

Jun 19, 2024 – 06:46 pm BST

| PDB ID       | :   | 7QI5                                                                   |
|--------------|-----|------------------------------------------------------------------------|
| EMDB ID      | :   | EMD-13981                                                              |
| Title        | :   | Human mitochondrial ribosome in complex with mRNA, A/A-, P/P- and E/E- |
|              |     | tRNAs at 2.63 A resolution                                             |
| Authors      | :   | Singh, V.; Itoh, Y.; Amunts, A.                                        |
| Deposited on | :   | 2021-12-14                                                             |
| Resolution   | :   | 2.63  Å(reported)                                                      |
|              |     |                                                                        |
| This is      | a I | Full wwPDB EM Validation Report for a publicly released PDB entry.     |

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | 0.0.1.dev92                                                        |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.4, CSD as541be (2020)                                          |
| MolProbity                     | : | 4.02b-467                                                          |
| buster-report                  | : | 1.1.7 (2018)                                                       |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| MapQ                           | : | 1.9.13                                                             |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.37.1                                                             |

## 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 2.63 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f EM\ structures}\ (\#{ m Entries})$ |
|-----------------------|----------------------------------------------------------------------|----------------------------------------|
| Clashscore            | 158937                                                               | 4297                                   |
| Ramachandran outliers | 154571                                                               | 4023                                   |
| Sidechain outliers    | 154315                                                               | 3826                                   |
| RNA backbone          | 4643                                                                 | 859                                    |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for  $\geq=3, 2, 1$  and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions  $\leq=5\%$  The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |        |
|-----|-------|--------|------------------|--------|
| 1   | AA    | 954    | 76%              | 22% ·  |
| 2   | AB    | 296    | •<br>72%         | • 24%  |
| 3   | AC    | 167    | 73%              | 6% 21% |
| 4   | AD    | 430    | •<br>76%         | • 20%  |
| 5   | AE    | 125    | 97%              | •••    |
| 6   | AF    | 242    | 81%              | 5% 14% |
| 7   | AG    | 396    | 76%              | 7% 17% |



| Mol | Chain | Length | Quality of chain   |        |
|-----|-------|--------|--------------------|--------|
| 8   | AH    | 201    | 66% •              | 30%    |
| 9   | AI    | 194    | •<br>68% •         | 29%    |
| 10  | AJ    | 138    | 72%                | 7% 22% |
| 11  | AK    | 128    | 76%                | • 21%  |
| 12  | AL    | 257    | 66% ·              | 32%    |
| 13  | AM    | 137    | <b>6</b>           | • 13%  |
| 14  | AN    | 130    | <b>•</b>           | 5% 15% |
| 15  | AO    | 258    | <b>1</b> 73%       | . 25%  |
| 16  | AP    | 142    | • <b>CO</b> V      | 220/   |
| 17  |       | 87     | •                  | 32%    |
| 10  | AQ    | 260    | 95%                | •••    |
| 18  | AR    | 300    | 80%                | • 18%  |
| 19  | AS    | 190    | 68% ·              | 29%    |
| 20  | AT    | 173    | 94%                | • •    |
| 21  | AU    | 205    | 83%                | • 14%  |
| 22  | AV    | 414    | 84%                | • 13%  |
| 23  | AW    | 187    | •<br>50% •         | 47%    |
| 24  | AX    | 398    | 82%                | 7% 12% |
| 25  | AY    | 395    | <b>•</b> 36% • 62% |        |
| 26  | AZ    | 106    | 92%                | • 6%   |
| 27  | A0    | 217    | 96%                |        |
| 28  | A1    | 323    | 80%                | 6% 14% |
| 29  | A2    | 118    | 7%                 | 12% •  |
| 30  | A3    | 199    | 33% • 65%          |        |
| 31  | A4    | 689    | 83%                | • 15%  |
| 32  | Aw    | 68     | 72%                | 28%    |

Continued from previous page...



 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol 10% 33 70 Ax 80% 20% 34Ay 7079% 21% 18% 35 $\operatorname{Az}$ 34 62% 38% 36 А 156176% 21% • В 377272% 25% • 38D 30575% 22% Е 39 34884% 12% . 40F 31178% 19% • 23% Ι 26141 77% 19% • 25% J 4219288% . 9% Κ . . 4317896%  $\mathbf{L}$ 4414574% 5% 21% 45М 296. . 93% Þ Ν 46 25186% 12% • i Ο 4717585% 12% • Р 4818078% 20% 5% 292 49Q 78% 18% • i 50 $\mathbf{R}$ 149• 6% 91%  $\mathbf{S}$ 2055177% 21% • Т 5220680% 19% 10% U 531535%• 95% 5% V 2165488% 7% 5% 55W 14877% 22% • Х 2565693% • 5% Υ 2505728% 71%



Continued from previous page...

| Mol | Chain | Length | Quality of chain |     |       |     |
|-----|-------|--------|------------------|-----|-------|-----|
| 58  | Z     | 161    | 73%              | •   | 24%   | _   |
| 59  | 0     | 188    | 55% •            | 41  | .%    |     |
| 60  | 1     | 65     | 78%              |     | 8% 14 | %   |
| 61  | 2     | 92     | /Q%              | 50% |       |     |
| 62  | 2     | 188    | 43/0             |     |       |     |
| 62  | 3     | 100    | 47% •            | 49% |       |     |
| 03  | 4     | 103    | 35% • 63%        | D   |       |     |
| 64  | 5     | 423    | 91%              |     | •     | 7%  |
| 65  | 6     | 380    | 89%              |     | ·     | 7%  |
| 66  | 7     | 338    | 83%              |     | • 13  | 8%  |
| 67  | 8     | 206    | 5%               | •   | 24%   |     |
| 68  | 9     | 137    | 88%              |     | • 9   | 9%  |
| 69  | a     | 142    | 7%               | •   | 30%   |     |
| 70  | h     | 215    | 70%              |     | 30%   |     |
| 71  | 0     | 330    |                  |     | 14    | 0/  |
|     | C     | 002    | 8%               |     | 14    | 70  |
| 72  | d     | 306    | <b>79%</b>       |     | 21%   |     |
| 73  | е     | 279    | 85%              |     | 159   | %   |
| 74  | f     | 212    | 74%              |     | 26%   |     |
| 75  | g     | 166    | 81%              |     | 19%   |     |
| 76  | h     | 158    | 70%              |     | 30%   |     |
| 77  | i     | 128    | 76%              |     | 24%   |     |
| 78  | j     | 123    | 76%              |     | 24%   |     |
| 79  | k     | 112    | 5%               |     | 1     | 10% |
| 80  | 1     | 138    | 13%              |     | 1%    |     |
|     | 1     | 100    | 9%               |     | ± /0  |     |
| 81  | m     | 128    | 72%              |     | 28%   |     |
| 82  | 0     | 102    | 92%              |     |       | 8%  |



| C time 1  | £    |          |      |
|-----------|------|----------|------|
| Continuea | jrom | previous | page |

| Mol | Chain | Length |            | Quality of ch | nain |     |
|-----|-------|--------|------------|---------------|------|-----|
| 83  | р     | 206    | 8%         | 71%           |      | 29% |
| 84  | q     | 222    | 14%        | 74%           |      | 26% |
| 85  | r     | 196    | •          | 83%           |      | 17% |
| 86  | S     | 439    | 210/       | 88%           |      | 12% |
| 87  | t     | 198    | 23%        |               | 77%  |     |
| 87  | u     | 198    | 16%        | 849           | %    |     |
| 87  | V     | 198    | 16%        | 845           | %    |     |
| 87  | W     | 198    | 16%        | 845           | %    |     |
| 87  | x     | 198    | 16%<br>16% | 849           | %    |     |
| 87  | У     | 198    | 16%<br>16% | 849           | %    |     |
| 88  | Н     | 267    | •          | 69%           | 7%   | 24% |
| 89  | Z     | 325    | 6%         | 77%           |      | 22% |



## 2 Entry composition (i)

There are 101 unique types of molecules in this entry. The entry contains 343544 atoms, of which 153978 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 12S mitochondrial rRNA.

| Mol | Chain | Residues | Atoms          |           |            |           |           |          | AltConf | Trace |
|-----|-------|----------|----------------|-----------|------------|-----------|-----------|----------|---------|-------|
| 1   | АА    | 954      | Total<br>30564 | C<br>9088 | Н<br>10304 | N<br>3647 | O<br>6571 | Р<br>954 | 0       | 0     |

• Molecule 2 is a protein called 28S ribosomal protein S2, mitochondrial.

| Mol | Chain | Residues |               | Atoms     |           |          |          |         |   | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|---------|---|-------|
| 2   | AB    | 224      | Total<br>3627 | C<br>1158 | Н<br>1809 | N<br>328 | O<br>322 | S<br>10 | 0 | 0     |

• Molecule 3 is a protein called 28S ribosomal protein S24, mitochondrial.

| Mol | Chain | Residues | Atoms         |          |           |          |          | AltConf       | Trace |   |
|-----|-------|----------|---------------|----------|-----------|----------|----------|---------------|-------|---|
| 3   | AC    | 132      | Total<br>2172 | C<br>699 | Н<br>1089 | N<br>195 | 0<br>185 | ${S \atop 4}$ | 0     | 0 |

• Molecule 4 is a protein called 28S ribosomal protein S5, mitochondrial.

| Mol | Chain | Residues |       | Atoms |      |     |     |              | AltConf | Trace |
|-----|-------|----------|-------|-------|------|-----|-----|--------------|---------|-------|
| 4   |       | 242      | Total | С     | Η    | Ν   | 0   | $\mathbf{S}$ | 0       | 0     |
| 4   | AD    | 545      | 5536  | 1713  | 2805 | 518 | 487 | 13           | 0       | 0     |

• Molecule 5 is a protein called 28S ribosomal protein S6, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | S        |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|---------------|---------|-------|
| 5   | AE    | 122      | Total<br>1972 | C<br>614 | Н<br>1000 | N<br>177 | 0<br>177 | ${S \over 4}$ | 0       | 0     |

• Molecule 6 is a protein called 28S ribosomal protein S7, mitochondrial.

| Mol | Chain | Residues |               |           | Atom      | .s       |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|---------|---------|-------|
| 6   | AF    | 208      | Total<br>3496 | C<br>1104 | H<br>1771 | N<br>312 | 0<br>298 | S<br>11 | 0       | 0     |



• Molecule 7 is a protein called 28S ribosomal protein S9, mitochondrial.

| Mol | Chain | Residues |               |           | Atom      | s        |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|---------|---------|-------|
| 7   | AG    | 327      | Total<br>5377 | C<br>1710 | Н<br>2689 | N<br>477 | 0<br>487 | S<br>14 | 0       | 0     |

• Molecule 8 is a protein called 28S ribosomal protein S10, mitochondrial.

| Mol | Chain | Residues |       |     | Atom | .s  |     |   | AltConf | Trace |
|-----|-------|----------|-------|-----|------|-----|-----|---|---------|-------|
| 0   | ۸Ц    | 140      | Total | С   | Η    | Ν   | 0   | S | 0       | 0     |
| 0   | AII   | 140      | 2339  | 745 | 1187 | 194 | 210 | 3 | 0       | 0     |

• Molecule 9 is a protein called 28S ribosomal protein S11, mitochondrial.

| Mol | Chain | Residues |               |          | AltConf   | Trace    |          |               |   |   |
|-----|-------|----------|---------------|----------|-----------|----------|----------|---------------|---|---|
| 9   | AI    | 137      | Total<br>2081 | C<br>642 | Н<br>1061 | N<br>192 | 0<br>182 | ${S \atop 4}$ | 0 | 0 |

There is a discrepancy between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment  | Reference  |
|-------|---------|----------|--------|----------|------------|
| AI    | 184     | 5F0      | ASN    | conflict | UNP P82912 |

• Molecule 10 is a protein called 28S ribosomal protein S12, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ns       |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|--------|---------|-------|
| 10  | AJ    | 108      | Total<br>1728 | C<br>521 | Н<br>889 | N<br>169 | 0<br>143 | S<br>6 | 0       | 0     |

• Molecule 11 is a protein called 28S ribosomal protein S14, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ıs       |          |            | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|------------|---------|-------|
| 11  | AK    | 101      | Total<br>1748 | C<br>537 | H<br>886 | N<br>179 | 0<br>141 | ${f S}{5}$ | 0       | 0     |

• Molecule 12 is a protein called 28S ribosomal protein S15, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | IS       |          |            | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|------------|---------|-------|
| 12  | AL    | 174      | Total<br>2994 | C<br>925 | Н<br>1541 | N<br>270 | 0<br>251 | ${f S}{7}$ | 0       | 0     |

• Molecule 13 is a protein called 28S ribosomal protein S16, mitochondrial.



| Mol | Chain | Residues |               |          | AltConf  | Trace    |          |        |   |   |
|-----|-------|----------|---------------|----------|----------|----------|----------|--------|---|---|
| 13  | AM    | 119      | Total<br>1908 | C<br>594 | Н<br>966 | N<br>185 | 0<br>157 | S<br>6 | 0 | 0 |

• Molecule 14 is a protein called 28S ribosomal protein S17, mitochondrial.

| Mol | Chain | Residues |               |          | AltConf  | Trace    |          |                 |   |   |
|-----|-------|----------|---------------|----------|----------|----------|----------|-----------------|---|---|
| 14  | AN    | 110      | Total<br>1797 | C<br>562 | Н<br>929 | N<br>156 | 0<br>147 | ${ m S} { m 3}$ | 0 | 0 |

• Molecule 15 is a protein called 28S ribosomal protein S18b, mitochondrial.

