

Jul 7, 2024 – 07:02 pm BST

PDB ID	:	7P7U
EMDB ID	:	EMD-13245
Title	:	E. faecalis 70S ribosome with P-tRNA, state IV
Authors	:	Crowe-McAuliffe, C.; Wilson, D.N.
Deposited on	:	2021-07-20
Resolution	:	3.10 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	1	62	92%	• 5%
2	2	59	95%	• •
3	3	89	88%	• 10%
4	4	59	90%	10%
5	5	49	96%	••
6	6	44	• 100%	
7	7	66	95%	• •
8	8	38	• 100%	

Continued from previous page... Chain Length Quality of chain Mol 9 2912 . А 82% 14% • 10 В 11678% 21% 13% 11 D 77. 74% 25% 12 \mathbf{G} 27699% ÷ Η 1320999% • 14Ι 20799% . 6% J 1517996% • • 19% ••• Κ 1617897% М 14717100% Ν 18122100% ÷ Ο 1914699% • Р 2014493% 7% 5% ••• 21Q 12798% ÷ 22 \mathbf{R} 11899% . \mathbf{S} 2311599% i. ... Т 1192498% i U 2510299% • i V 2611596% . . W 96 275% 95% 10% 28Х 10398% . Υ 299522% 78% 13% Ζ 30 6298% . 31 1558• \mathbf{a} 83% 14% 47% 3219b 47% 32% 21% 15% 33 261с 83% 15%

Mol	Chain	Length	Quality of chain	
34	d	218	5%	6%
35	е	203	<u>5%</u> 97%	
36	f	166	• 98%	
37	g	100	<mark>6%</mark> 96%	·
38	h	156	96%	
39	i	132	• 99%	
40	j	130	9%	
41	k	102	93%	• 6%
42	1	129	6% 89%	• 10%
43	m	137	98%	
44	n	121	9%	• 6%
45	О	61	97%	•••
46	р	89	96%	·
47	q	91	96%	·
48	r	88	91%	9%
49	s	79	80%	20%
50	t	92	89%	11%
51	u	83	۵ %	·

2 Entry composition (i)

There are 56 unique types of molecules in this entry. The entry contains 139826 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
1	1	59	Total 491	C 307	N 91	O 92	S 1	0	0

• Molecule 2 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
2	2	57	Total	С	Ν	0	\mathbf{S}	0	0
		01	428	266	80	81	1	0	0

• Molecule 3 is a protein called 50S ribosomal protein L31 type B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
3	3	80	Total 647	C 409	N 110	0 126	${S \over 2}$	0	0

• Molecule 4 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	4	53	Total 406	C 248	N 84	O 69	${ m S}{ m 5}$	0	0

• Molecule 5 is a protein called 50S ribosomal protein L33.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
л	Б	48	Total	С	Ν	Ο	\mathbf{S}	0	0
9	9	40	410	247	84	75	4	0	U

• Molecule 6 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	6	44	Total 374	C 227	N 91	0 54	${S \over 2}$	0	0

• Molecule 7 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
7	7	64	Total 522	C 320	N 122	0 78	${ m S} { m 2}$	0	0

• Molecule 8 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues		Ato	ms			AltConf	Trace
8	8	38	Total 305	C 188	N 66	O 45	S 6	0	0

• Molecule 9 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
9	А	2824	Total 60606	C 27054	N 11141	O 19587	Р 2824	0	0

• Molecule 10 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A		AltConf	Trace		
10	В	114	Total 2439	C 1088	N 439	0 798	Р 114	0	0

• Molecule 11 is a RNA chain called tRNA-fMet.

Mol	Chain	Residues		Atoms					Trace
11	D	77	Total 1644	C 733	N 298	O 536	Р 77	0	0

• Molecule 12 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
12	G	274	Total 2106	C 1305	N 414	0 380	S 7	0	0

• Molecule 13 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	Н	206	Total 1572	C 990	N 291	0 287	${S \atop 4}$	0	0

• Molecule 14 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	Ι	205	Total 1572	C 984	N 289	O 297	${ m S} { m 2}$	0	0

• Molecule 15 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	J	177	Total 1392	C 887	N 239	O 260	S 6	0	0

• Molecule 16 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	K	174	Total 1335	C 838	N 242	0 251	$\frac{S}{4}$	0	0

• Molecule 17 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	\mathbf{oms}		AltConf	Trace	
17	М	147	Total 1146	C 726	N 207	O 209	${S \atop 4}$	0	0

• Molecule 18 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	Ν	122	Total 923	C 574	N 176	0 171	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 19 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	Ο	146	Total 1096	C 677	N 212	O 206	S 1	0	0

• Molecule 20 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	Р	134	Total 1070	C 683	N 209	0 173	${f S}{5}$	0	0

• Molecule 21 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	Q	125	Total 997	C 615	N 192	0 187	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	R	118	Total 908	C 561	N 176	O 169	${S \over 2}$	0	0

• Molecule 23 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
23	S	114	Total 925	C 582	N 185	O 158	0	0

• Molecule 24 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		At	oms		AltConf	Trace	
24	Т	118	Total 950	C 602	N 184	O 160	$\frac{S}{4}$	0	0

• Molecule 25 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	U	101	Total 779	C 497	N 138	0 142	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 26 is a protein called 50S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	V	111	Total 841	C 527	N 154	0 158	${S \over 2}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	W	91	Total 736	C 469	N 129	0 134	${S \atop 4}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	Х	101	Total 763	C 486	N 135	O 140	${ m S} { m 2}$	0	0

• Molecule 29 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
29	Y	74	Total 559	C 344	N 107	O 108	0	0

• Molecule 30 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
30	Z	61	Total 480	C 299	N 97	O 82	${ m S} { m 2}$	0	0

• Molecule 31 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
31	a	1521	Total 32595	C 14542	N 5954	O 10578	Р 1521	0	0

• Molecule 32 is a RNA chain called mRNA.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
32	b	13	Total 285	C 127	N 57	O 88	Р 13	0	0

• Molecule 33 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	С	222	Total 1773	C 1126	N 312	O 326	S 9	0	0

• Molecule 34 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	d	205	Total 1618	C 1018	N 304	0 293	$\frac{S}{3}$	0	0

• Molecule 35 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	е	200	Total 1611	C 1010	N 301	O 296	$\frac{S}{4}$	0	0

