN:N	2.79	0.46
4:CP1:447:TYR:O	4:CP1:451:ASN:OD1	2.32	0.46
2:DP1:501:MET:SD	2:DP1:557:SER:OG	2.74	0.46
3:EP1:181:ILE:HD12	3:EP1:181:ILE:N	2.31	0.46
4:FP1:545:GLN:OE1	4:FP1:545:GLN:N	2.48	0.46
4:CP1:656:ARG:HD2	4:CP1:664:PHE:CD1	2.51	0.45
3:EP1:151:ASP:OD1	3:EP1:152:ALA:N	2.49	0.45
4:FP1:298:ARG:NE	4:FP1:301:GLU:O	2.49	0.45
2:DP1:236:LEU:HD22	3:EP1:468:ASN:HD22	1.81	0.45
4:FP1:309:LEU:O	4:FP1:313:THR:HG22	2.16	0.45
4:FP1:458:ASP:OD2	4:FP1:459:ASN:ND2	2.49	0.45
3:BP1:306:GLY:HA3	3:BP1:448:PHE:CZ	2.52	0.45
2:AP1:147:GLU:OE2	4:CP1:751:LYS:NZ	2.34	0.45
3:BP1:47:TYR:O	3:BP1:66:ARG:NH2	2.45	0.45
2:DP1:388:TRP:CH2	2:DP1:430:ASN:HB3	2.51	0.45
2:AP1:131:VAL:HG23	2:AP1:131:VAL:O	2.17	0.45

	At arra 9	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:AP1:647:LYS:O	2:AP1:651:MET:HG2	2.17	0.45
4:CP1:514:LEU:HB2	4:CP1:523:PHE:O	2.16	0.45
2:DP1:305:LEU:HD21	2:DP1:526:GLU:OE2	2.17	0.45
3:EP1:164:THR:HG22	3:EP1:165:MET:N	2.32	0.45
3:EP1:281:LYS:HZ1	3:EP1:538:ASN:CB	2.29	0.45
3:BP1:241:ARG:O	3:BP1:241:ARG:NE	2.50	0.45
4:FP1:256:ILE:HD12	4:FP1:256:ILE:O	2.16	0.45
3:BP1:303:ASN:HD21	3:BP1:490:LEU:H	1.65	0.45
2:DP1:358:ASP:N	2:DP1:358:ASP:OD2	2.48	0.45
4:FP1:361:VAL:HG23	4:FP1:362:ARG:N	2.32	0.45
4:CP1:481:MET:HB2	4:CP1:498:ILE:HD11	1.98	0.45
2:DP1:330:VAL:HG12	2:DP1:331:ILE:N	2.32	0.45
3:EP1:232:ASP:HB3	3:EP1:240:ARG:HB2	1.99	0.45
3:EP1:429:ASP:OD2	3:EP1:466:ARG:NH2	2.49	0.45
3:EP1:487:LEU:HB3	3:EP1:488:PRO:CD	2.47	0.45
2:DP1:306:GLN:O	2:DP1:306:GLN:HG3	2.17	0.44
2:DP1:403:GLU:N	2:DP1:403:GLU:OE1	2.49	0.44
2:DP1:578:VAL:HG22	2:DP1:621:LEU:HD22	1.99	0.44
3:EP1:152:ALA:O	3:EP1:156:THR:HG22	2.17	0.44
4:FP1:551:HIS:O	4:FP1:554:LEU:HD23	2.17	0.44
3:EP1:133:ASP:OD1	3:EP1:134:TRP:N	2.50	0.44
4:FP1:343:LYS:NZ	4:FP1:506:PRO:O	2.50	0.44
4:CP1:155:GLN:HG2	4:CP1:219:ASN:O	2.18	0.44
4:FP1:341:LEU:C	4:FP1:341:LEU:HD23	2.37	0.44
4:FP1:706:LEU:N	4:FP1:706:LEU:HD22	2.31	0.44
3:BP1:519:ASN:O	3:BP1:523:ASP:OD1	2.36	0.44
4:CP1:453:ILE:HD12	4:CP1:460:LEU:HA	1.98	0.44
4:CP1:514:LEU:HD22	4:CP1:530:VAL:HG11	2.00	0.44
2:AP1:120:PHE:O	2:AP1:124:GLY:N	2.50	0.44
3:BP1:428:MET:SD	3:BP1:429:ASP:N	2.90	0.44
3:BP1:754:ARG:NH1	4:CP1:22:GLN:OE1	2.50	0.44
2:DP1:532:VAL:O	2:DP1:542:GLY:HA2	2.18	0.44
3:BP1:50:SER:HB3	3:BP1:68:PHE:HB3	2.00	0.44
3:BP1:341:VAL:O	3:BP1:344:VAL:HG22	2.18	0.44
3:BP1:249:ILE:O	3:BP1:249:ILE:HG22	2.18	0.44
4:CP1:334:THR:CG2	4:CP1:341:LEU:HD11	2.48	0.44
4:CP1:662:ASP:OD1	4:CP1:662:ASP:O	2.36	0.44
3:BP1:225:THR:HG22	3:BP1:226:ILE:N	2.34	0.43
3:EP1:16:SER:C	3:EP1:17:LEU:HD23	2.39	0.43
3:EP1:429:ASP:N	3:EP1:429:ASP:OD1	2.51	0.43
4:CP1:327:LEU:N	4:CP1:327:LEU:HD12	2.32	0.43