| Mol | Chain | Residues |               |           | AltConf   | Trace    |          |            |   |   |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|------------|---|---|
| 15  | AO    | 193      | Total<br>3153 | C<br>1014 | Н<br>1561 | N<br>294 | O<br>277 | ${f S}{7}$ | 0 | 0 |

• Molecule 16 is a protein called 28S ribosomal protein S18c, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ns       |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|--------|---------|-------|
| 16  | AP    | 97       | Total<br>1588 | C<br>501 | Н<br>807 | N<br>134 | 0<br>138 | S<br>8 | 0       | 0     |

• Molecule 17 is a protein called MRPS21 isoform 1.

| Mol | Chain | Residues |               |          | Aton     | ns       |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|--------|---------|-------|
| 17  | AQ    | 86       | Total<br>1502 | C<br>460 | Н<br>758 | N<br>150 | 0<br>126 | S<br>8 | 0       | 0     |

• Molecule 18 is a protein called 28S ribosomal protein S22, mitochondrial.

| Mol | Chain | Residues |       |      | Atom | s   |     |   | AltConf | Trace |
|-----|-------|----------|-------|------|------|-----|-----|---|---------|-------|
| 18  | AR    | 295      | Total | С    | Н    | N   | 0   | S | 0       | 0     |
|     | _     |          | 4839  | 1533 | 2430 | 413 | 455 | 8 | _       | -     |

• Molecule 19 is a protein called 28S ribosomal protein S23, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | .S       |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|--------|---------|-------|
| 19  | AS    | 135      | Total<br>2227 | C<br>716 | Н<br>1116 | N<br>198 | 0<br>196 | S<br>1 | 0       | 0     |

• Molecule 20 is a protein called 28S ribosomal protein S25, mitochondrial.



| Mol | Chain | Residues |               |          | Atom      | ıs       |          |         | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|---------|---------|-------|
| 20  | AT    | 168      | Total<br>2764 | C<br>877 | H<br>1393 | N<br>239 | 0<br>244 | S<br>11 | 0       | 0     |

• Molecule 21 is a protein called 28S ribosomal protein S26, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | IS       |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|---------------|---------|-------|
| 21  | AU    | 176      | Total<br>2989 | C<br>916 | Н<br>1501 | N<br>301 | O<br>267 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 22 is a protein called 28S ribosomal protein S27, mitochondrial.

| Mol | Chain | Residues |               |           | Atom      | $\mathbf{s}$ |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|--------------|----------|---------|---------|-------|
| 22  | AV    | 362      | Total<br>5933 | C<br>1904 | Н<br>2964 | N<br>495     | O<br>558 | S<br>12 | 0       | 0     |

• Molecule 23 is a protein called 28S ribosomal protein S28, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ıs       |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|---------------|---------|-------|
| 23  | AW    | 100      | Total<br>1593 | C<br>498 | Н<br>804 | N<br>141 | 0<br>146 | ${S \over 4}$ | 0       | 0     |

• Molecule 24 is a protein called 28S ribosomal protein S29, mitochondrial.

| Mol | Chain | Residues |               |           | Atom      | S        |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|---------|---------|-------|
| 24  | AX    | 352      | Total<br>5694 | C<br>1822 | Н<br>2845 | N<br>499 | O<br>517 | S<br>11 | 0       | 0     |

• Molecule 25 is a protein called 28S ribosomal protein S31, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | IS       |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|---------------|---------|-------|
| 25  | AY    | 149      | Total<br>2444 | C<br>801 | Н<br>1198 | N<br>207 | 0<br>234 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 26 is a protein called 28S ribosomal protein S33, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ns       |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|---------------|---------|-------|
| 26  | AZ    | 100      | Total<br>1698 | C<br>534 | Н<br>859 | N<br>153 | 0<br>148 | ${S \atop 4}$ | 0       | 0     |

• Molecule 27 is a protein called 28S ribosomal protein S34, mitochondrial.



| Mol | Chain | Residues |               |           | Atom      | 5        |          |                | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|----------------|---------|-------|
| 27  | A0    | 215      | Total<br>3584 | C<br>1130 | Н<br>1797 | N<br>339 | 0<br>313 | ${ m S}{ m 5}$ | 0       | 0     |

• Molecule 28 is a protein called 28S ribosomal protein S35, mitochondrial.

| Mol | Chain | Residues |               |           | AltConf   | Trace    |          |         |   |   |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|---------|---|---|
| 28  | A1    | 279      | Total<br>4561 | C<br>1435 | Н<br>2296 | N<br>387 | O<br>432 | S<br>11 | 0 | 0 |

• Molecule 29 is a protein called Coiled-coil-helix-coiled-coil-helix domain-containing protein 1.

| Mol | Chain | Residues |               | Atoms                                            |          |          |          |        |   | Trace |
|-----|-------|----------|---------------|--------------------------------------------------|----------|----------|----------|--------|---|-------|
| 29  | A2    | 117      | Total<br>1906 | $\begin{array}{c} \mathrm{C} \\ 579 \end{array}$ | Н<br>971 | N<br>182 | 0<br>166 | S<br>8 | 0 | 0     |

• Molecule 30 is a protein called Aurora kinase A-interacting protein.

| Mol | Chain | Residues | Atoms         |          |          |          |         |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|---------|--------|---------|-------|
| 30  | A3    | 70       | Total<br>1326 | C<br>401 | Н<br>701 | N<br>134 | O<br>89 | S<br>1 | 0       | 0     |

• Molecule 31 is a protein called Pentatric opeptide repeat domain-containing protein 3, mitochondrial.

| Mol | Chain | Residues |       |      | Atom | S   |     |              | AltConf | Trace |
|-----|-------|----------|-------|------|------|-----|-----|--------------|---------|-------|
| 21  | Δ.4   | 599      | Total | С    | Η    | Ν   | 0   | $\mathbf{S}$ | 0       | 0     |
| 10  | A4    | 300      | 9538  | 3053 | 4770 | 808 | 879 | 28           | 0       | 0     |

• Molecule 32 is a RNA chain called A/A-tRNA.

| Mol | Chain | Residues |               |          | AltConf  | Trace    |          |         |   |   |
|-----|-------|----------|---------------|----------|----------|----------|----------|---------|---|---|
| 32  | Aw    | 68       | Total<br>2159 | C<br>646 | Н<br>725 | N<br>248 | 0<br>472 | Р<br>68 | 0 | 0 |

There are 5 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment  | Reference     |
|-------|---------|----------|--------|----------|---------------|
| Aw    | 26      | U        | G      | conflict | GB 1896813690 |
| Aw    | 34      | А        | U      | conflict | GB 1896813690 |
| Aw    | 35      | А        | С      | conflict | GB 1896813690 |
| Aw    | 36      | С        | G      | conflict | GB 1896813690 |
| Aw    | 73      | U        | А      | conflict | GB 1896813690 |



 $\bullet\,$  Molecule 33 is a RNA chain called P/P-tRNA.

| Mol | Chain | Residues |               |          | AltConf  | Trace    |          |         |   |   |
|-----|-------|----------|---------------|----------|----------|----------|----------|---------|---|---|
| 33  | Ax    | 70       | Total<br>2233 | C<br>665 | Н<br>751 | N<br>260 | 0<br>487 | Р<br>70 | 0 | 0 |

• Molecule 34 is a RNA chain called E/E-tRNA.

| Mol | Chain | Residues |               |          | AltConf  | Trace    |          |         |   |   |
|-----|-------|----------|---------------|----------|----------|----------|----------|---------|---|---|
| 34  | Ау    | 70       | Total<br>2235 | C<br>665 | Н<br>752 | N<br>261 | 0<br>487 | Р<br>70 | 0 | 0 |

• Molecule 35 is a RNA chain called mRNA.

| Mol | Chain | Residues |               |          | AltConf  | Trace    |          |         |   |   |
|-----|-------|----------|---------------|----------|----------|----------|----------|---------|---|---|
| 35  | Az    | 34       | Total<br>1079 | C<br>324 | Н<br>360 | N<br>123 | O<br>238 | Р<br>34 | 0 | 0 |

• Molecule 36 is a RNA chain called 16S mitochondrial rRNA.

| Mol | Chain | Residues |                |            | AltConf    | Trace     |            |           |   |   |
|-----|-------|----------|----------------|------------|------------|-----------|------------|-----------|---|---|
| 36  | А     | 1558     | Total<br>49871 | C<br>14843 | H<br>16801 | N<br>5963 | O<br>10706 | Р<br>1558 | 0 | 0 |

There is a discrepancy between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment  | Reference    |
|-------|---------|----------|--------|----------|--------------|
| А     | 3107    | U        | С      | conflict | GB 208964619 |

• Molecule 37 is a RNA chain called mitochondrial tRNAVal.

| Mol | Chain | Residues |               |          | Ator     | $\mathbf{ns}$ |          |         | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|---------------|----------|---------|---------|-------|
| 37  | В     | 72       | Total<br>2303 | C<br>685 | Н<br>779 | N<br>269      | 0<br>498 | Р<br>72 | 0       | 0     |

There are 2 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment  | Reference      |
|-------|---------|----------|--------|----------|----------------|
| В     | 74      | С        | G      | conflict | GB NC_012920.1 |
| В     | 76      | А        | U      | conflict | GB NC_012920.1 |

• Molecule 38 is a protein called 39S ribosomal protein L2, mitochondrial.



| Mol | Chain | Residues |               |           | Atom      | 5        |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|--------|---------|-------|
| 38  | D     | 238      | Total<br>3780 | C<br>1157 | Н<br>1921 | N<br>376 | 0<br>317 | S<br>9 | 0       | 0     |

• Molecule 39 is a protein called 39S ribosomal protein L3, mitochondrial.

| Mol | Chain | Residues |               |           | Atom      | s        |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|---------|---------|-------|
| 39  | Е     | 305      | Total<br>4822 | C<br>1545 | Н<br>2416 | N<br>418 | O<br>432 | S<br>11 | 0       | 0     |

• Molecule 40 is a protein called 39S ribosomal protein L4, mitochondrial.

| Mol | Chain | Residues |               |           | Atoms     | 5        |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|--------|---------|-------|
| 40  | F     | 252      | Total<br>4097 | C<br>1305 | Н<br>2066 | N<br>370 | O<br>350 | S<br>6 | 0       | 0     |

• Molecule 41 is a protein called 39S ribosomal protein L10, mitochondrial.

| Mol | Chain | Residues |       |              | Atom | S   |     |              | AltConf | Trace |
|-----|-------|----------|-------|--------------|------|-----|-----|--------------|---------|-------|
| /1  | т     | 919      | Total | $\mathbf{C}$ | Η    | Ν   | 0   | $\mathbf{S}$ | 0       | 0     |
| 41  | T     | 212      | 3484  | 1088         | 1789 | 304 | 292 | 11           | 0       | 0     |

• Molecule 42 is a protein called 39S ribosomal protein L11, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | S        |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|---------------|---------|-------|
| 42  | J     | 175      | Total<br>2739 | C<br>847 | H<br>1409 | N<br>237 | 0<br>244 | ${S \over 2}$ | 0       | 0     |

• Molecule 43 is a protein called 39S ribosomal protein L13, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | s        |          |          | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|----------|---------|-------|
| 43  | K     | 177      | Total<br>2907 | C<br>936 | Н<br>1452 | N<br>259 | O<br>253 | ${f S}7$ | 0       | 0     |

• Molecule 44 is a protein called 39S ribosomal protein L14, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ns       |          |                | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|----------------|---------|-------|
| 44  | L     | 115      | Total<br>1832 | C<br>559 | Н<br>942 | N<br>171 | 0<br>155 | ${ m S}{ m 5}$ | 0       | 0     |

• Molecule 45 is a protein called 39S ribosomal protein L15, mitochondrial.



| Mol | Chain | Residues |               |           | Atoms     | 5        |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|--------|---------|-------|
| 45  | М     | 289      | Total<br>4699 | C<br>1476 | Н<br>2385 | N<br>427 | O<br>405 | S<br>6 | 0       | 0     |

• Molecule 46 is a protein called 39S ribosomal protein L16, mitochondrial.

| Mol | Chain | Residues |               |           | Atom      | .s       |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|---------|---------|-------|
| 46  | Ν     | 222      | Total<br>3604 | C<br>1143 | Н<br>1818 | N<br>326 | O<br>307 | S<br>10 | 0       | 0     |

• Molecule 47 is a protein called 39S ribosomal protein L17, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | IS       |          |            | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|------------|---------|-------|
| 47  | О     | 154      | Total<br>2554 | C<br>792 | Н<br>1295 | N<br>241 | O<br>219 | ${f S}{7}$ | 0       | 0     |

• Molecule 48 is a protein called 39S ribosomal protein L18, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | .s       |          |                | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|----------------|---------|-------|
| 48  | Р     | 144      | Total<br>2339 | C<br>733 | Н<br>1166 | N<br>224 | 0<br>211 | ${ m S}{ m 5}$ | 0       | 0     |

• Molecule 49 is a protein called 39S ribosomal protein L19, mitochondrial.

| Mol | Chain | Residues |               |           | Atoms     | 5        |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|--------|---------|-------|
| 49  | Q     | 239      | Total<br>4021 | C<br>1277 | Н<br>2031 | N<br>353 | 0<br>351 | S<br>9 | 0       | 0     |

• Molecule 50 is a protein called 39S ribosomal protein L20, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | IS       |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|---------------|---------|-------|
| 50  | R     | 140      | Total<br>2369 | C<br>732 | Н<br>1215 | N<br>231 | 0<br>187 | ${S \atop 4}$ | 0       | 0     |

• Molecule 51 is a protein called 39S ribosomal protein L21, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | IS       |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|---------------|---------|-------|
| 51  | S     | 161      | Total<br>2659 | C<br>835 | Н<br>1366 | N<br>227 | 0<br>227 | ${S \atop 4}$ | 0       | 0     |