• Molecule 36 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues	Atoms					AltConf	Trace
36	f	163	Total 1204	C 759	N 222	0 221	${ m S} { m 2}$	0	0

• Molecule 37 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	g	96	Total 786	C 496	N 135	0 152	${ m S} { m 3}$	0	0

• Molecule 38 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	h	153	Total 1218	C 759	N 232	0 221	S 6	0	0

• Molecule 39 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues	Atoms					AltConf	Trace
39	i	131	Total 1041	C 662	N 184	0 193	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 40 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	j	127	Total 980	C 610	N 195	0 174	S 1	0	0

• Molecule 41 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	k	96	Total 773	C 487	N 142	0 142	${S \over 2}$	0	0

• Molecule 42 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	1	116	Total 854	C 527	N 163	O 160	$\frac{S}{4}$	0	0

• Molecule 43 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues		Atoms					Trace
43	m	134	Total 1051	C 652	N 211	0 186	${S \over 2}$	0	0

• Molecule 44 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues	Atoms					AltConf	Trace
44	n	114	Total 902	C 552	N 183	0 166	S 1	0	0

• Molecule 45 is a protein called 30S ribosomal protein S14 type Z.

Mol	Chain	Residues	Atoms				AltConf	Trace	
45	0	60	Total 492	C 310	N 100	0 77	$\frac{S}{5}$	0	0

• Molecule 46 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues	Atoms				AltConf	Trace	
46	р	85	Total 716	C 440	N 146	0 129	S 1	0	0

• Molecule 47 is a protein called 30S ribosomal protein S16.

Mol	Chain	Residues	Atoms					AltConf	Trace
47	q	87	Total 692	C 437	N 128	0 125	${ m S} { m 2}$	0	0

• Molecule 48 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues	Atoms					AltConf	Trace
48	r	80	Total 660	C 414	N 124	0 119	${ m S} { m 3}$	0	0

• Molecule 49 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues	Atoms					AltConf	Trace
49	S	63	Total 511	C 328	N 95	0 87	S 1	0	0

• Molecule 50 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues	Atoms					AltConf	Trace
50	t	82	Total 663	C 426	N 122	0 113	${S \over 2}$	0	0

• Molecule 51 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues	Atoms					AltConf	Trace
51	u	81	Total 608	C 371	N 118	0 117	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 52 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
52	4	1	Total Zn 1 1	0
52	5	1	Total Zn 1 1	0
52	8	1	Total Zn 1 1	0
52	О	1	Total Zn 1 1	0

• Molecule 53 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
53	7	2	Total K 2 2	0
53	А	103	Total K 103 103	0
53	В	3	Total K 3 3	0
53	G	3	Total K 3 3	0
53	Р	1	Total K 1 1	0
53	a	38	Total K 38 38	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
53	g	1	Total K 1 1	0
53	О	1	Total K 1 1	0

• Molecule 54 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
54	А	138	Total Mg 138 138	0
54	В	1	Total Mg 1 1	0
54	G	1	Total Mg 1 1	0
54	Q	1	Total Mg 1 1	0
54	a	44	TotalMg4444	0
54	n	1	Total Mg 1 1	0

• Molecule 55 is 1,4-DIAMINOBUTANE (three-letter code: PUT) (formula: $C_4H_{12}N_2$).

Mol	Chain	Residues	Atoms	AltConf
55	a	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 6 & 4 & 2 \end{array}$	0

• Molecule 56 is SPECTINOMYCIN (three-letter code: SCM) (formula: $C_{14}H_{24}N_2O_7$).

Mol	Chain	Residues	Atoms			AltConf	
56	a	1	Total 23	C 14	N 2	0 7	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 50S ribosomal protein L29

Chain 6:	100%	
₩ TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT		
• Molecule 7: 50S ribosomal protein L	35	
Chain 7:	95% •••	
MET P2 M66 LYS		
• Molecule 8: 50S ribosomal protein L	36	
Chain 8:	100%	
• Molecule 9: 23S rRNA		
Chain A: 82%	14% •	
6 6 6 6 615 615 615 651 651 651 655 013 013 013 013 013 011	A117 A117 0119 0120 0121 0120 0120 0120 0120 0120	A230
1232 1247 1247 1250 1250 1255 1257 1257 1256 1250 12588 12588 12588 12588 12588 125888 125888 125888 125888	C2299 U3000 A301 C308 C308 C308 A312 A312 A317 C318 C318 C318 C318 C318 C318 C318 C338 C33	A410 6411 6425 6425
A129 A130 A140 A140 C479 C479 A196 A196 C500 C500 C500 C500 C500 C520 C520 C520	6560 6560 6563 45669 4570 6571 6571 6581 4585 4585 6599 6599 6599 6599 6599 6599 6599 6	U683 A684
4691 U6832 4694 A7116 U725 A709 U725 A769 U786 G814 A822 U823 U823 A822 U823	G8 44 G8 44 B5 B5 B5 B5 B5 B5 B5 B5 B5 B5	(933 1935 1935 6937 0937 0937 0938
A947 A950 A951 C952 C954 C954 C954 U974 U972 A972 A986 A986 A986 A986 A998 A998 A998 A998	A1022 A1035 A1035 C1044 U1052 U1052 U1052 G1064 A1065 A1065 A1065 A1065 A1065 C1064 A1065 U1072 U1072 U1092	G1098 U1099 G1101 G1101
C1102 C1103 C1104 U1105 A1106 A1106 C1107 C1111 A1110 C1111 A1112 C1115 C1115 C1115 C1115 C1115 C1115 C1115 C1115 A1119 U122 U122	C1126 C1128 C1128 C1131 C1131 C1133 A1135 A1135 A1135 C1141 A1142 C1143 C1143 C1143 C1143 C1143 C1143 C1155 C1155 C1155 U1171	A1172 C1173 C1174 C1174 C1174 A1181 A1182 A1190 A1190 G1196 G1196
A1211 U1212 U1213 A1214 A1214 G1243 G1243 G1243 G1243 G1243 G1243 G1274 G1275 G1275 G1276 G1275 G1276 G1286 G1277 G1286 G1277 G1286 G1377 G12777 G12777 G12777 G12777 G12777 G127777 G12777777777777777777777777777777777777	A1308 A1309 A1309 C1311 U1364 A1336 C1385 C1365 C1385 C1375	01451 01422 01453