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
2:DP1:477:VAL:HG13	2:DP1:478:PRO:HD2	1.99	0.43
3:EP1:623:ASN:OD1	3:EP1:624:ARG:N	2.51	0.43
4:CP1:381:SER:OG	4:CP1:405:ASP:OD2	2.36	0.43
3:EP1:70:ASN:N	3:EP1:85:VAL:O	2.49	0.43
4:FP1:691:ILE:HG22	4:FP1:692:ARG:N	2.34	0.43
2:AP1:554:THR:OG1	2:AP1:555:ALA:N	2.52	0.43
2:DP1:495:LEU:HA	2:DP1:500:GLY:HA2	2.00	0.43
3:EP1:606:HIS:NE2	4:FP1:238:LEU:HD21	2.33	0.43
4:FP1:235:ARG:HD2	4:FP1:235:ARG:N	2.33	0.43
4:FP1:633:SER:HA	4:FP1:700:GLU:O	2.18	0.43
4:CP1:536:LEU:HD12	4:CP1:536:LEU:O	2.19	0.43
2:DP1:417:HIS:NE2	2:DP1:595:GLU:OE2	2.44	0.43
3:EP1:58:SER:OG	3:EP1:59:LYS:N	2.52	0.43
3:EP1:166:LEU:HD22	3:EP1:166:LEU:N	2.33	0.43
2:AP1:47:MET:O	2:AP1:50:ASP:OD1	2.37	0.43
2:DP1:356:THR:CG2	2:DP1:357:GLN:H	2.28	0.43
2:DP1:694:LEU:CD1	3:EP1:10:LEU:HD21	2.48	0.43
4:FP1:418:ARG:CZ	4:FP1:446:GLN:OE1	2.66	0.43
4:FP1:574:ARG:HG3	4:FP1:582:ILE:HD12	2.01	0.43
4:FP1:585:LEU:HD13	4:FP1:593:SER:OG	2.18	0.43
3:BP1:137:GLU:OE2	3:BP1:222:ARG:CZ	2.66	0.43
3:BP1:561:ARG:NH2	4:CP1:56:SER:HB3	2.33	0.43
3:EP1:585:GLU:OE1	3:EP1:586:ASN:ND2	2.50	0.43
1:IN1:11:A:OP2	2:AP1:343:ILE:O	2.37	0.43
2:DP1:392:ASP:O	2:DP1:392:ASP:OD1	2.37	0.43
4:FP1:636:GLU:OE1	4:FP1:639:LYS:NZ	2.43	0.43
2:AP1:178:ASN:OD1	2:AP1:179:GLU:HG3	2.18	0.43
3:BP1:443:GLN:HG3	3:BP1:444:SER:O	2.19	0.43
4:CP1:498:ILE:HG22	4:CP1:499:GLN:N	2.33	0.43
2:DP1:350:ILE:HB	3:EP1:368:VAL:HG22	2.00	0.43
3:EP1:212:ASP:OD2	3:EP1:213:SER:N	2.51	0.43
3:EP1:658:SER:OG	3:EP1:659:THR:N	2.52	0.43
4:FP1:529:ILE:N	4:FP1:529:ILE:HD12	2.34	0.43
3:BP1:106:PHE:HB3	3:BP1:327:ILE:HG23	2.01	0.42
2:DP1:274:ILE:HD12	2:DP1:274:ILE:H	1.84	0.42
2:DP1:387:MET:SD	3:EP1:3:ILE:HD11	2.59	0.42
3:EP1:72:LEU:N	3:EP1:84:ASN:OD1	2.52	0.42
3:EP1:518:VAL:O	3:EP1:519:ASN:OD1	2.37	0.42
4:FP1:549:PHE:O	4:FP1:554:LEU:HD22	2.19	0.42
3:EP1:37:LYS:NZ	3:EP1:41:GLU:OE2	2.51	0.42
3:EP1:519:ASN:HB2	3:EP1:522:VAL:HG22	2.00	0.42