• Molecule 52 is a protein called 39S ribosomal protein L22, mitochondrial.



| Mol | Chain | Residues |               |          | Atom      | IS       |          |            | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|------------|---------|-------|
| 52  | Т     | 166      | Total<br>2781 | C<br>875 | Н<br>1412 | N<br>254 | O<br>233 | ${ m S} 7$ | 0       | 0     |

• Molecule 53 is a protein called 39S ribosomal protein L23, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | S        |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|-----------------|---------|-------|
| 53  | U     | 152      | Total<br>2483 | C<br>788 | Н<br>1232 | N<br>234 | 0<br>226 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 54 is a protein called 39S ribosomal protein L24, mitochondrial.

| Mol | Chain | Residues |               |           | Atoms     | 5        |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|--------|---------|-------|
| 54  | V     | 205      | Total<br>3365 | C<br>1068 | H<br>1689 | N<br>298 | O<br>302 | S<br>8 | 0       | 0     |

• Molecule 55 is a protein called 39S ribosomal protein L27, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ns       |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|-----------------|---------|-------|
| 55  | W     | 116      | Total<br>1840 | C<br>577 | Н<br>936 | N<br>171 | 0<br>153 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 56 is a protein called 39S ribosomal protein L28, mitochondrial.

| Mol | Chain | Residues |               |           | Atom      | 5        |          |                | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|----------------|---------|-------|
| 56  | Х     | 244      | Total<br>4105 | C<br>1322 | Н<br>2061 | N<br>352 | O<br>365 | ${ m S}{ m 5}$ | 0       | 0     |

• Molecule 57 is a protein called 39S ribosomal protein L47, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | IS       |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|---------------|---------|-------|
| 57  | Y     | 181      | Total<br>3154 | C<br>995 | Н<br>1598 | N<br>298 | O<br>259 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 58 is a protein called 39S ribosomal protein L30, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | IS       |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|-----------------|---------|-------|
| 58  | Z     | 122      | Total<br>2041 | C<br>636 | Н<br>1045 | N<br>186 | 0<br>171 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 59 is a protein called 39S ribosomal protein L32, mitochondrial.



| Mol | Chain | Residues |               |                                                  | Aton     | ıs       |          |        | AltConf | Trace |
|-----|-------|----------|---------------|--------------------------------------------------|----------|----------|----------|--------|---------|-------|
| 59  | 0     | 110      | Total<br>1815 | $\begin{array}{c} \mathrm{C} \\ 554 \end{array}$ | Н<br>917 | N<br>176 | 0<br>162 | S<br>6 | 0       | 0     |

• Molecule 60 is a protein called 39S ribosomal protein L33, mitochondrial.

| Mol | Chain | Residues |              | A        | Atom     | s       |         |                 | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|---------|---------|-----------------|---------|-------|
| 60  | 1     | 56       | Total<br>977 | C<br>296 | Н<br>513 | N<br>89 | 0<br>77 | ${ m S} { m 2}$ | 0       | 0     |

• Molecule 61 is a protein called 39S ribosomal protein L34, mitochondrial.

| Mol | Chain | Residues |              | A        | Atoms    | S       |         |        | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|---------|---------|--------|---------|-------|
| 61  | 2     | 46       | Total<br>784 | C<br>233 | Н<br>407 | N<br>83 | O<br>60 | S<br>1 | 0       | 0     |

• Molecule 62 is a protein called 39S ribosomal protein L35, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ıs       |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|-----------------|---------|-------|
| 62  | 3     | 95       | Total<br>1716 | C<br>539 | Н<br>884 | N<br>162 | 0<br>128 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 63 is a protein called 39S ribosomal protein L36, mitochondrial.

| Mol | Chain | Residues |              | A        | Atom     | S       |         |               | AltConf | Trace |
|-----|-------|----------|--------------|----------|----------|---------|---------|---------------|---------|-------|
| 63  | 4     | 38       | Total<br>704 | C<br>217 | Н<br>362 | N<br>72 | O<br>49 | ${S \over 4}$ | 0       | 0     |

• Molecule 64 is a protein called 39S ribosomal protein L37, mitochondrial.

| Mol | Chain | Residues |       |      | Atom | .s  |     |    | AltConf | Trace |
|-----|-------|----------|-------|------|------|-----|-----|----|---------|-------|
| 64  | 5     | 394      | Total | C    | Н    | N   | 0   | S  | 0       | 0     |
|     |       |          | 6419  | 2073 | 3209 | 500 | 500 | 11 |         |       |

• Molecule 65 is a protein called 39S ribosomal protein L38, mitochondrial.

| Mol | Chain | Residues |               |           | Atoms     | 5        |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|--------|---------|-------|
| 65  | 6     | 354      | Total<br>5792 | C<br>1881 | Н<br>2844 | N<br>525 | O<br>533 | S<br>9 | 0       | 0     |

• Molecule 66 is a protein called 39S ribosomal protein L39, mitochondrial.



| Mol | Chain | Residues |       |      | Atom      | S        |     |         | AltConf | Trace |
|-----|-------|----------|-------|------|-----------|----------|-----|---------|---------|-------|
| 66  | 7     | 294      | Total | C    | H<br>2200 | N<br>405 | 0   | S<br>10 | 0       | 0     |
|     |       |          | 4789  | 1529 | 2399      | 405      | 438 | 18      |         |       |

• Molecule 67 is a protein called 39S ribosomal protein L40, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | S        |          |                                                         | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|---------------------------------------------------------|---------|-------|
| 67  | 8     | 157      | Total<br>2696 | C<br>844 | Н<br>1369 | N<br>235 | 0<br>246 | $\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$ | 0       | 0     |

• Molecule 68 is a protein called 39S ribosomal protein L41, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ıs       |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|---------------|---------|-------|
| 68  | 9     | 124      | Total<br>1985 | C<br>644 | Н<br>988 | N<br>170 | 0<br>181 | ${S \over 2}$ | 0       | 0     |

• Molecule 69 is a protein called 39S ribosomal protein L42, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ns       |          |            | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|------------|---------|-------|
| 69  | a     | 100      | Total<br>1652 | C<br>529 | Н<br>812 | N<br>152 | 0<br>154 | ${f S}{5}$ | 0       | 0     |

• Molecule 70 is a protein called Large ribosomal subunit protein mL43.

| Mol | Chain | Residues |               |          | Atom      | S        |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|-----------------|---------|-------|
| 70  | b     | 151      | Total<br>2392 | С<br>744 | Н<br>1196 | N<br>231 | O<br>218 | ${ m S} { m 3}$ | 0       | 0     |

There is a discrepancy between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment     | Reference  |
|-------|---------|----------|--------|-------------|------------|
| b     | 2       | ACE      | -      | acetylation | UNP Q8N983 |

• Molecule 71 is a protein called 39S ribosomal protein L44, mitochondrial.

| Mol | Chain | Residues |               |           | Atoms     | 5        |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|--------|---------|-------|
| 71  | С     | 286      | Total<br>4621 | C<br>1470 | Н<br>2322 | N<br>397 | 0<br>423 | S<br>9 | 0       | 0     |

• Molecule 72 is a protein called 39S ribosomal protein L45, mitochondrial.



| Mol | Chain | Residues |       |      | Atom | S   |     |    | AltConf                                 | Trace |
|-----|-------|----------|-------|------|------|-----|-----|----|-----------------------------------------|-------|
| 72  | d     | 241      | Total | С    | Н    | Ν   | 0   | S  | 0                                       | 0     |
| . – | ~     |          | 3964  | 1273 | 1979 | 340 | 359 | 13 | , i i i i i i i i i i i i i i i i i i i | Ŭ     |

• Molecule 73 is a protein called 39S ribosomal protein L46, mitochondrial.

| Mol | Chain | Residues |               |           | Atoms     | 5        |          |        | AltConf | Trace |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|--------|---------|-------|
| 73  | е     | 238      | Total<br>3848 | C<br>1222 | H<br>1917 | N<br>339 | 0<br>364 | S<br>6 | 0       | 0     |

• Molecule 74 is a protein called 39S ribosomal protein L48, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | IS       |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|---------------|---------|-------|
| 74  | f     | 157      | Total<br>2523 | C<br>799 | Н<br>1271 | N<br>207 | O<br>242 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 75 is a protein called 39S ribosomal protein L49, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | .s       |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|-----------------|---------|-------|
| 75  | g     | 134      | Total<br>2210 | C<br>719 | H<br>1097 | N<br>193 | O<br>199 | ${ m S} { m 2}$ | 0       | 0     |

• Molecule 76 is a protein called 39S ribosomal protein L50, mitochondrial.

| Mol | Chain | Residues |               |          | Atom     | ns       |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|-----------------|---------|-------|
| 76  | h     | 110      | Total<br>1777 | C<br>568 | Н<br>882 | N<br>156 | O<br>168 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 77 is a protein called 39S ribosomal protein L51, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ns       |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|---------------|---------|-------|
| 77  | i     | 97       | Total<br>1687 | C<br>532 | Н<br>859 | N<br>165 | 0<br>127 | $\frac{S}{4}$ | 0       | 0     |

• Molecule 78 is a protein called 39S ribosomal protein L52, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ns       |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|---------------|---------|-------|
| 78  | j     | 94       | Total<br>1492 | C<br>463 | Н<br>747 | N<br>144 | 0<br>136 | ${S \over 2}$ | 0       | 0     |

• Molecule 79 is a protein called 39S ribosomal protein L53, mitochondrial.



| Mol | Chain | Residues |               |          | Aton     | ns       |          |                | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|----------------|---------|-------|
| 79  | k     | 101      | Total<br>1559 | C<br>479 | Н<br>785 | N<br>148 | 0<br>142 | ${ m S}{ m 5}$ | 0       | 0     |

• Molecule 80 is a protein called 39S ribosomal protein L54, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ns       |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|-----------------|---------|-------|
| 80  | 1     | 82       | Total<br>1363 | C<br>437 | Н<br>675 | N<br>120 | 0<br>128 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 81 is a protein called 39S ribosomal protein L55, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ıs       |          |               | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|---------------|---------|-------|
| 81  | m     | 92       | Total<br>1551 | C<br>488 | Н<br>760 | N<br>159 | 0<br>142 | $\frac{S}{2}$ | 0       | 0     |

• Molecule 82 is a protein called Ribosomal protein 63, mitochondrial.

| Mol | Chain | Residues |               |          | Aton     | ıs       |          |                 | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|----------|-----------------|---------|-------|
| 82  | О     | 94       | Total<br>1604 | C<br>501 | Н<br>806 | N<br>165 | 0<br>129 | ${ m S} { m 3}$ | 0       | 0     |

• Molecule 83 is a protein called Peptidyl-tRNA hydrolase ICT1, mitochondrial.

| Mol | Chain | Residues |               |          | Atom      | S        |          |        | AltConf | Trace |
|-----|-------|----------|---------------|----------|-----------|----------|----------|--------|---------|-------|
| 83  | р     | 147      | Total<br>2429 | C<br>748 | Н<br>1224 | N<br>228 | 0<br>225 | S<br>4 | 0       | 0     |

• Molecule 84 is a protein called Growth arrest and DNA damage-inducible proteins-interacting protein 1.

| Mol | Chain | Residues | Atoms         |          |           |          |          | AltConf        | Trace |   |
|-----|-------|----------|---------------|----------|-----------|----------|----------|----------------|-------|---|
| 84  | q     | 165      | Total<br>2765 | C<br>865 | Н<br>1376 | N<br>270 | 0<br>249 | ${ m S}{ m 5}$ | 0     | 0 |

• Molecule 85 is a protein called 39S ribosomal protein S18a, mitochondrial.

| Mol | Chain | Residues | Atoms |          |           |          |             | AltConf | Trace |   |
|-----|-------|----------|-------|----------|-----------|----------|-------------|---------|-------|---|
| 85  | r     | 162      | Total | C<br>820 | H<br>1240 | N<br>252 | 0           | S<br>o  | 0     | 0 |
|     |       |          | 2071  | 039      | 1549      | 202      | $\Delta 23$ | 0       |       |   |

• Molecule 86 is a protein called 39S ribosomal protein S30, mitochondrial.



| Mol | Chain | Residues | Atoms         |           |           |          |          | AltConf | Trace |   |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|---------|-------|---|
| 86  | s     | 386      | Total<br>6298 | C<br>2023 | Н<br>3143 | N<br>559 | O<br>559 | S<br>14 | 0     | 0 |

• Molecule 87 is a protein called 39S ribosomal protein L12, mitochondrial.

| Mol | Chain | Residues |       | At  | oms |    |    | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|----|----|---------|-------|
| 87  | +     | 46       | Total | С   | Η   | Ν  | 0  | 0       | 0     |
| 01  | U     | 40       | 732   | 228 | 378 | 56 | 70 | 0       | 0     |
| 87  | 11    | 30       | Total | С   | Η   | Ν  | 0  | 0       | 0     |
| 01  | u     | 52       | 541   | 168 | 284 | 40 | 49 | 0       | 0     |
| 87  | 37    | 30       | Total | С   | Η   | Ν  | 0  | 0       | 0     |
| 01  | v     | 52       | 541   | 168 | 284 | 40 | 49 | 0       | 0     |
| 87  | 117   | 31       | Total | С   | Η   | Ν  | 0  | 0       | 0     |
| 01  | W     | 51       | 520   | 159 | 275 | 39 | 47 | 0       | 0     |
| 87  | v     | 21       | Total | С   | Η   | Ν  | 0  | 0       | 0     |
| 01  | л     | 51       | 520   | 159 | 275 | 39 | 47 | 0       | 0     |
| 87  | V     | 31       | Total | С   | Н   | N  | 0  | 0       | 0     |
|     | 87 y  | 31       | 520   | 159 | 275 | 39 | 47 | 0       | 0     |