• Molecule 13: 50S ribosomal protein L3

Chain H: 99% • Molecule 14: 50S ribosomal protein L4 Chain I: 99% • Molecule 15: 50S ribosomal protein L5 6% Chain J: 96% . . • Molecule 16: 50S ribosomal protein L6 19% Chain K: ... 97% • Molecule 17: 50S ribosomal protein L13 Chain M: 100% There are no outlier residues recorded for this chain. • Molecule 18: 50S ribosomal protein L14 Chain N: 100% • Molecule 19: 50S ribosomal protein L15

Chain O:

99%

7%

•••

M1 4 K29 E86 B87 D114 114

• Molecule 20: 50S ribosomal protein L16 Chain P: 93% GLU MET GLY GLY GLU SER ASN ASN GLU GLY • Molecule 21: 50S ribosomal protein L17 Chain Q: 98% E75 E76 D77 E78 S79 MET • Molecule 22: 50S ribosomal protein L18 Chain R: 99% • Molecule 23: 50S ribosomal protein L19 Chain S: 99% • Molecule 24: 50S ribosomal protein L20 Chain T: 98% • Molecule 25: 50S ribosomal protein L21 Chain U: 99%

 \bullet Molecule 26: 50S ribosomal protein L22

Chain V:	96%	
MET SER GLU GLN D27 N115		
• Molecule 2	27: 50S ribosomal protein L23	
Chain W:	95%	5%
M1 D47 D85 S86 K87	L91 GUU ALA GUU GUU	
• Molecule 2	28: 50S ribosomal protein L24	
Chain X:	98%	·
M1 N48 Q49 A50 P52	R85 B87 C88 C88 C88 C88 C88 C88 C88 C88 C88 C	
• Molecule 2	29: 50S ribosomal protein L27	
Chain Y:	78% 22%	-
MET LEU LEU THR MET ASN LEU GLN LEU	PHE ALA ALA HIS CLY GLY GLY GLY SER ALA ANA ASN	
• Molecule 3	30: 50S ribosomal protein L28	
Chain Z:	98%	·
MET A2 D41 G42 F43 F43 F45	K58 159 151 152 152	
• Molecule 3	31: 16S rRNA	
Chain a:	83% 14%	.
69 A10 611 A34 641 641	A B B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	A135 A135 C137 A146
6161 6162 6163 6163 A166 V167 A168 A168 C172	A177 A177 A179 C180 A181 A181 A181 A181 A181 A181 A181 A	A355 A355 A355 C356 C356 C356 C358 G358
A370 G373 G373 A37 A37 G380 G381	A382 U391 U391 U391 U393 C398 C398 C418 C418 A423 A423 C448 A440 U446 A441 U446 C448 A470 C446 C445 U446 C445 C446 C447 C446 C447 C448 C447 C448 C447 C448 C447 C448 C447 C448 C447 C448 C447 C448 C447 C448 C447 C448 C447 C448 C447 C448 C447 C448 C447 C448 C447 C448 C447 C448 C447 C448 C447 C448 C448	6510 6511 4523 4524

Chain l:	00%/	200/
	89%	• 10%
MET ALA ALA LYS LYS LYS VAL ARG ARG ARG VAL VAL VAL K14 K14 K15 K15 K15 K15 K15 K15 K15 K15 K15 K15	H7 7 R93 A109 N119 R126 V129	
• Molecule 43: 30S ribos	omal protein S12	
Chain m:	98%	
MET P2 P2 P2 P2 P2 R57 P25 P135 LYS ALA		
• Molecule 44: 30S ribos	omal protein S13	
^{9%} Chain n:	92%	• 6%
MET ALA R3 B8 B8 B8 E41 E41 E41 C48 T49 N50	R79 R107 T113 K114 V116 ALA GLY LYS LYS LYS	
• Molecule 45: 30S ribos	omal protein S14 type Z	
Chain o:	97%	• •
MET 22 22 22 23 24 25 24 25 24 25 24 25 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25		
• Molecule 46: 30S ribos	omal protein S15	
Chain p:	96%	
MET ALLA ILLA ILLA BS C20 C20 ARG ARG		
• Molecule 47: 30S ribos	omal protein S16	
Chain q:	96%	· ·
MET A2 E53 B8 NAL LYS LYS		
• Molecule 48: 30S ribos	omal protein S17	
Chain r:	91%	9%
MET THR GLU CLU CLU CLU CLU EB3 B84 MLA VAL TLE ILE ILE		

• Molecule 49: 30S ribosomal protein S18

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	18512	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	30.255	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	1500	Depositor
Magnification	165000	Depositor
Image detector	GATAN K2 QUANTUM $(4k \ge 4k)$	Depositor
Maximum map value	0.052	Depositor
Minimum map value	-0.010	Depositor
Average map value	0.002	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.015	Depositor
Map size (Å)	344.4, 344.4, 344.4	wwPDB
Map dimensions	420, 420, 420	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.82, 0.82, 0.82	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: K, SCM, MG, ZN, PUT

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.24	0/492	0.50	0/654	
2	2	0.25	0/430	0.49	0/579	
3	3	0.30	0/664	0.50	0/896	
4	4	0.28	0/413	0.53	0/549	
5	5	0.28	0/414	0.56	0/552	
6	6	0.28	0/377	0.65	0/491	
7	7	0.27	0/528	0.62	0/689	
8	8	0.30	0/310	0.55	0/409	
9	А	0.45	0/67888	0.76	17/105890~(0.0%)	
10	В	0.35	0/2728	0.73	1/4252~(0.0%)	
11	D	0.32	0/1837	0.79	2/2862~(0.1%)	
12	G	0.29	0/2141	0.54	0/2881	
13	Н	0.29	0/1594	0.53	0/2140	
14	Ι	0.29	0/1595	0.50	0/2157	
15	J	0.27	0/1411	0.50	0/1897	
16	K	0.27	0/1355	0.51	0/1825	
17	М	0.29	0/1167	0.49	0/1576	
18	N	0.29	0/930	0.57	0/1247	
19	0	0.29	0/1106	0.53	0/1474	
20	Р	0.29	0/1093	0.53	0/1457	
21	Q	0.27	0/1006	0.57	0/1349	
22	R	0.28	0/917	0.55	0/1226	
23	S	0.28	0/939	0.59	0/1262	
24	Т	0.30	0/963	0.49	0/1280	
25	U	0.32	0/791	0.48	0/1061	
26	V	0.28	0/850	0.51	0/1145	
27	W	0.29	0/743	0.51	0/993	
28	Х	0.28	0/772	0.45	0/1035	
29	Y	0.30	0/565	0.54	0/755	
30	Z	0.27	0/486	0.54	0/648	
31	a	0.40	0/36487	0.76	8/56905~(0.0%)	
32	b	0.24	0/319	0.81	2/494~(0.4%)	