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:AP1:396:THR:OG1	2:AP1:397:GLY:N	2.52	0.42
4:FP1:259:VAL:HG23	4:FP1:260:ASP:N	2.34	0.42
2:AP1:315:ASN:CB	2:AP1:336:HIS:CD2	3.03	0.42
3:EP1:250:VAL:O	3:EP1:250:VAL:HG22	2.19	0.42
4:FP1:307:GLU:N	4:FP1:307:GLU:OE1	2.53	0.42
4:FP1:671:ASN:ND2	4:FP1:673:VAL:HG22	2.35	0.42
4:CP1:384:ALA:HB2	4:CP1:409:LEU:HD21	2.02	0.42
3:EP1:51:ARG:HB2	3:EP1:72:LEU:HD12	2.02	0.42
3:EP1:489:GLU:OE2	4:FP1:486:SER:HB3	2.20	0.42
4:FP1:456:SER:OG	4:FP1:459:ASN:OD1	2.33	0.42
2:AP1:386:TRP:O	2:AP1:390:ILE:HG12	2.20	0.42
3:BP1:273:LEU:HD23	3:BP1:415:MET:HA	2.02	0.42
3:BP1:497:PHE:HB2	3:BP1:503:VAL:CG1	2.49	0.42
2:DP1:604:TRP:CE3	2:DP1:612:LEU:HD23	2.55	0.42
4:FP1:551:HIS:ND1	4:FP1:552:PRO:O	2.45	0.42
2:AP1:152:ARG:NH1	4:CP1:758:ALA:O	2.52	0.42
2:AP1:329:MET:SD	2:AP1:329:MET:N	2.93	0.42
2:AP1:495:LEU:HD13	2:AP1:558:LYS:HG3	2.02	0.42
2:AP1:683:MET:O	2:AP1:687:MET:HG2	2.20	0.42
4:CP1:592:LEU:HD23	4:CP1:592:LEU:C	2.40	0.42
2:DP1:226:LYS:NZ	3:EP1:88:SER:OG	2.53	0.42
4:FP1:516:LEU:HD12	4:FP1:516:LEU:N	2.35	0.42
2:DP1:328:THR:O	2:DP1:328:THR:HG23	2.20	0.42
4:FP1:347:GLY:O	4:FP1:348:SER:OG	2.30	0.42
2:AP1:615:GLN:HB2	2:AP1:616:PRO:HD2	2.02	0.41
2:AP1:4:THR:HG23	2:AP1:7:GLU:H	1.84	0.41
4:CP1:177:ASP:N	4:CP1:177:ASP:OD1	2.54	0.41
4:CP1:559:ASP:OD1	4:CP1:559:ASP:O	2.38	0.41
3:EP1:534:ASN:HB2	3:EP1:540:LEU:HD12	2.03	0.41
3:EP1:30:MET:HB3	3:EP1:32:HIS:CD2	2.55	0.41
3:EP1:47:TYR:OH	3:EP1:405:PRO:HD3	2.20	0.41
2:AP1:290:PHE:HD2	2:AP1:295:LEU:HD23	1.84	0.41
4:CP1:371:GLU:OE1	4:CP1:372:GLN:N	2.48	0.41
3:EP1:69:CYS:SG	3:EP1:87:ILE:HD11	2.61	0.41
3:EP1:278:ASN:OD1	3:EP1:278:ASN:N	2.54	0.41
4:CP1:616:SER:O	4:CP1:617:ARG:C	2.59	0.41
4:FP1:305:LYS:O	4:FP1:309:LEU:HD23	2.19	0.41
3:EP1:302:VAL:HG22	3:EP1:486:SER:O	2.21	0.41
4:FP1:556:VAL:HG13	4:FP1:557:LEU:N	2.35	0.41
4:FP1:714:VAL:HG22	4:FP1:715:CYS:N	2.35	0.41
4:CP1:352:VAL:HG21	4:CP1:370:SER:HB3	2.03	0.41