• Molecule 88 is a protein called 39S ribosomal protein L9, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |           |          |          | AltConf       | Trace |   |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|---------------|-------|---|
| 88  | Н     | 202      | Total<br>3397 | C<br>1067 | Н<br>1736 | N<br>304 | O<br>286 | $\frac{S}{4}$ | 0     | 0 |

• Molecule 89 is a protein called 39S ribosomal protein L1, mitochondrial.

| Mol | Chain | Residues | Atoms         |           |           |          |          | AltConf | Trace |   |
|-----|-------|----------|---------------|-----------|-----------|----------|----------|---------|-------|---|
| 89  | Z     | 252      | Total<br>4104 | C<br>1304 | Н<br>2077 | N<br>336 | 0<br>381 | S<br>6  | 0     | 0 |

• Molecule 90 is NICOTINAMIDE-ADENINE-DINUCLEOTIDE (three-letter code: NAD) (formula:  $C_{21}H_{27}N_7O_{14}P_2$ ).





| Mol | Chain | Residues |       | Atoms |    |   |    |   |   |
|-----|-------|----------|-------|-------|----|---|----|---|---|
| 00  | ΛΛ    | 1        | Total | С     | Η  | Ν | Ο  | Р | 0 |
| 90  | AA    | L        | 70    | 21    | 26 | 7 | 14 | 2 | 0 |

- Molecule 91 is SPERMINE (three-letter code: SPM) (formula:  $\mathrm{C}_{10}\mathrm{H}_{26}\mathrm{N}_4).$ 



| Mol | Chain | Residues | Atoms |    |    |   | AltConf |
|-----|-------|----------|-------|----|----|---|---------|
| 01  | ΛΛ    | 1        | Total | С  | Η  | Ν | 0       |
| 91  | AA    | 1        | 44    | 10 | 30 | 4 | 0       |





| Mol | Chain | Residues | Atoms   |   |    |   | AltConf |
|-----|-------|----------|---------|---|----|---|---------|
| 02  | ΛΛ    | 1        | Total ( | С | Η  | Ν | 0       |
| 92  | AA    | 1        | 32 '    | 7 | 22 | 3 | 0       |
| 02  | Δ     | 1        | Total ( | С | Η  | Ν | 0       |
| 92  | A     | 1        | 32 '    | 7 | 22 | 3 | 0       |
| 02  | Λ     | 1        | Total ( | С | Η  | Ν | 0       |
| 92  | A     | 1        | 32 '    | 7 | 22 | 3 | 0       |
| 02  | Λ     | 1        | Total ( | С | Η  | Ν | 0       |
| 92  | A     |          | 32 /    | 7 | 22 | 3 | 0       |

• Molecule 93 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

| Mol | Chain | Residues | Atoms               | AltConf |
|-----|-------|----------|---------------------|---------|
| 93  | AA    | 63       | TotalMg6363         | 0       |
| 93  | AB    | 1        | Total Mg<br>1 1     | 0       |
| 93  | AX    | 1        | Total Mg<br>1 1     | 0       |
| 93  | A3    | 1        | Total Mg<br>1 1     | 0       |
| 93  | А     | 138      | Total Mg<br>138 138 | 0       |
| 93  | D     | 2        | Total Mg<br>2 2     | 0       |
| 93  | Е     | 1        | Total Mg<br>1 1     | 0       |
| 93  | g     | 1        | Total Mg<br>1 1     | 0       |



- Residues AltConf  $\mathbf{Mol}$ Chain Atoms Total Κ AA94180 18 18Total Κ 0 9429А 2929Total Κ 94D 0 1 1 1 Total Κ 94Μ 1 0 1 1 Κ Total W 0 941 1 1 Total Κ 3 0 941 1 1 Total Κ 0 9461 1 1 Total Κ 94i 1 0 1 1 Total Κ 941 0 0 1 1
- Molecule 94 is POTASSIUM ION (three-letter code: K) (formula: K).

• Molecule 95 is ZINC ION (three-letter code: ZN) (formula: Zn).

| Mol | Chain | Residues | Atoms           | AltConf |
|-----|-------|----------|-----------------|---------|
| 95  | AO    | 1        | Total Zn<br>1 1 | 0       |
| 95  | 0     | 1        | Total Zn<br>1 1 | 0       |
| 95  | 4     | 1        | Total Zn<br>1 1 | 0       |

• Molecule 96 is FE2/S2 (INORGANIC) CLUSTER (three-letter code: FES) (formula:  $Fe_2S_2$ ).





| Mol | Chain | Residues | Atoms               | AltConf |
|-----|-------|----------|---------------------|---------|
| 96  | AP    | 1        | Total Fe S<br>4 2 2 | 0       |
| 96  | AT    | 1        | TotalFeS422         | 0       |
| 96  | r     | 1        | TotalFeS422         | 0       |

• Molecule 97 is ADENOSINE-5'-TRIPHOSPHATE (three-letter code: ATP) (formula:  $C_{10}H_{16}N_5O_{13}P_3$ ).





| Mol | Chain | Residues | Atoms |    |    |   |    | AltConf |   |
|-----|-------|----------|-------|----|----|---|----|---------|---|
| 07  | ٨v    | 1        | Total | С  | Η  | Ν | Ο  | Р       | 0 |
| 91  | АЛ    | 1        | 43    | 10 | 12 | 5 | 13 | 3       | 0 |

• Molecule 98 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula:  $C_{10}H_{15}N_5O_{11}P_2$ ).



| Mol | Chain | Residues | Atoms |    |    |   |    | AltConf |   |
|-----|-------|----------|-------|----|----|---|----|---------|---|
| 00  | ٨v    | 1        | Total | С  | Η  | Ν | Ο  | Р       | 0 |
| 98  | АЛ    | 1        | 40    | 10 | 12 | 5 | 11 | 2       | 0 |

• Molecule 99 is 1,4-DIAMINOBUTANE (three-letter code: PUT) (formula:  $C_4H_{12}N_2$ ).





| Mol | Chain | Residues | Atoms |   |    | AltConf |   |
|-----|-------|----------|-------|---|----|---------|---|
| 00  | ۸     | 1        | Total | С | Η  | Ν       | 0 |
| 99  | A     | 1        | 20    | 4 | 14 | 2       | 0 |

• Molecule 100 is VALINE (three-letter code: VAL) (formula:  $C_5H_{11}NO_2$ ).



| Mol | Chain | Residues |       | At | oms |   |   | AltConf |
|-----|-------|----------|-------|----|-----|---|---|---------|
| 100 | D     | 1        | Total | С  | Η   | Ν | Ο | 0       |
| 100 | D     | 1        | 18    | 5  | 11  | 1 | 1 | 0       |

• Molecule 101 is water.

| Mol | Chain | Residues | Atoms                                                              | AltConf |
|-----|-------|----------|--------------------------------------------------------------------|---------|
| 101 | AA    | 2039     | Total         O           2039         2039                        | 0       |
| 101 | AB    | 78       | Total O<br>78 78                                                   | 0       |
| 101 | AC    | 55       | $\begin{array}{cc} \text{Total} & \text{O} \\ 55 & 55 \end{array}$ | 0       |
| 101 | AD    | 82       | TotalO8282                                                         | 0       |
| 101 | AE    | 27       | TotalO2727                                                         | 0       |
| 101 | AF    | 39       | Total O<br>39 39                                                   | 0       |
| 101 | AG    | 64       | Total O<br>64 64                                                   | 0       |
| 101 | AH    | 57       | $\begin{array}{cc} \text{Total} & \text{O} \\ 57 & 57 \end{array}$ | 0       |



| $\alpha \cdot \cdot$ | ſ    | •        |      |
|----------------------------------------------------------------------------------------------------------------------------|------|----------|------|
| Continuea                                                                                                                  | trom | previous | page |
|                                                                                                                            | J    | 1        | 1 5  |

| Mol | Chain | Residues | Atoms                                                              | AltConf |
|-----|-------|----------|--------------------------------------------------------------------|---------|
| 101 | AI    | 39       | Total         O           39         39                            | 0       |
| 101 | AJ    | 25       | Total O<br>25 25                                                   | 0       |
| 101 | AK    | 51       | Total         O           51         51                            | 0       |
| 101 | AL    | 42       | $\begin{array}{cc} \text{Total} & \text{O} \\ 42 & 42 \end{array}$ | 0       |
| 101 | AM    | 22       | Total O<br>22 22                                                   | 0       |
| 101 | AN    | 39       | Total O<br>39 39                                                   | 0       |
| 101 | AO    | 37       | $\begin{array}{cc} \text{Total} & \text{O} \\ 37 & 37 \end{array}$ | 0       |
| 101 | AP    | 31       | Total O<br>31 31                                                   | 0       |
| 101 | AQ    | 77       | Total O<br>77 77                                                   | 0       |
| 101 | AR    | 11       | Total O<br>11 11                                                   | 0       |
| 101 | AS    | 25       | $\begin{array}{cc} \text{Total} & \text{O} \\ 25 & 25 \end{array}$ | 0       |
| 101 | AT    | 44       | Total         O           44         44                            | 0       |
| 101 | AU    | 8        | Total O<br>8 8                                                     | 0       |
| 101 | AW    | 16       | Total O<br>16 16                                                   | 0       |
| 101 | AX    | 56       | $\begin{array}{cc} {\rm Total} & {\rm O} \\ 56 & 56 \end{array}$   | 0       |
| 101 | AY    | 18       | Total O<br>18 18                                                   | 0       |
| 101 | AZ    | 30       | Total O<br>30 30                                                   | 0       |
| 101 | A0    | 1        | Total O<br>1 1                                                     | 0       |
| 101 | A1    | 35       | Total         O           35         35                            | 0       |
| 101 | A2    | 32       | TotalO3232                                                         | 0       |
| 101 | A3    | 50       | $\begin{array}{cc} \text{Total} & \text{O} \\ 50 & 50 \end{array}$ | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                       | AltConf |
|-----|-------|----------|---------------------------------------------|---------|
| 101 | A4    | 9        | Total O<br>9 9                              | 0       |
| 101 | Aw    | 6        | Total O<br>6 6                              | 0       |
| 101 | Ax    | 7        | Total O<br>7 7                              | 0       |
| 101 | Ay    | 3        | Total O<br>3 3                              | 0       |
| 101 | Az    | 13       | Total         O           13         13     | 0       |
| 101 | А     | 2955     | Total         O           2955         2955 | 0       |
| 101 | В     | 66       | Total         O           66         66     | 0       |
| 101 | D     | 68       | Total         O           68         68     | 0       |
| 101 | Е     | 66       | Total         O           66         66     | 0       |
| 101 | F     | 79       | Total O<br>79 79                            | 0       |
| 101 | Ι     | 27       | Total O<br>27 27                            | 0       |
| 101 | J     | 1        | Total O<br>1 1                              | 0       |
| 101 | K     | 57       | Total O<br>57 57                            | 0       |
| 101 | L     | 31       | Total O<br>31 31                            | 0       |
| 101 | М     | 51       | Total         O           51         51     | 0       |
| 101 | Ν     | 58       | Total         O           58         58     | 0       |
| 101 | О     | 33       | Total         O           33         33     | 0       |
| 101 | Р     | 81       | Total         O           81         81     | 0       |
| 101 | Q     | 29       | Total O<br>29 29                            | 0       |
| 101 | R     | 63       | Total O<br>63 63                            | 0       |
| 101 | S     | 49       | Total O<br>49 49                            | 0       |



Continued from previous page...

| Mol  | Chain | Residues | Atoms                 | AltConf |
|------|-------|----------|-----------------------|---------|
| 101  | Т     | 45       | Total O               | 0       |
| 101  | 1     | 40       | 45 45                 | 0       |
| 101  | U     | 24       | Total O               | 0       |
|      |       |          | 24 24                 |         |
| 101  | V     | 5        | Total O               | 0       |
|      |       |          | 5 $5$                 |         |
| 101  | W     | 55       | Total O               | 0       |
|      |       |          | 33   33     Total   0 |         |
| 101  | Х     | 11       | 10tal O               | 0       |
|      |       |          | Total O               |         |
| 101  | Y     | 25       | 25 25                 | 0       |
| 1.01 |       | 2.2      | Total O               |         |
| 101  | Z     | 32       | 32 32                 | 0       |
| 101  | 0     | 90       | Total O               | 0       |
| 101  | 0     | 28       | 28 28                 | 0       |
| 101  | 1     | 2        | Total O               | 0       |
| 101  | T     | 5        | 3 $3$                 | 0       |
| 101  | 2     | 34       | Total O               | 0       |
| 101  |       |          | 34 34                 | 0       |
| 101  | 3     | 44       | Total O               | 0       |
|      |       |          | 44 44                 |         |
| 101  | 4     | 11       | Total O               | 0       |
|      |       |          |                       |         |
| 101  | 5     | 14       | 14 $14$               | 0       |
|      |       |          | Total O               |         |
| 101  | 6     | 100      | 100 100               | 0       |
|      |       |          | Total O               |         |
| 101  | 7     | 15       | 15 15                 | 0       |
| 101  | 0     | 15       | Total O               | 0       |
| 101  | 8     | 15       | 15 	15                | 0       |
| 101  | 0     | 17       | Total O               | 0       |
| 101  | 9     | 17       | 17 17                 | 0       |
| 101  | я     | 11       | Total O               | 0       |
| 101  | u     | TT       | 11 11                 |         |
| 101  | b     | 35       | Total O               | 0       |
|      |       | ~~~      | 35 35                 |         |
| 101  | с     | 18       | Total O               | 0       |
|      | -     | -        | 18 18<br>Tutul O      |         |
| 101  | d     | 9        | Total O               | 0       |
|      |       |          | 99                    |         |



| Mol | Chain      | Residues | Atoms   | AltConf |
|-----|------------|----------|---------|---------|
| 101 | 0          | 19       | Total O | 0       |
| 101 | е          | 10       | 13 13   | 0       |
| 101 | ſ          | 10       | Total O | 0       |
| 101 | 1          | 19       | 19 19   | 0       |
| 101 | <i>a</i> r | 19       | Total O | 0       |
| 101 | g          | 10       | 13 13   | 0       |
| 101 | i          | 46       | Total O | 0       |
| 101 | 1          | 40       | 46 - 46 | 0       |
| 101 | i          | 22       | Total O | 0       |
| 101 | J          |          | 22 22   | 0       |
| 101 | ŀ          | 5        | Total O | 0       |
| 101 | K          | 5        | 5 - 5   | 0       |
| 101 | 1          | 5        | Total O | 0       |
| 101 | 1          | 0        | 5 5     | 0       |
| 101 | m          | 8        | Total O | 0       |
| 101 | 111        | 0        | 8 8     | 0       |
| 101 | 0          | 34       | Total O | 0       |
| 101 | 0          | 01       | 34 34   | 0       |
| 101 | n          | 8        | Total O | 0       |
| 101 | Р          | 0        | 8 8     | 0       |
| 101 | r          | 49       | Total O | 0       |
| 101 | 1          | 45       | 49 49   | 0       |
| 101 | S          | 51       | Total O | 0       |
| 101 | G          |          | 51 51   | 0       |
| 101 | Н          | 7        | Total O | 0       |
|     | 11         | •        | 7 7     |         |

Continued from previous page...