Mal	Chain	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	с	0.32	0/1803	0.49	0/2430	
34	d	0.28	0/1643	0.53	0/2208	
35	е	0.28	0/1641	0.51	0/2206	
36	f	0.28	0/1217	0.52	0/1641	
37	g	0.28	0/798	0.50	0/1075	
38	h	0.26	0/1238	0.51	0/1668	
39	i	0.28	0/1054	0.52	0/1417	
40	j	0.27	0/993	0.54	0/1331	
41	k	0.27	0/785	0.52	0/1059	
42	1	0.26	0/869	0.52	0/1174	
43	m	0.28	0/1068	0.57	0/1435	
44	n	0.26	0/908	0.58	0/1219	
45	0	0.29	0/504	0.52	0/669	
46	р	0.27	0/726	0.52	0/969	
47	q	0.27	0/704	0.51	0/945	
48	r	0.28	0/668	0.52	0/891	
49	S	0.27	0/518	0.52	0/694	
50	t	0.28	0/680	0.50	0/911	
51	u	0.25	0/611	0.46	0/818	
All	All	0.39	0/151739	0.71	30/227390~(0.0%)	

There are no bond length outliers.

All (30) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
31	a	111	А	OP1-P-OP2	-7.16	108.87	119.60
9	А	1828	A	OP1-P-OP2	-7.05	109.03	119.60
31	а	240	G	OP1-P-OP2	-7.04	109.05	119.60
9	А	1801	С	OP1-P-OP2	-6.81	109.39	119.60
31	а	1390	С	OP1-P-OP2	-6.81	109.39	119.60
32	b	1	G	OP1-P-OP2	-6.80	109.40	119.60
10	В	2	G	OP1-P-OP2	-6.79	109.42	119.60
9	А	1413	А	OP1-P-OP2	-6.77	109.45	119.60
31	a	9	G	OP1-P-OP2	-6.73	109.50	119.60
9	А	429	А	OP1-P-OP2	-6.68	109.58	119.60
32	b	13	A	OP1-P-OP2	-6.67	109.60	119.60
9	А	980	А	OP1-P-OP2	-6.64	109.64	119.60
9	А	3	U	OP1-P-OP2	-6.62	109.67	119.60
9	А	1061	G	OP1-P-OP2	-6.56	109.76	119.60
9	А	121	G	OP1-P-OP2	-6.47	109.89	119.60
31	a	1060	G	OP1-P-OP2	-6.46	109.92	119.60
9	А	708	G	OP1-P-OP2	-6.44	109.94	119.60

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	А	2005	G	OP1-P-OP2	-6.43	109.95	119.60
31	a	845	А	OP1-P-OP2	-6.43	109.96	119.60
31	a	1548	G	OP1-P-OP2	-6.42	109.97	119.60
9	А	500	C	OP1-P-OP2	-6.36	110.06	119.60
9	А	2216	G	OP1-P-OP2	-6.36	110.06	119.60
9	А	2384	G	OP1-P-OP2	-6.17	110.34	119.60
9	А	197	А	OP1-P-OP2	-5.81	110.89	119.60
31	a	131	G	OP1-P-OP2	-5.77	110.95	119.60
9	А	2802	C	O4'-C1'-N1	5.52	112.62	108.20
11	D	57	C	C2-N1-C1'	5.26	124.59	118.80
9	А	1827	G	OP1-P-O3'	5.18	116.61	105.20
11	D	57	Ċ	C6-N1-C2	-5.12	118.25	120.30
9	А	1118	С	C2-N1-C1'	5.11	124.42	118.80

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	1	57/62~(92%)	56~(98%)	1 (2%)	0	100	100
2	2	55/59~(93%)	54 (98%)	1 (2%)	0	100	100
3	3	78/89~(88%)	73 (94%)	5~(6%)	0	100	100
4	4	51/59~(86%)	49 (96%)	2(4%)	0	100	100
5	5	46/49~(94%)	45~(98%)	1 (2%)	0	100	100
6	6	42/44~(96%)	42 (100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
7	7	62/66~(94%)	62 (100%)	0	0	100	100
8	8	36/38~(95%)	35~(97%)	1 (3%)	0	100	100
12	G	272/276~(99%)	265~(97%)	6 (2%)	1 (0%)	34	69
13	Н	204/209~(98%)	195 (96%)	9 (4%)	0	100	100
14	Ι	203/207~(98%)	201 (99%)	2 (1%)	0	100	100
15	J	175/179~(98%)	167 (95%)	8 (5%)	0	100	100
16	K	172/178~(97%)	165 (96%)	7 (4%)	0	100	100
17	М	145/147~(99%)	144 (99%)	1 (1%)	0	100	100
18	Ν	120/122~(98%)	116 (97%)	4 (3%)	0	100	100
19	О	144/146~(99%)	140 (97%)	3 (2%)	1 (1%)	22	57
20	Р	132/144~(92%)	131 (99%)	1 (1%)	0	100	100
21	Q	123/127~(97%)	120 (98%)	3 (2%)	0	100	100
22	R	116/118 (98%)	113 (97%)	3 (3%)	0	100	100
23	S	112/115~(97%)	110 (98%)	2 (2%)	0	100	100
24	Т	116/119~(98%)	114 (98%)	2 (2%)	0	100	100
25	U	99/102~(97%)	97 (98%)	2 (2%)	0	100	100
26	V	109/115~(95%)	107 (98%)	2 (2%)	0	100	100
27	W	89/96~(93%)	88 (99%)	1 (1%)	0	100	100
28	Х	99/103~(96%)	96 (97%)	3 (3%)	0	100	100
29	Y	72/95~(76%)	68 (94%)	4 (6%)	0	100	100
30	Ζ	59/62~(95%)	59 (100%)	0	0	100	100
33	с	220/261~(84%)	209 (95%)	10 (4%)	1 (0%)	29	64
34	d	203/218~(93%)	197 (97%)	6 (3%)	0	100	100
35	е	198/203~(98%)	193 (98%)	5 (2%)	0	100	100
36	f	161/166~(97%)	159 (99%)	2 (1%)	0	100	100
37	g	94/100~(94%)	92 (98%)	2 (2%)	0	100	100
38	h	151/156~(97%)	148 (98%)	3 (2%)	0	100	100
39	i	129/132~(98%)	126 (98%)	3 (2%)	0	100	100
40	j	125/130~(96%)	119 (95%)	6 (5%)	0	100	100
41	k	94/102~(92%)	93~(99%)	1 (1%)	0	100	100
42	l	114/129~(88%)	110 (96%)	3 (3%)	1 (1%)	17	52