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
2:DP1:641:GLY:O	2:DP1:645:GLU:HG2	2.20	0.41	
3:BP1:498:PHE:CE2	3:BP1:502:PHE:CD1	3.08	0.41	
3:BP1:725:LYS:CB	3:BP1:731:ILE:HD12	2.50	0.41	
4:CP1:335:LEU:HB2	4:CP1:342:LEU:HB2	2.02	0.41	
4:CP1:343:LYS:HD2	4:CP1:506:PRO:HG2	2.02	0.41	
4:CP1:582:ILE:N	4:CP1:583:PRO:CD	2.84	0.41	
3:EP1:249:ILE:HD12	3:EP1:249:ILE:N	2.35	0.41	
3:EP1:357:ILE:CG1	3:EP1:370:ILE:HD11	2.50	0.41	
2:AP1:595:GLU:O	2:AP1:599:ASN:ND2	2.54	0.41	
3:BP1:691:MET:HE2	4:CP1:14:LEU:HD23	2.03	0.41	
4:CP1:224:PHE:CD1	4:CP1:507:GLU:OE1	2.74	0.41	
2:DP1:660:LYS:O	2:DP1:662:SER:N	2.54	0.41	
4:FP1:585:LEU:HD12	4:FP1:594:LEU:HD23	2.01	0.41	
2:AP1:390:ILE:O	2:AP1:390:ILE:HG22	2.19	0.40	
3:BP1:487:LEU:HD23	3:BP1:487:LEU:HA	1.95	0.40	
2:DP1:629:PHE:O	2:DP1:632:CYS:N	2.55	0.40	
3:EP1:498:PHE:CD2	3:EP1:503:VAL:HG22	2.55	0.40	
4:FP1:552:PRO:O	4:FP1:553:ASP:HB2	2.21	0.40	
2:DP1:646:GLN:NE2	3:EP1:21:THR:HB	2.36	0.40	
3:EP1:231:LYS:HD2	3:EP1:232:ASP:N	2.36	0.40	
3:EP1:519:ASN:OD1	3:EP1:662:PHE:N	2.45	0.40	
4:FP1:430:ILE:N	4:FP1:430:ILE:HD12	2.36	0.40	
4:FP1:529:ILE:HD12	4:FP1:529:ILE:H	1.86	0.40	
2:AP1:36:ILE:O	2:AP1:37:GLN:C	2.59	0.40	
2:AP1:76:GLN:OE1	2:AP1:91:LEU:HD12	2.21	0.40	
2:AP1:604:TRP:CE3	2:AP1:614:ALA:HB2	2.56	0.40	
4:CP1:228:PHE:CZ	4:CP1:243:GLY:HA3	2.57	0.40	
2:DP1:267:GLU:OE1	2:DP1:519:HIS:CE1	2.74	0.40	
2:DP1:298:ILE:CG2	2:DP1:527:ALA:HB1	2.51	0.40	
2:DP1:367:GLN:HB2	3:EP1:382:MET:HA	2.03	0.40	
2:DP1:583:LEU:O	2:DP1:587:ALA:N	2.54	0.40	
1:IN1:38:U:O2'	1:IN1:39:G:OP1	2.32	0.40	
3:BP1:164:THR:OG1	3:BP1:165:MET:N	2.55	0.40	
4:CP1:358:ILE:HG22	4:CP1:359:GLN:HG3	2.02	0.40	
4:CP1:421:ASP:O	4:CP1:425:ASP:N	2.49	0.40	
4:FP1:496:VAL:HG12	4:FP1:497:THR:N	2.36	0.40	
3:BP1:162:GLY:HA2	3:BP1:167:GLU:OE1	2.21	0.40	
3:EP1:311:TRP:HZ3	3:EP1:476:ILE:HG23	1.87	0.40	
3:EP1:509:GLU:O	3:EP1:534:ASN:ND2	2.54	0.40	
4:FP1:141:ARG:NE	4:FP1:250:GLU:OE1	2.54	0.40	
4:FP1:637:LEU:O	4:FP1:641:LEU:HG	2.21	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
2	AP1	692/709~(98%)	661 (96%)	31~(4%)	0	100	100
2	DP1	523/709~(74%)	505~(97%)	18 (3%)	0	100	100
3	BP1	704/754~(93%)	661 (94%)	43 (6%)	0	100	100
3	EP1	609/754~(81%)	566~(93%)	43 (7%)	0	100	100
4	CP1	770/774~(100%)	729~(95%)	41 (5%)	0	100	100
4	FP1	593/774~(77%)	552 (93%)	41 (7%)	0	100	100
All	All	3891/4474~(87%)	3674 (94%)	217 (6%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
2	AP1	620/631~(98%)	617~(100%)	3(0%)	88	94
2	DP1	468/631~(74%)	463 (99%)	5 (1%)	73	86
3	BP1	632/669~(94%)	626~(99%)	6 (1%)	78	90
3	EP1	547/669~(82%)	539~(98%)	8 (2%)	65	82
4	CP1	677/679~(100%)	671~(99%)	6 (1%)	78	90
4	FP1	521/679~(77%)	517 (99%)	4 (1%)	81	91