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 12S mitochondrial rRNA





| P104<br>8146<br>8146<br>8147<br>8147<br>8147<br>8146<br>7165<br>A166<br>A166<br>A166<br>A166<br>168<br>168<br>168<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1222<br>241<br>241<br>241<br>241<br>241<br>241<br>241                                                                                                                             | SER<br>HITS<br>SER<br>LEU<br>LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Molecule 3: 28S ribe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | osomal protein S24, mitochon                                                                                                                                                      | drial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Chain AC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 73%                                                                                                                                                                               | 6% 21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MET<br>ALLA<br>ALLA<br>ALLA<br>ALLA<br>CYS<br>SER<br>CYS<br>SER<br>CYS<br>CYS<br>SER<br>LLEU<br>LLEU<br>LLEU<br>ARG<br>PRO<br>ALY<br>VAL<br>LLEU<br>SER<br>SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRP<br>SER<br>SER<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CCS<br>SER<br>SER<br>SER<br>SER<br>SER<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL | K46<br>K66<br>G67<br>G67<br>C67<br>C108<br>V109<br>C113<br>C113<br>C113<br>C114<br>C113<br>C114<br>C114<br>C114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • Molecule 4: 28S ribe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | osomal protein S5, mitochond                                                                                                                                                      | rial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Chain AD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 76%                                                                                                                                                                               | • 20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ARG<br>ARG<br>CYS<br>CYS<br>CYS<br>LEU<br>CYS<br>CYS<br>CYS<br>CSS<br>CSS<br>SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GLY<br>ALA<br>ALA<br>GLY<br>GLY<br>GLY<br>GLY<br>GLU<br>ARG<br>GLN<br>ARG<br>GLN<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG                            | ALLA<br>TRP<br>SER<br>VAL<br>VAL<br>VAL<br>GLY<br>ASR<br>ASN<br>ASN<br>CLEU<br>ASS<br>SER<br>SER<br>SER<br>ASN<br>THR<br>ANC<br>ASP<br>THR<br>THR<br>THR<br>THR<br>THR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ALA<br>ALA<br>LEU<br>SER<br>SER<br>ALA<br>ALA<br>ALA<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CVS<br>CVS<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SER<br>HITS<br>LEU<br>MET<br>SER<br>GLN<br>GLN<br>GLN<br>TYR<br>ARG<br>PRO<br>PRO<br>FRO<br>FRO<br>R112<br>T118<br>M127                                                           | M185<br>K186<br>M198<br>M198<br>K201<br>K201<br>K201<br>K260<br>K260<br>K260<br>K268<br>K260<br>Y312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| R351<br>A363<br>G367<br>G367<br>G415<br>M417<br>M417<br>T430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • Molecule 5: 28S ribe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | osomal protein S6, mitochond                                                                                                                                                      | rial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Chain AE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97%                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MET<br>P2<br>E17<br>L17<br>L17<br>L17S<br>L17S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • Molecule 6: 28S ribo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | osomal protein S7, mitochond                                                                                                                                                      | rial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| • Molecule 6: 28S ribe<br>Chain AF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | osomal protein S7, mitochond<br>81%                                                                                                                                               | rial<br>5% 14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • Molecule 6: 28S ribo<br>Chain AF:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | osomal protein S7, mitochond<br>81%<br>BGTXXXXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                   | rial<br>5% 14%<br>5% 14%<br>8 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Molecule 6: 28S ribe</li> <li>Chain AF:</li> <li>E33E33E3E3E888E3</li> <li>Molecule 7: 28S ribe</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | osomal protein S7, mitochond<br><sup>81%</sup><br>로글로북북북로 로그 토토 로그 북북 <sup>8</sup><br>Soomal protein S9, mitochond                                                                | rial<br>5% 14%<br>8 9 9 9 9 14<br>8 9 9 14<br>14 14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>1 |
| <ul> <li>Molecule 6: 28S ribe</li> <li>Chain AF:</li> <li>E33838888888888</li> <li>Molecule 7: 28S ribe</li> <li>Chain AG:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | osomal protein S7, mitochond<br>81%<br>BJJZELSEEJEEJEE<br>osomal protein S9, mitochond<br>76%                                                                                     | rial<br>5% 14%<br>5% 14%<br>rial<br>7% 17%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Molecule 6: 28S ribe</li> <li>Chain AF:</li> <li>E3323333333333333333333333333333333333</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | osomal protein S7, mitochond<br>81%<br>BJJSSESEESEESEESEESEESEESEESEESEESEESEESE                                                                                                  | rial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Molecule 6: 28S ribe</li> <li>Chain AF:</li> <li>Selection of the selection of the</li></ul> | osomal protein S7, mitochond<br>81%<br>BHH BH BH BH BH BH BH BH BH B<br>osomal protein S9, mitochond<br>76%                                                                       | rial<br>5% 14%<br>5% 14%<br>14%<br>14%<br>14%<br>14%<br>14%<br>14%<br>14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>Molecule 6: 28S ribe</li> <li>Chain AF:</li> <li>AF:</li> <li>AF:</li> <li>Molecule 7: 28S ribe</li> <li>Chain AG:</li> <li>Chain AG:</li> <li>AF:</li> <li>AF:</li></ul>       | osomal protein S7, mitochond<br>81%<br>B 5 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M 2 M                                                                                                  | 5%       14%         5%       14%         5%       14%         11233       114%         1133       114%         1133       114%         1133       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       114%         114%       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |





• Molecule 8: 28S ribosomal protein S10, mitochondrial

| Chain AH:                                                                                                                                | 66%                                                                                                                                                                                                                   | •                                                                                       | 30%                                                                                |            |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------|
| MET<br>ALLA<br>ALLA<br>ALLA<br>ALLA<br>ALLA<br>ALLA<br>ALLA<br>AL                                                                        | CLN<br>CLN<br>LEU<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>SSR<br>CLY<br>SSR<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN | LEU<br>LEU<br>LEU<br>LEU<br>THR<br>ASN<br>MET<br>LYS<br>TRP<br>VAL<br>VAL<br>OLN        | SER<br>ASN<br>ASN<br>K60<br>K60<br>K95<br>A95<br>A95<br>A95<br>A95<br>A175<br>A175 | E135       |
| 1143<br>V155<br>V155<br>ULU<br>CLU<br>CLU<br>SER<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                               | LLYS<br>SER<br>SER                                                                                                                                                                                                    |                                                                                         |                                                                                    |            |
| • Molecule 9: 28S ri                                                                                                                     | bosomal protein S11, mitoch                                                                                                                                                                                           | nondrial                                                                                |                                                                                    |            |
| Chain AI:                                                                                                                                | 68%                                                                                                                                                                                                                   | ·                                                                                       | 29%                                                                                |            |
| MET<br>GLN<br>ALA<br>ARA<br>ARA<br>ARA<br>ARA<br>GLY<br>CILA<br>PHE<br>PHE<br>CLEU<br>CLEU<br>CLEU<br>CRP                                | THR<br>PRO<br>GLN<br>GLN<br>GLN<br>GLN<br>ALA<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>AR                                                                                                    | GLY<br>GLN<br>ARG<br>GLN<br>GLN<br>GLN<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>GLN<br>GLN | LYS<br>VAL<br>GLU<br>GLU<br>ASN<br>ALA<br>ALA<br>PRO<br>FRO<br>FRO<br>FRO          |            |
| N1 78<br>57 0184<br>8187<br>8187<br>8188<br>8188<br>1194                                                                                 |                                                                                                                                                                                                                       |                                                                                         |                                                                                    |            |
| • Molecule 10: 28S n                                                                                                                     | ribosomal protein S12, mitoo                                                                                                                                                                                          | chondrial                                                                               |                                                                                    |            |
| Chain AJ:                                                                                                                                | 72%                                                                                                                                                                                                                   | 7%                                                                                      | 22%                                                                                |            |
| MET<br>SER<br>SER<br>SER<br>SER<br>GLY<br>GLY<br>CLY<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>THR<br>THR                                    | CYS<br>PRO<br>PRO<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                | K48<br>V61<br>K72<br>R78<br>R82<br>R82<br>I107                                          |                                                                                    |            |
| • Molecule 11: 28S n                                                                                                                     | ribosomal protein S14, mitoo                                                                                                                                                                                          | chondrial                                                                               |                                                                                    |            |
| Chain AK:                                                                                                                                | 76%                                                                                                                                                                                                                   |                                                                                         | 21%                                                                                |            |
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>PHE<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>ARC<br>ARC<br>ARC<br>ARC<br>CLV<br>CLU<br>CLU<br>CLU<br>CLU | MET<br>VAL<br>PRO<br>SER<br>SER<br>SER<br>ALA<br>GLY<br>GLY<br>GLZ<br>C12<br>C12<br>C12<br>C12<br>C12<br>C12<br>C12<br>C12<br>C12<br>C12                                                                              |                                                                                         |                                                                                    |            |
| • Molecule 12: 28S i                                                                                                                     | ribosomal protein S15, mitoo                                                                                                                                                                                          | chondrial                                                                               |                                                                                    |            |
| Chain AL:                                                                                                                                | 66%                                                                                                                                                                                                                   | ·                                                                                       | 32%                                                                                |            |
| MET<br>LEU<br>VAL<br>ARG<br>ALA<br>ALA<br>ARG<br>LEU<br>LEU<br>LEU<br>LEU<br>ARG<br>ARG                                                  | ALA<br>THR<br>THR<br>CLN<br>VAL<br>LEU<br>VAL<br>LEU<br>VAL<br>LEU<br>VAL<br>LEU<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY                                                                | ASN<br>TRP<br>GLY<br>LEU<br>PRO<br>PRO<br>ARG<br>SER<br>LEU<br>LEU                      | GLN<br>ALA<br>ALA<br>ARG<br>GLY<br>TYR<br>VAL<br>VAL<br>VAL<br>LYS<br>DRO          | ALA<br>GLN |
| SER<br>ARG<br>D64<br>064<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>1155<br>11                                                   | K228<br>K229<br>K229<br>K229<br>K233<br>K233<br>K233<br>K233<br>K235<br>K235<br>K235<br>K235                                                                                                                          | PRO<br>ALLA<br>LIVS<br>LIVS<br>TILE<br>PRO<br>LIVS<br>LEU<br>VYS<br>SER<br>SER          | CLN                                                                                |            |