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
43	m	132/137~(96%)	125~(95%)	7 (5%)	0	100	100
44	n	112/121~(93%)	110 (98%)	2 (2%)	0	100	100
45	О	58/61~(95%)	58 (100%)	0	0	100	100
46	р	83/89~(93%)	82 (99%)	1 (1%)	0	100	100
47	q	85/91~(93%)	83~(98%)	2(2%)	0	100	100
48	r	78/88~(89%)	75~(96%)	3 (4%)	0	100	100
49	s	61/79~(77%)	59~(97%)	2(3%)	0	100	100
50	t	80/92~(87%)	80 (100%)	0	0	100	100
51	u	79/83~(95%)	77 (98%)	2 (2%)	0	100	100
All	All	5245/5564~(94%)	5107 (97%)	134 (3%)	4 (0%)	54	83

All (4) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
33	с	131	LYS
42	1	119	ASN
19	0	29	LYS
12	G	155	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	1	54/56~(96%)	52~(96%)	2(4%)	34	66
2	2	48/50~(96%)	47 (98%)	1 (2%)	53	79
3	3	72/79~(91%)	70~(97%)	2(3%)	43	73
4	4	43/48~(90%)	43 (100%)	0	100	100
5	5	48/49~(98%)	47 (98%)	1 (2%)	53	79
6	6	39/39~(100%)	39 (100%)	0	100	100
7	7	51/53~(96%)	50 (98%)	1 (2%)	55	80

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
8	8	35/35~(100%)	35 (100%)	0	100	100
12	G	224/226~(99%)	224 (100%)	0	100	100
13	Н	169/172~(98%)	169~(100%)	0	100	100
14	Ι	172/173~(99%)	171 (99%)	1 (1%)	86	94
15	J	154/156~(99%)	148~(96%)	6 (4%)	32	65
16	Κ	145/148~(98%)	143~(99%)	2(1%)	67	86
17	М	124/124~(100%)	124 (100%)	0	100	100
18	Ν	98/98~(100%)	98 (100%)	0	100	100
19	Ο	112/112~(100%)	111 (99%)	1 (1%)	78	91
20	Р	107/114~(94%)	107 (100%)	0	100	100
21	Q	107/109~(98%)	106 (99%)	1 (1%)	78	91
22	R	92/92~(100%)	91~(99%)	1 (1%)	73	89
23	S	97/98~(99%)	97~(100%)	0	100	100
24	Т	94/95~(99%)	93~(99%)	1 (1%)	73	89
25	U	83/83~(100%)	83 (100%)	0	100	100
26	V	94/98~(96%)	93~(99%)	1 (1%)	73	89
27	W	82/85~(96%)	82 (100%)	0	100	100
28	Х	85/87~(98%)	85 (100%)	0	100	100
29	Υ	59/75~(79%)	59~(100%)	0	100	100
30	Ζ	54/55~(98%)	54 (100%)	0	100	100
33	с	187/220~(85%)	182~(97%)	5~(3%)	44	74
34	d	163/174~(94%)	162 (99%)	1 (1%)	86	94
35	е	174/177~(98%)	170~(98%)	4 (2%)	50	77
36	f	126/128~(98%)	126 (100%)	0	100	100
37	g	85/88~(97%)	85 (100%)	0	100	100
38	h	130/133 (98%)	126 (97%)	4(3%)	40	70
39	i	112/113~(99%)	112 (100%)	0	100	100
40	j	100/102~(98%)	98~(98%)	2(2%)	55	80
41	k	87/92~(95%)	86 (99%)	1 (1%)	73	89
42	l	90/101~(89%)	90 (100%)	0	100	100
43	m	117/119~(98%)	117 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
44	n	98/102~(96%)	95~(97%)	3(3%)	40	70
45	О	51/52~(98%)	50~(98%)	1 (2%)	55	80
46	р	76/79~(96%)	76~(100%)	0	100	100
47	q	77/81~(95%)	77~(100%)	0	100	100
48	r	74/81~(91%)	74 (100%)	0	100	100
49	\mathbf{S}	54/67~(81%)	54 (100%)	0	100	100
50	\mathbf{t}	70/79~(89%)	70~(100%)	0	100	100
51	u	62/64~(97%)	62 (100%)	0	100	100
All	All	4475/4661 (96%)	4433 (99%)	42 (1%)	79	91

All (42) residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	1	19	LYS
1	1	58	ARG
2	2	55	ASP
3	3	14	PHE
3	3	23	PHE
5	5	38	ARG
7	7	31	HIS
14	Ι	49	HIS
15	J	37	ASN
15	J	71	LYS
15	J	79	LEU
15	J	80	ARG
15	J	168	GLU
15	J	175	MET
16	Κ	84	GLN
16	Κ	102	LYS
19	0	1	MET
21	Q	74	ARG
22	R	4	LYS
24	Т	51	ARG
26	V	27	ASP
33	с	23	TRP
33	с	74	LYS
33	с	113	ARG
33	с	129	LEU
33	с	221	PHE

Mol	Chain	Res	Type
34	d	87	ARG
35	е	14	ARG
35	е	60	MET
35	е	128	ASP
35	е	183	ARG
38	h	15	ASP
38	h	85	TYR
38	h	92	ARG
38	h	149	ARG
40	j	115	LYS
40	j	129	LYS
41	k	49	TYR
44	n	79	ARG
44	n	92	ARG
44	n	107	ARG
45	0	38	HIS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such sidechains are listed below:

Mol	Chain	Res	Type
14	Ι	141	GLN
14	Ι	145	ASN
36	f	70	ASN
49	S	21	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
10	В	113/116~(97%)	23~(20%)	0
11	D	76/77~(98%)	20 (26%)	0
31	a	1518/1558~(97%)	219(14%)	0
32	b	11/19~(57%)	2 (18%)	0
9	А	2820/2912~(96%)	405 (14%)	30 (1%)
All	All	4538/4682~(96%)	669~(14%)	30~(0%)