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
All	All	3465/3958~(88%)	3433~(99%)	32~(1%)	79 90

All (32) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
2	AP1	62	VAL
2	AP1	122	LYS
2	AP1	329	MET
3	BP1	50	SER
3	BP1	68	PHE
3	BP1	70	ASN
3	BP1	241	ARG
3	BP1	741	ASP
3	BP1	745	ASP
4	CP1	43	LYS
4	CP1	51	MET
4	CP1	52	ARG
4	CP1	371	GLU
4	CP1	446	GLN
4	CP1	451	ASN
2	DP1	235	LYS
2	DP1	242	GLU
2	DP1	292	LYS
2	DP1	414	TYR
2	DP1	543	ARG
3	EP1	30	MET
3	EP1	70	ASN
3	EP1	231	LYS
3	EP1	240	ARG
3	EP1	245	THR
3	EP1	362	LYS
3	EP1	386	TYR
3	EP1	410	MET
4	FP1	118	ILE
4	FP1	261	GLN
4	FP1	388	ARG
4	FP1	549	PHE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	IN1	18/47~(38%)	8 (44%)	1(5%)

All (8) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	IN1	6	А
1	IN1	8	А
1	IN1	11	А
1	IN1	14	G
1	IN1	36	С
1	IN1	37	С
1	IN1	38	U
1	IN1	39	G

All (1) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	IN1	38	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-10659. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

This section was not generated.

6.2 Central slices (i)

This section was not generated.

6.3 Largest variance slices (i)

This section was not generated.

6.4 Orthogonal standard-deviation projections (False-color) (i)

This section was not generated.

6.5 Orthogonal surface views (i)

This section was not generated.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

This section was not generated.

7.2 Volume estimate versus contour level (i)

This section was not generated.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section was not generated.