• Molecule 13: 28S ribosomal protein S16, mitochondrial



| Chain AM:                                                                             | 85%                                                                                                                                                                         | • 13%                                                |                    |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|
| MET<br>VAL<br>HIS<br>HIS<br>LEU<br>THR<br>LEU<br>LEU<br>LEU<br>CYS<br>CYS             | R13<br>N39<br>N39<br>N126<br>A127<br>A127<br>A127<br>A127<br>A12<br>A12<br>A12<br>A12<br>A12<br>A12<br>A12<br>A12<br>A12<br>A12                                             |                                                      |                    |
| • Molecule 14:                                                                        | 28S ribosomal protein S17, mitochondrial                                                                                                                                    |                                                      |                    |
| Chain AN:                                                                             | 79%                                                                                                                                                                         | 5% 15%                                               |                    |
| MET<br>SER<br>VAL<br>VA<br>V8<br>V8<br>R11<br>R11                                     | R73<br>B93<br>B93<br>C97<br>C97<br>C97<br>C97<br>C13<br>C13<br>C13<br>C13<br>C13<br>C13<br>C13<br>C13<br>C13<br>C13                                                         |                                                      |                    |
| • Molecule 15:                                                                        | 28S ribosomal protein S18b, mitochondrial                                                                                                                                   |                                                      |                    |
| Chain AO:                                                                             | 73% •                                                                                                                                                                       | 25%                                                  |                    |
| MET<br>ALA<br>ALA<br>ALA<br>SER<br>VAL<br>VAL<br>LEU<br>ARC                           | ALC<br>LEU<br>PLEU<br>NET<br>LEU<br>NET<br>LEU<br>ARG<br>ARG<br>ARG<br>ARG<br>ARC<br>ARC<br>ARC<br>ARC<br>ARC<br>ARC<br>ARC<br>ARC                                          | P4 (<br>Q125<br>H130<br>R217<br>E227<br>E227<br>M338 | P239<br>PR0<br>ARG |
| THR<br>PRO<br>ALA<br>GLU<br>GLU<br>SER<br>SER<br>SER<br>GLV<br>GLV<br>THR             | GLY<br>PRO<br>SER<br>ALA<br>LEU                                                                                                                                             |                                                      |                    |
| • Molecule 16:                                                                        | 28S ribosomal protein S18c, mitochondrial                                                                                                                                   |                                                      |                    |
| Chain AP:                                                                             | 68% ·                                                                                                                                                                       | 32%                                                  |                    |
| MET<br>ALA<br>ALA<br>ALA<br>VAL<br>VAL<br>ALA<br>VAL<br>CYS<br>GLY<br>GLY<br>LEU      | GLA<br>ARG<br>LYYS<br>LLEU<br>THR<br>HLSU<br>VAL<br>HLSU<br>VAL<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA                                              | K70<br>E1 42                                         |                    |
| • Molecule 17:                                                                        | MRPS21 isoform 1                                                                                                                                                            |                                                      |                    |
| Chain AQ:                                                                             | 95%                                                                                                                                                                         |                                                      |                    |
| MET<br>42<br>65<br>163<br>163<br>163<br>163<br>163<br>163<br>163<br>163<br>163<br>163 |                                                                                                                                                                             |                                                      |                    |
| • Molecule 18:                                                                        | 28S ribosomal protein S22, mitochondrial                                                                                                                                    |                                                      |                    |
| Chain AR:                                                                             | 80%                                                                                                                                                                         | • 18%                                                |                    |
| MET<br>ALA<br>PRO<br>CLEU<br>CLEU<br>CLEU<br>THR<br>VAL<br>LEU<br>LEU<br>TRP          | SER<br>LEU<br>ARG<br>ARG<br>ARG<br>ARG<br>ALL<br>ARG<br>ALL<br>ARG<br>ALL<br>ARG<br>ALL<br>ARG<br>ALL<br>CTS<br>CTS<br>CTS<br>CTS<br>CTS<br>CTS<br>CTS<br>CTS<br>CTS<br>CTS | LEU<br>PRO<br>ARG<br>ARG<br>PHE<br>SER<br>SER<br>ALA | ALA<br>GLU<br>SER  |
| GLY<br>SER<br>PRO<br>E64<br>T65<br>S162<br>S162<br>I165                               | N170<br>D190<br>K317<br>K317<br>K318<br>B319<br>A321<br>A355<br>A356<br>A156<br>A156<br>SER<br>SER                                                                          |                                                      |                    |

 $\bullet$  Molecule 19: 28S ribosomal protein S23, mitochondrial



| Chain                            | AS:                             | 68%                                                                                                                                                                                                                                                                                  | • 29%                                                                                                                                         |              |
|----------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| MET<br>A2<br>E7                  | K93<br>K93                      | Eiti<br>Eiti<br>Eiti<br>And<br>And<br>And<br>And<br>And<br>And<br>And<br>And                                                                                                                                                                                                         | LEU<br>VAL<br>SER<br>ARA<br>ARA<br>ALA<br>ALA<br>ALA<br>ALA<br>GLU<br>GLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>C |              |
| LEU<br>GLU<br>ALA<br>PRO         | ALA<br>ASP<br>GLN<br>SER<br>LYS | LEU<br>LEU<br>PRO<br>PRO                                                                                                                                                                                                                                                             |                                                                                                                                               |              |
| • Mole                           | ecule 2                         | 0: 28S ribosomal protein S25, mitochor                                                                                                                                                                                                                                               | ndrial                                                                                                                                        |              |
| Chain                            | AT:                             | 94%                                                                                                                                                                                                                                                                                  |                                                                                                                                               |              |
| P2<br>F2<br>F7                   | E91<br>192                      | L136<br>L167<br>K166<br>A169<br>A18<br>ALA<br>CLN<br>ASP<br>ASP<br>ASP                                                                                                                                                                                                               |                                                                                                                                               |              |
| • Mole                           | ecule 2                         | 1: 28S ribosomal protein S26, mitochor                                                                                                                                                                                                                                               | ndrial                                                                                                                                        |              |
| Chain                            | AU:                             | 83%                                                                                                                                                                                                                                                                                  | • 14%                                                                                                                                         |              |
| MET<br>LEU<br>ARG<br>ALA<br>1 FU | SER<br>ARG<br>GLY               | CTR<br>CTR<br>CTR<br>CTR<br>CTR<br>CTR<br>CTR<br>CTR                                                                                                                                                                                                                                 | ARIA                                                                                                                                          |              |
| • Mole                           | ecule 2                         | 2: 28S ribosomal protein S27, mitochor                                                                                                                                                                                                                                               | ndrial                                                                                                                                        |              |
| Chain                            | AV:                             | 8%84%                                                                                                                                                                                                                                                                                | • 13%                                                                                                                                         |              |
| MET<br>ALA<br>ALA<br>SER<br>TIF  | VAL<br>VAL<br>ARG<br>GLY        | LEU<br>LEU<br>LEU<br>ALA<br>ALA<br>ALA<br>CLN<br>VAL<br>PRO<br>FRO<br>GLN<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>A                                                                                                                                        | L92<br>L92<br>D120<br>D120<br>C137<br>L92<br>C137<br>A191<br>A191<br>C194<br>C195<br>C215<br>C215<br>C215<br>C215                             |              |
| 1225<br>1226<br>E264             | A268<br>S269<br>P270            | ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP                                                                                                                                                                                                                                 | E311 • 1 • 1 • 1 • 1 • 1 • 1 • • • • • •                                                                                                      | 4405<br>A406 |
| Q407<br>LYS<br>ALA<br>ALA<br>ALA | LYS<br>ALA<br>SER<br>ALA        |                                                                                                                                                                                                                                                                                      |                                                                                                                                               |              |
| • Mole                           | ecule 2                         | 3: 28S ribosomal protein S28, mitochor                                                                                                                                                                                                                                               | ndrial                                                                                                                                        |              |
| Chain                            | AW:                             | 50% .                                                                                                                                                                                                                                                                                | 47%                                                                                                                                           |              |
| MET<br>ALA<br>ALA<br>LEU<br>CVS  | ARG<br>ARG<br>ARG<br>ALA        | ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ARG<br>ARG<br>PHE<br>PHE<br>PHE<br>PHE<br>PHE<br>PHE<br>PHE<br>PHE<br>CLY<br>VII<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLA<br>CLA<br>CLA<br>CLA<br>CLA<br>CLA<br>CLA<br>CLA<br>CLA<br>CLA | SER<br>SER<br>ASER<br>ASER<br>ASER<br>ALA<br>CLYS<br>CLYS<br>CLYS<br>CLY<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>A  |              |
| GLU<br>LEU<br>GLN<br>TVS         | CLU<br>GLU<br>PRO<br>LEU        | LVS<br>SER<br>PRO<br>LVS<br>PRO<br>M76<br>M92<br>K98<br>V113<br>V113<br>E104<br>E104<br>E104<br>E104<br>E104<br>E104<br>E104<br>E104                                                                                                                                                 | HIS<br>CILIN                                                                                                                                  |              |

 $\bullet$  Molecule 24: 28S ribosomal protein S29, mitochondrial



| Chain AX:                                                                                             | 82%                                                                                                                                                                               | 7% 12%                                                                                                                             |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| MET<br>MET<br>LEU<br>LEU<br>LEU<br>CLY<br>CLY<br>THR<br>THR<br>THR<br>THR<br>THR<br>THR<br>SER<br>SER | ARG<br>ILFS<br>ILFS<br>ILFS<br>ILFS<br>ILFS<br>ILFU<br>ARG<br>ARG<br>ARG<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                     | A47<br>H81<br>R86<br>R86<br>F103<br>F104<br>Γ108<br>Γ108<br>C129                                                                   |
| V141<br>L151<br>L152<br>L153<br>L153<br>L153<br>L153<br>L153<br>L153<br>L153<br>L153                  | 4187<br>1190<br>1244<br>1244<br>1247<br>1272<br>1282<br>1306<br>1306<br>1386<br>1386<br>1386<br>1386<br>1386<br>1386<br>1386<br>138                                               |                                                                                                                                    |
| • Molecule 25:                                                                                        | 28S ribosomal protein S31, mitochondrial                                                                                                                                          |                                                                                                                                    |
| Chain AY:                                                                                             | <b>36%</b> • 62%                                                                                                                                                                  |                                                                                                                                    |
| MET<br>PHE<br>PRO<br>ARG<br>VAL<br>SER<br>THR<br>THR<br>FHE<br>LEU<br>LEU                             | ARG<br>PRO<br>LEU<br>ARG<br>HEU<br>SER<br>ARG<br>SER<br>SER<br>SER<br>SER<br>SER<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                             | ALA<br>LEU<br>LEU<br>LEU<br>ARG<br>ARG<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>TYR<br>CLN<br>ARG                              |
| GLY<br>THR<br>ASN<br>SER<br>VAL<br>ILE<br>CYS<br>SER<br>LYS<br>ASP                                    | LYS<br>VAL<br>ARG<br>SER<br>ARG<br>CLU<br>CLU<br>CLV<br>CLV<br>CLV<br>CLV<br>CLV<br>CLV<br>CLV<br>CLV<br>CLV<br>CLV                                                               | LYS<br>VAL<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>VAL<br>VAL<br>ARG<br>ARG<br>ARG<br>THR<br>THR<br>THR<br>THR                       |
| PRO<br>LYS<br>ARG<br>ARG<br>PRO<br>LEU<br>LEU<br>LEU<br>GLU<br>ALA                                    | THR<br>THR<br>GLV<br>GLV<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>CLU<br>CLV<br>CLV<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                            | PRO<br>PHE<br>LYS<br>CLYS<br>CLN<br>THR<br>THR<br>THR<br>THR<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU |
| LEU<br>GLN<br>GLN<br>GLU<br>GLU<br>SER<br>AAG<br>ALA<br>GLN<br>GLN<br>GLN                             | ARG<br>ARG<br>ALSP<br>ALSP<br>ALSP<br>ALSP<br>ALSP<br>ALSP<br>ALSP<br>ALSA<br>ALSA                                                                                                | PLIN<br>PLIN<br>ASP<br>ASP<br>CLV<br>CLV<br>TYR<br>ASP<br>ASP<br>ASP<br>ASV<br>TYR<br>CLV<br>CLV<br>CLV<br>CLV                     |
| THR<br>ASP<br>ASP<br>LEU<br>LYS<br>LYS<br>R247<br>R265<br>L256                                        | F259<br>V264<br>V264<br>F2655<br>K2665<br>K2665<br>F269<br>F270<br>F270<br>F270<br>F270<br>F270<br>F270<br>F270<br>F377<br>K377<br>N361<br>N361<br>N361                           |                                                                                                                                    |
| • Molecule 26:                                                                                        | 28S ribosomal protein S33, mitochondrial                                                                                                                                          |                                                                                                                                    |
| Chain AZ:                                                                                             | 92%                                                                                                                                                                               | • 6%                                                                                                                               |
| MET<br>SER<br>S3<br>S3<br>K46<br>Y49<br>G99                                                           | ALIAZ<br>LYS<br>ARG<br>LYS                                                                                                                                                        |                                                                                                                                    |
| • Molecule 27:                                                                                        | 28S ribosomal protein S34, mitochondrial                                                                                                                                          |                                                                                                                                    |
| Chain A0:                                                                                             | 96%                                                                                                                                                                               |                                                                                                                                    |
| ALA<br>ARG<br>K4<br>E13<br>E13<br>B17<br>D37                                                          | R63<br>P157<br>E158<br>D159<br>D159<br>V218                                                                                                                                       |                                                                                                                                    |
| • Molecule 28:                                                                                        | 28S ribosomal protein S35, mitochondrial                                                                                                                                          |                                                                                                                                    |
| Chain A1:                                                                                             | 80%                                                                                                                                                                               | 6% 14%                                                                                                                             |
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CLEU<br>PRO<br>PRO<br>TRP<br>LEU<br>SER                     | LEU<br>LEU<br>ARG<br>SER<br>ARG<br>ARG<br>ARG<br>ALA<br>ARG<br>ALA<br>ARG<br>ARA<br>FHR<br>FHR<br>FHR<br>FHR<br>FRO<br>FRO<br>FRO<br>FRO<br>FRO<br>FRO<br>FRO<br>FRO<br>FRO<br>FR | P47<br>R86<br>F96<br>F103<br>H13<br>L103<br>H13<br>L114<br>F129                                                                    |