All (669) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
9	А	10	А
9	А	15	G

Mol	Chain	Res	Type
9	А	34	U
9	А	46	С
9	А	51	G
9	А	55	G
9	А	63	U
9	А	71	А
9	А	74	U
9	А	75	G
9	А	93	U
9	А	101	G
9	А	117	А
9	А	119	U
9	А	130	A
9	A	161	A
9	A	163	U
9	А	164	A
9	А	169	G
9	А	198	А
9	А	201	А
9	А	215	А
9	А	218	А
9	А	224	А
9	А	225	A
9	А	230	А
9	А	231	U
9	А	232	U
9	А	247	G
9	А	250	G
9	А	251	C
9	А	252	G
9	A	257	A
9	А	269	C
9	A	271	C
9	A	281	A
9	A	282	G
9	A	289	U
9	А	290	G
9	A	295	G
9	A	296	G
9	A	299	G
9	A	300	U
9	A	301	A

Mol	Chain	Res	Type
9	А	308	С
9	А	309	G
9	А	310	А
9	А	311	U
9	А	312	А
9	А	317	А
9	А	318	G
9	А	320	С
9	А	321	U
9	А	322	G
9	А	338	G
9	А	347	A
9	A	366	A
9	A	398	A
9	А	402	G
9	A	403	G
9	А	410	А
9	А	411	G
9	А	425	G
9	A	430	А
9	А	440	А
9	A	450	G
9	А	474	С
9	А	479	G
9	A	495	С
9	A	496	A
9	A	509	A
9	A	520	G
9	А	529	A
9	А	534	G
9	А	543	A
9	A	546	U
9	А	560	G
9	A	568	С
9	A	569	A
9	A	570	A
9	A	571	G
9	А	581	G
9	A	582	U
9	A	583	U
9	А	584	A
9	A	585	A

Mol	Chain	Res	Type
9	А	587	G
9	А	599	G
9	А	609	G
9	А	610	А
9	А	611	А
9	А	639	А
9	А	651	А
9	А	665	А
9	А	675	А
9	А	683	U
9	А	684	А
9	А	691	А
9	А	692	U
9	A	694	A
9	A	708	G
9	А	709	A
9	А	716	А
9	А	725	U
9	А	761	А
9	А	769	А
9	А	786	U
9	А	796	G
9	А	814	G
9	А	821	А
9	А	823	U
9	А	829	А
9	А	844	G
9	А	851	С
9	А	858	A
9	А	866	U
9	А	867	U
9	А	885	U
9	А	886	G
9	А	899	G
9	А	922	G
9	A	923	C
9	А	926	A
9	A	928	C
9	А	929	U
9	A	931	G
9	A	933	G
9	А	935	U

Mol	Chain	Res	Type
9	А	936	А
9	А	947	А
9	А	950	А
9	А	952	С
9	А	954	С
9	А	957	А
9	А	965	U
9	А	966	С
9	А	972	U
9	А	974	U
9	А	984	А
9	А	985	G
9	A	998	A
9	A	1000	G
9	А	1013	А
9	А	1022	A
9	А	1035	А
9	А	1044	С
9	А	1051	U
9	А	1052	А
9	А	1061	G
9	А	1062	U
9	А	1064	G
9	А	1066	А
9	А	1072	U
9	А	1086	G
9	А	1101	G
9	А	1109	А
9	А	1110	G
9	А	1111	C
9	А	1115	С
9	А	1118	C
9	А	1122	U
9	А	1123	A
9	A	1126	G
9	А	1127	A
9	А	1151	G
9	А	1155	С
9	А	1167	A
9	А	1171	U
9	А	1172	А
9	А	1174	С

Mol	Chain	Res	Type
9	А	1175	G
9	А	1181	А
9	А	1182	А
9	А	1190	А
9	А	1196	G
9	А	1212	U
9	А	1213	U
9	А	1225	U
9	А	1243	G
9	А	1248	G
9	А	1265	А
9	А	1267	G
9	А	1272	G
9	A	1274	G
9	А	1286	G
9	A	1289	A
9	А	1292	G
9	А	1307	G
9	А	1308	А
9	А	1310	А
9	А	1311	G
9	А	1335	U
9	А	1336	А
9	А	1364	U
9	А	1380	С
9	А	1385	С
9	А	1387	U
9	А	1394	А
9	А	1395	G
9	А	1400	A
9	А	1414	U
9	A	1421	C
9	А	1430	A
9	A	1431	U
9	А	1451	G
9	A	1452	U
9	А	1454	U
9	А	1455	G
9	А	1460	A
9	A	1461	U
9	A	1468	A
9	А	1469	С

Mol	Chain	Res	Type
9	А	1474	U
9	А	1495	U
9	А	1496	U
9	А	1497	G
9	А	1503	G
9	А	1509	С
9	А	1511	А
9	А	1520	G
9	А	1524	U
9	А	1526	A
9	А	1530	G
9	А	1534	U
9	А	1535	А
9	А	1536	A
9	А	1537	A
9	А	1538	U
9	А	1550	U
9	А	1551	А
9	А	1564	G
9	А	1565	А
9	А	1567	G
9	А	1569	G
9	А	1575	А
9	А	1576	А
9	А	1583	G
9	А	1584	U
9	А	1611	А
9	А	1614	A
9	А	1623	U
9	A	1625	G
9	A	1627	G
9	А	1629	G
9	A	1649	U
9	А	1650	A
9	А	1652	A
9	A	1688	A
9	А	1689	G
9	A	1690	C
9	А	1707	A
9	A	1716	G
9	А	1717	С
9	А	1742	А

Mol	Chain	Res	Type
9	А	1756	U
9	А	1758	G
9	А	1759	G
9	А	1769	G
9	А	1775	А
9	А	1776	G
9	А	1777	G
9	А	1786	А
9	А	1795	С
9	А	1804	А
9	А	1813	С
9	А	1814	А
9	А	1828	А
9	А	1829	А
9	А	1830	G
9	А	1842	А
9	А	1860	А
9	А	1872	А
9	А	1873	U
9	А	1883	U
9	А	1884	С
9	А	1885	G
9	А	1907	С
9	А	1919	G
9	А	1926	А
9	А	1927	С
9	А	1942	G
9	А	1943	G
9	А	1949	А
9	А	1951	A
9	А	1953	U
9	А	1968	U
9	А	1980	С
9	А	1983	A
9	А	1984	А
9	А	1985	G
9	А	2004	U
9	А	2006	U
9	А	2009	С
9	А	2010	А
9	А	2034	G
9	А	2035	U