• Molecule 34: E/E-tRNA





| A2693<br>A2694<br>(22694<br>(22697<br>A2696<br>(22703<br>(2706<br>A2710<br>A2710<br>A2710<br>A2710<br>(2718<br>(2718<br>(2718<br>(2718<br>(2718<br>(2718<br>(2718<br>(2718<br>(2718<br>(2718<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)<br>(2718)                                                                                                                                          | 02725<br>02725<br>02728<br>02738<br>02736<br>02736<br>02736                                                                          | A2745<br>A2757<br>A2757<br>C2761<br>C2762<br>A2765<br>C27665<br>A2767                  | A2768<br>A2769<br>A2773<br>A2775<br>A2775<br>G2777<br>G2777<br>C2777<br>C2777<br>C2777<br>C2777<br>C2777 | U2781<br>A2782<br>U2786<br>A2787<br>A2787<br>C2788 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| C2789<br>A2790<br>A2791<br>C2814<br>C2814<br>C2815<br>A2833<br>A2833<br>A2833<br>A2833<br>A2833<br>A2833<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865<br>C2865 | A2869<br>42883<br>12883<br>A2883<br>02885<br>42885<br>72885<br>72885<br>72888<br>72888                                               | A2893<br>C2899<br>G2909<br>A2910<br>C2911<br>C2911<br>A2913                            | 62917<br>A.2921<br>A.2922<br>C2928<br>62932<br>A.2935                                                    | C2944<br>A2945<br>A2946<br>A2946<br>A2956          |
| 22983<br>22985<br>22986<br>22989<br>22990<br>122991<br>23001<br>23001<br>23001<br>23002<br>13006<br>13006<br>13006<br>13006<br>13006<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>13005<br>1005<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (33040<br>(33041<br>(13042<br>(13042<br>(33054<br>(33053<br>(33053<br>(33053)<br>(33053)<br>(33053)<br>(33053)<br>(33053)<br>(33053) | C3 066<br>U3 067<br>A3 089<br>C3 090<br>C3 090<br>C3 090<br>U3 100<br>A3 100<br>U3 100 | 03109<br>03109<br>03110<br>43111<br>43112<br>43113<br>03147<br>03147<br>03152                            | C3157<br>A3158<br>C3162                            |
| (3169<br>(3172)<br>(3172)<br>(3176)<br>(3199)<br>(3183)<br>(3183)<br>(3183)<br>(3183)<br>(3211)<br>(3212)<br>(3211)<br>(3212)<br>(3212)<br>(3212)<br>(3212)<br>(3212)<br>(3212)<br>(3212)<br>(3212)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (33219<br>(33220<br>(13228<br>(13228<br>(13229<br>(13229<br>(13229)<br>(13229)<br>(13229)<br>(13229)                                 |                                                                                        |                                                                                                          |                                                    |
| • Molecule 37: mitochondrial t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RNAVal                                                                                                                               |                                                                                        | 25%                                                                                                      | -                                                  |
| <ul> <li>Molecule 38: 39S ribosomal p</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 72%                                                                                                                                  | ochondrial                                                                             | 25%                                                                                                      |                                                    |
| Chain D:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75%                                                                                                                                  | •                                                                                      | 22%                                                                                                      | -                                                  |
| MET<br>ALA<br>ALA<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>ALA<br>ALA<br>ALA<br>ALA<br>PRO<br>PRO<br>ALA<br>ALA<br>ALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALA<br>ALA<br>PRO<br>SER<br>SER<br>PRO<br>PRO<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>GLN                                              | MET<br>ASN<br>ASN<br>ASN<br>GLY<br>LEU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>ALA       | LEU<br>MET<br>LEU<br>LEU<br>PRO<br>CYS<br>CYS<br>PRO<br>PRO<br>PRO<br>LEU                                | THK<br>SER<br>VAL<br>ALA<br>LEU<br>ASN             |
| A61<br>1207<br>2207<br>8230<br>8230<br>8231<br>8246<br>8269<br>8269<br>8289<br>8289<br>8289<br>8289<br>8289<br>828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SER<br>SER<br>ALA<br>CLN<br>GLN<br>SER                                                                                               |                                                                                        |                                                                                                          |                                                    |
| • Molecule 39: 39S ribosomal p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | protein L3, mit                                                                                                                      | ochondrial                                                                             |                                                                                                          |                                                    |
| Chain E:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84%                                                                                                                                  |                                                                                        | • 12%                                                                                                    | -                                                  |
| MET<br>PRO<br>GLY<br>TRP<br>TRP<br>TRP<br>TRC<br>TRU<br>TRU<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CLY<br>CLY<br>CLY<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA                                       | LLE<br>TLE<br>LEU<br>PHE<br>VAL<br>ARC<br>ARC<br>ARC<br>ALY<br>CLY<br>K44<br>K44       | 069<br>1129<br>1130<br>1130<br>1130<br>1139<br>1145                                                      | K150<br>T151<br>R154                               |
| P171<br>F215<br>T234<br>R266<br>N281<br>N281<br>B324<br>€525<br>V37<br>V37<br>V37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                      |                                                                                        |                                                                                                          |                                                    |
| • Molecule 40: 39S ribosomal p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | protein L4, mit                                                                                                                      | ochondrial                                                                             |                                                                                                          |                                                    |
| Chain F:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78%                                                                                                                                  |                                                                                        | • 19%                                                                                                    |                                                    |
| MET<br>LEU<br>CLEU<br>CLEU<br>PHE<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEU<br>LEU<br>GLU<br>GLU<br>GLU<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CLU<br>GLU                                                     | ASN<br>PRO<br>GLU<br>GLN<br>VAL<br>ALA<br>SER<br>CLU<br>GLV<br>CLV<br>CLV<br>CLV       | R70<br>998<br>K115<br>K126<br>K126                                                                       | S192<br>L193<br>E194<br>W212                       |

WORLDWIDE PROTEIN DATA BANK

### R295 PRO PRO HIS ALA ALA GLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA CYS

• Molecule 41: 39S ribosomal protein L10, mitochondrial



• Molecule 42: 39S ribosomal protein L11, mitochondrial

| _                                      | 25%                              |                |      |    |          |     |    |                |          |   |    |    |    |    |    |    |           |    |    |    |    |    |    |    |    |    |    |    |
|----------------------------------------|----------------------------------|----------------|------|----|----------|-----|----|----------------|----------|---|----|----|----|----|----|----|-----------|----|----|----|----|----|----|----|----|----|----|----|
| Chain J:                               |                                  |                |      |    |          | 889 | %  |                |          |   |    |    |    |    |    |    |           | •  | 9  | %  |    |    |    |    |    |    |    |    |
|                                        |                                  |                |      |    |          | ••  |    |                | ••       |   |    |    |    |    | •  |    |           |    |    |    |    | •  | •  |    |    |    |    |    |
| ET<br>ER<br>ER<br>EU<br>EV<br>RG<br>RG | LA<br>LY<br>EU<br>RG<br>RO<br>RO | LU<br>LY<br>18 | 5 20 | 26 | 27<br>28 | 30  | 31 | 33<br>33<br>33 | 34<br>35 | H | 41 | 43 | 44 | 45 | 49 | 53 | 54<br>E E | 20 | 28 | 59 | 61 | 62 | 69 | 73 | 74 | 75 | 77 | 78 |

• Molecule 43: 39S ribosomal protein L13, mitochondrial

Chain K: 96% ...

• Molecule 44: 39S ribosomal protein L14, mitochondrial

| Chain L:                                                                         | 74%                                                                                                           | 5%                                                                 | 21%  |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------|
| MET<br>PHE<br>PHE<br>PHE<br>GLY<br>CTR<br>PHE<br>PHE<br>TTR<br>PHE<br>TTR<br>CYS | VAL<br>SER<br>SER<br>ARG<br>VAL<br>LEU<br>LEU<br>CHIS<br>CHIS<br>CHIS<br>CHIS<br>CHIS<br>CHIS<br>CHIS<br>CHIS | M96<br>T97<br>R128<br>R128<br>R129<br>E133<br>E133<br>E133<br>E133 | V145 |

93%

• Molecule 45: 39S ribosomal protein L15, mitochondrial

Chain M:

# 

 $\bullet$  Molecule 46: 39S ribosomal protein L16, mitochondrial



.

| Chain N:                                                                                | 86%                                                                                                                                                                                                                                                                                                                                                                  | • 12%                                        |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|                                                                                         | • • • • •                                                                                                                                                                                                                                                                                                                                                            |                                              |
| MET<br>TRP<br>ARG<br>LEU<br>LEU<br>ALA<br>ALA<br>SER<br>ALA<br>SER<br>ALA<br>PRO        | LEU<br>LEU<br>VAL<br>LEU<br>VAL<br>LEU<br>VAL<br>SER<br>ASP<br>SER<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CU<br>CO<br>CU<br>CO<br>CU<br>CO<br>CU<br>CO<br>CU<br>CO<br>CU<br>CO<br>CU<br>CO<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU<br>CU                                                                         | V251                                         |
| • Molecule 47:                                                                          | 39S ribosomal protein L17, mitochondrial                                                                                                                                                                                                                                                                                                                             |                                              |
| Chain O:                                                                                | 85%                                                                                                                                                                                                                                                                                                                                                                  | • 12%                                        |
| MET<br>ARG<br>LEU<br>SER<br>VAL<br>ALA<br>ALA<br>ALA<br>I9<br>Y62                       | G63     K64       K64     K64       K14     L144       A162     A162       A18     SER       SER     SER       A18     SER       A18     SER       A18     SER       A18     SER       C10     G10       C11     ULE |                                              |
| • Molecule 48:                                                                          | 39S ribosomal protein L18, mitochondrial                                                                                                                                                                                                                                                                                                                             |                                              |
| Chain P:                                                                                | 78% .                                                                                                                                                                                                                                                                                                                                                                | 20%                                          |
| MET<br>ALA<br>LEU<br>ARG<br>SER<br>ARG<br>ARG<br>ARG<br>CTRP<br>CLU<br>LEU              | SER<br>SER<br>ARG<br>ARG<br>ARG<br>ARG<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                          |                                              |
| • Molecule 49:                                                                          | 39S ribosomal protein L19, mitochondrial                                                                                                                                                                                                                                                                                                                             |                                              |
| Chain Q:                                                                                | 78% •                                                                                                                                                                                                                                                                                                                                                                | 18%                                          |
| MET<br>ALA<br>ALA<br>ALA<br>CYS<br>CYS<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA | ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA                                                                                                                                                                                                                                                                                                   |                                              |
| K65<br>H66<br>R67<br>P68<br>P68<br>V69<br>E70<br>E71                                    | sr 7<br>sr 7<br>Fr 8<br>Fr 8<br>Fr 9<br>Fr 9<br>Fr 9<br>Fr 9<br>Fr 9<br>Fr 9<br>Fr 9<br>Fr 9                                                                                                                                                                                                                                                                         |                                              |
| • Molecule 50:                                                                          | 39S ribosomal protein L20, mitochondrial                                                                                                                                                                                                                                                                                                                             |                                              |
| Chain R:                                                                                | 91%                                                                                                                                                                                                                                                                                                                                                                  | • 6%                                         |
| MET<br>VAL<br>PHE<br>LEU<br>LEU<br>ALA<br>GLN<br>TRP<br>LEU<br>LLO                      | R65<br>R65<br>R65<br>R65<br>R136<br>R136<br>R136                                                                                                                                                                                                                                                                                                                     |                                              |
| • Molecule 51:                                                                          | 39S ribosomal protein L21, mitochondrial                                                                                                                                                                                                                                                                                                                             |                                              |
| Chain S:                                                                                | 77% .                                                                                                                                                                                                                                                                                                                                                                | 21%                                          |
| MET<br>ALA<br>ALA<br>SER<br>SER<br>SER<br>LEU<br>THR<br>THR<br>LEU<br>GLY<br>GLY        | ARC<br>ARC<br>LEU<br>ALA<br>CYS<br>SER<br>ALA<br>ALA<br>FIEU<br>FIEU<br>CLU<br>CLU<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>A                                                                                                                                                                                                               | 1109<br>0112<br>0162<br>1163<br>1163<br>1163 |
| • Molecule 52:                                                                          | 39S ribosomal protein L22, mitochondrial                                                                                                                                                                                                                                                                                                                             |                                              |
| Chain T:                                                                                | 80%                                                                                                                                                                                                                                                                                                                                                                  | 19%                                          |
|                                                                                         | WORLDWIDE<br>PROTEIN DATA BANK                                                                                                                                                                                                                                                                                                                                       |                                              |