Mol	Chain	Res	Type
9	А	2036	А
9	А	2044	А
9	А	2045	G
9	А	2046	А
9	А	2056	С
9	А	2068	С
9	А	2069	G
9	А	2073	А
9	А	2074	G
9	А	2075	А
9	А	2082	G
9	А	2096	G
9	А	2108	G
9	A	2112	U
9	A	2201	U
9	A	2207	С
9	А	2211	А
9	А	2212	А
9	А	2216	G
9	А	2217	С
9	А	2224	А
9	А	2225	А
9	А	2238	А
9	А	2251	G
9	А	2252	G
9	А	2259	G
9	А	2281	А
9	А	2292	G
9	А	2296	С
9	А	2300	А
9	A	2318	U
9	А	2319	U
9	A	$2\overline{321}$	G
9	A	2322	A
9	A	$2\overline{324}$	A
9	A	2331	G
9	А	2333	А
9	A	$2\overline{334}$	G
9	A	2335	А
9	A	2338	G
9	A	2347	G
9	А	2348	А

Mol	Chain	Res	Type
9	А	2360	С
9	А	2363	С
9	А	2396	G
9	А	2398	С
9	А	2415	U
9	А	2435	С
9	А	2437	С
9	А	2438	А
9	А	2442	G
9	А	2443	А
9	А	2448	А
9	А	2454	С
9	А	2460	G
9	А	2461	А
9	А	2478	С
9	А	2489	А
9	А	2491	A
9	А	2497	G
9	А	2515	G
9	А	2518	G
9	А	2519	U
9	А	2531	А
9	А	2533	С
9	А	2542	G
9	А	2548	G
9	А	2561	G
9	А	2567	U
9	А	2579	А
9	А	2580	G
9	А	2591	G
9	A	2615	A
9	А	2622	U
9	A	2623	С
9	А	2626	U
9	A	2628	U
9	A	2642	U
9	А	2643	G
9	A	2674	G
9	A	2698	G
9	A	2702	U
9	A	2727	G
9	А	2739	U

Mol	Chain	Res	Type
9	А	2746	А
9	А	2747	А
9	А	2749	G
9	А	2761	А
9	А	2778	А
9	А	2791	А
9	А	2792	U
9	А	2803	А
9	А	2804	U
9	А	2809	U
9	А	2810	U
9	А	2811	А
9	А	2812	A
9	A	2813	G
9	А	2816	А
9	А	2818	U
9	А	2830	G
9	А	2843	А
9	А	2844	G
9	А	2877	G
9	А	2878	А
9	А	2882	G
9	А	2889	А
9	А	2890	С
9	А	2903	G
10	В	7	G
10	В	10	G
10	В	13	А
10	В	23	A
10	В	28	С
10	В	33	U
10	В	35	С
10	В	39	G
10	В	40	C
10	В	43	A
10	В	51	A
10	В	54	U
10	В	55	A
10	В	64	A
10	В	65	G
10	В	87	U
10	В	88	С

Mol	Chain	Res	Type
10	В	97	А
10	В	101	U
10	В	107	G
10	В	108	U
10	В	110	G
10	В	115	G
11	D	3	С
11	D	6	G
11	D	7	G
11	D	8	U
11	D	9	G
11	D	13	С
11	D	19	G
11	D	20	G
11	D	22	A
11	D	23	G
11	D	47	G
11	D	49	C
11	D	54	G
11	D	56	U
11	D	57	С
11	D	62	С
11	D	63	С
11	D	68	С
11	D	76	С
11	D	77	А
31	a	10	А
31	a	11	G
31	a	34	А
31	a	41	G
31	a	49	С
31	a	50	С
31	a	51	U
31	a	53	A
31	a	57	А
31	a	74	С
31	a	75	U
31	a	117	А
31	a	132	A
31	a	135	А
31	a	137	С
31	a	146	A

Mol	Chain	Res	Type
31	a	161	G
31	a	163	G
31	a	166	А
31	a	168	А
31	a	172	С
31	a	177	А
31	a	179	А
31	a	180	С
31	a	182	G
31	a	191	А
31	a	200	С
31	a	213	А
31	a	215	G
31	a	227	А
31	a	228	А
31	a	229	А
31	a	230	G
31	a	266	U
31	a	267	G
31	a	271	U
31	a	272	А
31	a	273	G
31	a	277	G
31	a	292	G
31	a	293	С
31	a	297	С
31	a	315	G
31	a	332	А
31	a	354	С
31	a	355	А
31	a	356	C
31	a	358	G
31	a	370	A
31	a	373	G
31	a	378	C
31	a	380	G
31	a	382	A
31	a	391	U
31	a	393	U
31	a	398	С
31	a	418	G
31	a	423	А

Mol	Chain	Res	Type
31	a	432	G
31	a	438	А
31	а	439	G
31	а	440	А
31	a	442	G
31	a	446	U
31	a	447	U
31	а	448	С
31	a	451	А
31	a	455	U
31	a	465	U
31	a	470	А
31	a	471	G
31	а	473	G
31	а	478	А
31	a	479	C
31	a	485	С
31	a	488	U
31	a	494	С
31	а	495	U
31	а	510	G
31	a	511	G
31	а	523	А
31	a	524	А
31	а	537	С
31	a	540	С
31	а	544	C
31	a	553	G
31	a	556	G
31	а	557	U
31	a	573	A
31	a	585	А
31	a	590	U
31	a	598	A
31	a	599	A
31	a	602	C
31	a	603	G
31	a	607	G
31	a	644	С
31	a	659	U
31	a	675	G
31	а	679	U

Mol	Chain	Res	Type
31	a	691	А
31	a	713	А
31	a	714	G
31	a	736	G
31	a	749	U
31	a	750	G
31	a	757	G
31	a	775	А
31	a	787	G
31	a	803	А
31	a	819	U
31	a	820	А
31	a	841	A
31	a	843	С
31	a	846	U
31	a	855	А
31	a	862	G
31	a	866	G
31	a	870	С
31	a	873	С
31	a	882	G
31	a	899	А
31	a	941	А
31	a	953	G
31	a	954	G
31	a	961	С
31	a	962	А
31	a	972	G
31	a	987	U
31	a	995	A
31	a	996	A
31	a	998	G
31	a	1002	A
31	a	1003	G
31	a	1004	A
31	a	1019	U
31	a	1020	G
31	a	1028	U
31	a	1030	G
31	a	1031	A
31	a	1033	C
31	a	1036	U

Mol	Chain	Res	Type
31	a	1045	А
31	a	1050	U
31	a	1051	U
31	a	1052	U
31	a	1055	С
31	a	1058	С
31	a	1059	G
31	a	1060	G
31	a	1063	А
31	a	1064	С
31	a	1065	А
31	a	1067	А
31	a	1073	А
31	a	1081	С
31	a	1082	А
31	a	1092	U
31	a	1121	G
31	a	1122	U
31	a	1128	А
31	a	1159	С
31	a	1161	U
31	a	1163	U
31	a	1165	G
31	a	1166	U
31	a	1172	А
31	a	1183	А
31	a	1185	U
31	a	1194	С
31	a	1210	G
31	a	1222	А
31	a	1223	A
31	a	1226	С
31	a	1239	A
31	a	1251	А
31	a	1253	A
31	a	1262	A
31	a	1264	А
31	a	1283	С
31	a	1286	U
31	a	1296	G
31	a	1306	A
31	a	1307	U

Mol	Chain	Res	Type
31	a	1326	G
31	a	1328	U
31	a	1331	G
31	a	1341	U
31	a	1344	А
31	a	1348	С
31	a	1372	А
31	a	1379	G
31	a	1390	С
31	a	1391	G
31	a	1420	А
31	a	1423	С
31	a	1424	А
31	a	1445	G
31	a	1448	U
31	a	1449	G
31	a	1455	С
31	a	1466	U
31	a	1468	А
31	a	1472	А
31	a	1478	U
31	a	1479	U
31	a	1480	U
31	a	1481	G
31	a	1517	U
31	a	1519	А
31	a	1521	G
31	a	1524	G
31	a	1530	А
31	a	1533	U
31	a	1544	G
31	a	1556	G
31	a	1557	G
31	a	1558	А
31	a	1564	U
32	b	6	U
32	b	16	А

All (30) RNA pucker outliers are listed below:

Mol	Chain	Res	Type			
9	А	9	G			
Continued on next page						

Mol	Chain	Res	Type
9	А	33	U
9	А	227	А
9	А	251	С
9	А	288	U
9	А	295	G
9	А	429	А
9	А	1057	U
9	А	1061	G
9	А	1117	С
9	А	1189	U
9	А	1224	G
9	А	1393	G
9	А	1413	А
9	А	1451	G
9	А	1525	G
9	А	1536	А
9	А	1583	G
9	А	1828	А
9	А	1829	А
9	А	1926	А
9	А	2005	G
9	А	2111	U
9	А	2210	U
9	А	2216	G
9	А	2318	U
9	А	2518	G
9	А	2808	U
9	А	2810	U
9	А	2877	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 344 ligands modelled in this entry, 342 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Chain	Dec	T:1.	Bond lengths			Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2												
55	PUT	a	1610	-	$5,\!5,\!5$	0.12	0	4,4,4	0.18	0												
56	SCM	a	1660	-	$23,\!25,\!25$	1.32	3 (13%)	26,39,39	1.42	3 (11%)												

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
55	PUT	а	1610	-	-	0/3/3/3	-
56	SCM	a	1660	-	-	0/4/57/57	0/3/3/3

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
56	a	1660	SCM	C10-N10	-2.33	1.43	1.47
56	a	1660	SCM	C8-N8	-2.08	1.44	1.47
56	a	1660	SCM	C3-C4	-2.07	1.47	1.50

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
56	a	1660	SCM	C8M-N8-C8	-3.87	108.75	114.38
56	a	1660	SCM	C1M-N10-C10	-3.81	108.84	114.38
56	a	1660	SCM	C2M-C2-C3	-2.51	108.33	113.22

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In

addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-13245. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 210

Z Index: 210

6.2.2 Raw map

X Index: 210

Y Index: 210

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 207

Z Index: 218

6.3.2 Raw map

X Index: 207

Y Index: 191

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.015. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{13245}msk_{1.map}$ (i) 6.6.1

Υ

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 980 $\rm nm^3;$ this corresponds to an approximate mass of 885 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.323 ${\rm \AA}^{-1}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit		
Reported by author	3.10	-	-		
Author-provided FSC curve	3.06	4.04	3.10		
Unmasked-calculated*	3.61	6.54	3.83		

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.61 differs from the reported value 3.1 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-13245 and PDB model 7P7U. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.015 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.015).

9.4 Atom inclusion (i)

At the recommended contour level, 93% of all backbone atoms, 87% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.015) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.8710	0.5260
1	0.7450	0.4960
2	0.7820	0.5350
3	0.5840	0.4450
4	0.8490	0.5610
5	0.8430	0.5540
6	0.9120	0.5940
7	0.9240	0.5910
8	0.8550	0.5530
А	0.9340	0.5400
В	0.9320	0.4990
D	0.6920	0.4210
G	0.8470	0.5780
Н	0.7800	0.5550
I	0.8260	0.5580
J	0.6620	0.4610
K	0.6070	0.4530
М	0.8470	0.5520
N	0.7470	0.5540
0	0.8090	0.5580
P	0.7890	0.5520
Q	0.8010	0.5290
R	0.7350	0.4940
S	0.7540	0.5350
T	0.8580	0.5580
U	0.8090	0.5700
V	0.8190	0.5500
W	0.8020	0.5230
X	0.6740	0.4990
Y	0.8730	0.5730
Z	0.6650	0.5470
a	0.9210	0.5180
b	0.2840	0.3380
С	0.6020	0.4510
d	0.6970	0.4970

Chain	Atom inclusion	Q-score
e	0.7420	0.4990
f	0.7850	0.5310
g	0.6510	0.5050
h	0.5890	0.4600
i	0.8190	0.5320
j	0.6870	0.4700
k	0.6450	0.4590
1	0.6660	0.4800
m	0.7080	0.5400
n	0.6540	0.4690
0	0.8550	0.5330
р	0.7450	0.5150
q	0.8010	0.5110
r	0.7870	0.5350
S	0.6800	0.4910
t	0.6630	0.4770
u	0.7070	0.4800