| ALL<br>ALL<br>GL GL VAL                                            | ALA<br>TEU<br>TRP<br>ASN<br>ASN<br>ASN<br>ASG<br>ASG<br>CLV<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                                                                         | <b>13</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Molecule 53                                                      | : 39S ribosomal protein L23, mitochondrial                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chain U:                                                           | %95%                                                                                                                                                                                                                                      | 5%•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MET<br>A2<br>L9<br>X10<br>X11<br>V19<br>V19<br>E47                 | A66<br>K78<br>K78<br>A100<br>A100<br>E115<br>P115<br>P115<br>C125<br>A122<br>A123<br>A123<br>A123<br>C126<br>Y125<br>L126<br>Y125<br>L126<br>Y123<br>L126<br>L126<br>Y127<br>L126<br>L126<br>L126<br>L126<br>L126<br>L126<br>L126<br>L126 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • Molecule 54                                                      | : 39S ribosomal protein L24, mitochondrial                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chain V:                                                           | 88%                                                                                                                                                                                                                                       | 7% 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MET<br>ARG<br>LEU<br>SER<br>SER<br>ALA<br>LEU<br>LEU<br>LEU<br>ALA | SER<br>K12<br>V13<br>H94<br>H94<br>H94<br>H125<br>M124<br>M126<br>M126<br>M126<br>M126<br>M126<br>M126<br>M145<br>M145<br>M145<br>M145<br>M145<br>M145<br>M145<br>M145                                                                    | F159<br>P160<br>E165<br>D176<br>V188<br>K211<br>K211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| • Molecule 55                                                      | : 39S ribosomal protein L27, mitochondrial                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chain W:                                                           | 77%                                                                                                                                                                                                                                       | • 22%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MET<br>ALA<br>SER<br>VAL<br>VAL<br>LEU<br>LEU<br>ALA<br>ARG<br>THR | ARG<br>THR<br>ALA<br>ALA<br>SER<br>SER<br>SER<br>FRO<br>FRO<br>FRO<br>FRO<br>FRO<br>FRO<br>FRO<br>FRO<br>FRO<br>FR                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • Molecule 56                                                      | : 39S ribosomal protein L28, mitochondrial                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u>-</u>                                                           |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chain X:                                                           | 93%                                                                                                                                                                                                                                       | • 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chain X:                                                           | R184<br>0241<br>8242<br>82245<br>82245<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>GLN<br>GLN<br>GLN                                                                                                                                            | • 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chain X:                                                           | 93%                                                                                                                                                                                                                                       | • 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chain X:                                                           | 93%                                                                                                                                                                                                                                       | • 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chain X:                                                           | 93%                                                                                                                                                                                                                                       | • 5%<br>28%<br>28%<br>N N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Chain X:                                                           | 93%                                                                                                                                                                                                                                       | • 5%<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>Version<br>V |
| Chain X:                                                           | 93%<br>93%<br>395 ribosomal protein L47, mitochondrial<br>71%<br>8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                    | • 5%<br>28%<br>NIX<br>NIX<br>NIX<br>NIX<br>NIX<br>NIX<br>NIX<br>NIX<br>NIX<br>NIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chain X:                                                           | 93%<br>93%<br>395 ribosomal protein L47, mitochondrial<br>71%<br>80 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                 | • 5%<br>28%<br>28%<br>08 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chain X:                                                           | 93%<br>93%<br>3 S is some in L47, mitochondrial<br>71%<br>3 S ribosomal protein L47, mitochondrial<br>71%<br>3 S ribosomal protein L30, mitochondrial<br>73%                                                                              | - 5%<br>28%<br>28%<br>04 NT ALL S AN ALL PLANE<br>NAME OF A CONSTRAINT OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| • Molecule 59:                                                                          | 39S ribosomal j                                                                                                                                    | protein L32,                                                       | mitochondria                                                        | l                                                                                |                                                             |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|
| Chain 0:                                                                                | 55%                                                                                                                                                |                                                                    |                                                                     | 41%                                                                              | _                                                           |
| MET<br>ALA<br>LEU<br>LEU<br>ALA<br>MET<br>LEU<br>VAL<br>VAL<br>VAL<br>VAL<br>SER        | PRU<br>SER<br>ALA<br>ALA<br>ALA<br>ALA<br>GLY<br>CAL<br>CAL<br>CAL<br>ARG<br>ASN                                                                   | TRP<br>GLU<br>ARG<br>LEU<br>LEU<br>LYS<br>LEU                      | PRO<br>GLN<br>SER<br>ARG<br>PRO<br>GLY<br>PRO<br>SER<br>PRO         | PRO<br>TRP<br>GLY<br>PRO<br>ALA<br>LEU<br>ALA<br>VAL<br>GLN<br>GLY<br>PRO        | ALA<br>MET<br>PHE<br>THR<br>GLU<br>PRO<br>ALA<br>ASN        |
| ASP<br>SER<br>GLY<br>GLY<br>GLU<br>GLU<br>ASN<br>SER<br>SER<br>SER                      | ALEU<br>ALEU<br>TILE<br>TILE<br>TILE<br>TILE<br>MAT<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | K102<br>T153<br>S166<br>E167<br>N188                               |                                                                     |                                                                                  |                                                             |
| • Molecule 60:                                                                          | 39S ribosomal <sub>l</sub>                                                                                                                         | protein L33,                                                       | mitochondria                                                        | l                                                                                |                                                             |
| Chain 1:                                                                                |                                                                                                                                                    | 78%                                                                |                                                                     | 8% 149                                                                           | 6                                                           |
| MET<br>PHE<br>LEU<br>SER<br>ALA<br>VAL<br>PHE<br>PHE<br>ALA<br>ALA<br>ALA<br>S11        | K12<br>R34<br>R38<br>R38<br>L55<br>L55<br>R63<br>R63                                                                                               | L65                                                                |                                                                     |                                                                                  |                                                             |
| • Molecule 61:                                                                          | 39S ribosomal j                                                                                                                                    | protein L34,                                                       | mitochondria                                                        | .1                                                                               |                                                             |
| Chain 2:                                                                                | 49%                                                                                                                                                | ·                                                                  |                                                                     | 50%                                                                              | _                                                           |
| MET<br>ALA<br>ALA<br>LEU<br>LEU<br>GLY<br>SER<br>LEU<br>LEU<br>CLY                      | IHK<br>SER<br>ARG<br>SER<br>ALA<br>ALA<br>LEU<br>CLEU<br>GLY<br>GLY<br>ARG                                                                         | LEU<br>GLN<br>PRO<br>ARG<br>ALA<br>TRP<br>LEU<br>GLY               | PRO<br>PRO<br>ALA<br>ALA<br>TRP<br>GLY<br>CLEU<br>LEU<br>PRO<br>PRO | GLN<br>GLN<br>ALA<br>ARG<br>GLY<br>K47<br>S56<br>H92                             |                                                             |
| • Molecule 62:                                                                          | 39S ribosomal j                                                                                                                                    | protein L35,                                                       | mitochondria                                                        | .1                                                                               |                                                             |
| Chain 3:                                                                                | 47%                                                                                                                                                | •                                                                  |                                                                     | 49%                                                                              | _                                                           |
| MET<br>ALA<br>ALA<br>SER<br>SER<br>ALA<br>ALA<br>ALA<br>CLY<br>ALA<br>ALA<br>ALA<br>ARG | ALA<br>SER<br>GLY<br>TLE<br>LEU<br>ARG<br>PRO<br>LEU<br>ASN<br>IEU                                                                                 | ALA<br>SER<br>SER<br>THR<br>TYR<br>ASN<br>CYS                      | VAL<br>ASN<br>ASN<br>SER<br>ILEU<br>ILEU<br>ALA<br>LEU              | SER<br>THR<br>GLY<br>ARG<br>PHE<br>SER<br>HIS<br>CLN<br>THR<br>PRO               | VAL<br>VAL<br>SER<br>SER<br>SER<br>THR<br>PRO<br>ARG<br>LEU |
| THR<br>THR<br>SER<br>GLU<br>GLU<br>HR<br>CYS<br>GLY<br>HIS                              | 1HH<br>SER<br>VAL<br>LLEU<br>LEU<br>ASN<br>ASN<br>ACG<br>ALA<br>PRO<br>VAL<br>VAL                                                                  | PRO<br>SER<br>VAL<br>LEU<br>LYS<br>LYS<br>LYS<br>FLO<br>PRO<br>VAL | ARG<br>SER<br>L94<br>R104<br>L144<br>L144<br>R145                   | E146                                                                             |                                                             |
| • Molecule 63:                                                                          | 39S ribosomal j                                                                                                                                    | protein L36,                                                       | mitochondria                                                        | l                                                                                |                                                             |
| Chain 4:                                                                                | 35%                                                                                                                                                | ·                                                                  | 63%                                                                 |                                                                                  | _                                                           |
| MET<br>ALA<br>ASN<br>LEU<br>PHE<br>TLE<br>ARG<br>LYS<br>MET<br>VAL<br>ASN               | PRU<br>LEU<br>TYR<br>LEU<br>TYR<br>SER<br>ARG<br>ARG<br>HIS<br>THR<br>VAL<br>VAL                                                                   | ARG<br>ALA<br>LEU<br>SER<br>PHE<br>LEU<br>PHE                      | GLY<br>SER<br>ALZ<br>ALZ<br>ALZ<br>ALZ<br>PRO<br>VAL<br>VAL         | VAL<br>GLU<br>FRO<br>GLY<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>VAL<br>LEU<br>LEU | SER<br>PRO<br>GLY<br>LEU<br>LEU<br>PRO<br>HIS<br>LEU        |
| LEU<br>PRO<br>ALLA<br>LEU<br>GLY<br>W88<br>W88<br>M103                                  |                                                                                                                                                    |                                                                    |                                                                     |                                                                                  |                                                             |
| • Molecule 64:                                                                          | 39S ribosomal j                                                                                                                                    | protein L37,                                                       | mitochondria                                                        | l                                                                                |                                                             |
| Chain 5:                                                                                |                                                                                                                                                    | 91%                                                                |                                                                     | ·                                                                                | 7%                                                          |
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>SER<br>PRO<br>ALA<br>ARG<br>ALA<br>ARG               | ALA<br>ALA<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>CLU<br>CLU<br>CLU<br>CLU<br>CLY<br>CLU                                                     | GLY<br>GLY<br>ALA<br>ARG<br>ARG<br>GLY<br>GLY                      | P105<br>R110<br>R144<br>R173                                        | Y176<br>C177<br>P178<br>1262<br>1262<br>1299<br>D295                             | R395                                                        |
|                                                                                         |                                                                                                                                                    |                                                                    | WORLDWIDE<br>PROTEIN DATA BANK                                      |                                                                                  |                                                             |

| • Molecule 65: 39S ribosomal protein L38, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chain 6: 89% · 7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| oogaalaan ahaa ahaa ahaa ahaa ahaa ahaa aha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\bullet$ Molecule 66: 39S ribosomal protein L39, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chain 7: 83% · 13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MET<br>LEU<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| q290       V304       V304       R319       GL317       GLU       GLU |
| $\bullet$ Molecule 67: 39S ribosomal protein L40, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chain 8: 74% · 24%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MET<br>THR<br>ALA<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>ALA<br>ALA<br>ARG<br>CLU<br>LEU<br>LEU<br>CLU<br>LEU<br>CLU<br>LEU<br>CLU<br>LEU<br>CLU<br>LEU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CL                                                                                                                                                                                                                                                                                                                                                                                                                       |
| P181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\bullet$ Molecule 68: 39S ribosomal protein L41, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chain 9: • 9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MET<br>LEU<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\bullet$ Molecule 69: 39S ribosomal protein L42, mitochondrial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Chain a: 70% · 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\bullet$ Molecule 70: Large ribosomal subunit protein mL43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Chain b: 70% 30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| PROTEIN DATA BANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| ACE2<br>D150<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>THR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LEU<br>LEU<br>SER<br>ARG<br>ARG<br>ARA<br>ALA<br>ALA<br>PRO<br>CLN<br>TLEU<br>TRP<br>PRO<br>GLN<br>TRP<br>PRO<br>GLN<br>TRP<br>PRO<br>GLN<br>TRP<br>PRO<br>GLN<br>TRP<br>PRO<br>GLN<br>SER<br>SER<br>SER<br>SER                                          | THR<br>SER<br>ALA<br>ALA<br>ALA<br>PRO<br>PRO<br>PRO<br>SER<br>VAL<br>SER<br>CYS<br>CYS<br>CYS<br>TLEU<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALA<br>LEU<br>THR<br>THR<br>VAL<br>CYS<br>SER<br>ALA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          |                                                                                                                                                               |
| • Molecule 71:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39S ribosomal protein L44, mitochondrial                                                                                                                                                                                                                 |                                                                                                                                                               |
| Chain c:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 86%                                                                                                                                                                                                                                                      | 14%                                                                                                                                                           |
| MET<br>ALA<br>SER<br>GLY<br>CLY<br>LEU<br>VAL<br>LEU<br>LEU<br>CLN<br>GLN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CLY<br>HIS<br>HIS<br>ARG<br>CYS<br>CYS<br>ARG<br>ALEU<br>FRO<br>VAL<br>LEV<br>VAL<br>LEV<br>VAL<br>LEV<br>VAL<br>LEV<br>VAL<br>CIO<br>FRO<br>CIO<br>CIO<br>CIO<br>CIO<br>CIU<br>CIU<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL | K:320<br>GLU<br>THR<br>LEU<br>LEU<br>ARG<br>ALA<br>CLU<br>CYS<br>SER<br>THR<br>THR<br>ALA<br>ALA<br>SER                                                       |
| • Molecule 72:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39S ribosomal protein L45, mitochondrial                                                                                                                                                                                                                 |                                                                                                                                                               |
| Chain d:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 79%                                                                                                                                                                                                                                                      | 21%                                                                                                                                                           |
| MET<br>ALA<br>ALA<br>PRO<br>PRO<br>GLY<br>PHE<br>SER<br>SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LEU<br>SER<br>ARC<br>ARC<br>LEU<br>CLEV<br>CLEV<br>CLEV<br>CLEV<br>CLEV<br>CLEV<br>CLEV<br>CLEV                                                                                                                                                          | HIS<br>ALA<br>ARG<br>LYS<br>LYS<br>CIY<br>CIY<br>CIY<br>LGE<br>CIY<br>CIY<br>FGS<br>FGS<br>K71<br>K71<br>K71<br>K71<br>FGS<br>K71<br>FGS<br>K71<br>FGS<br>K71 |
| SER<br>SER<br>LEU<br>LIYS<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T109<br>E110<br>E110<br>K111<br>K111<br>K113<br>K113<br>K113<br>K113<br>M115<br>M115<br>M115<br>M203<br>M116<br>M203<br>M116<br>M203<br>M116<br>M203<br>M116<br>M203<br>M116<br>M203<br>M116<br>M116<br>M116<br>M116<br>M116<br>M116<br>M116<br>M11      |                                                                                                                                                               |
| • Molecule 73:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39S ribosomal protein L46, mitochondrial                                                                                                                                                                                                                 |                                                                                                                                                               |
| Chain e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85%                                                                                                                                                                                                                                                      | 15%                                                                                                                                                           |
| MET<br>ALA<br>ALA<br>ALA<br>PRO<br>VAL<br>VAL<br>ARG<br>ARG<br>LEU<br>LEU<br>CLEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VAL<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ARG<br>ARG<br>ALU<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA                                                                                                                               | K100<br>K101<br>K102<br>K102<br>A103<br>A103<br>H105<br>E105<br>E105<br>E108<br>E110<br>D110<br>D1110<br>C247                                                 |
| L279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                          |                                                                                                                                                               |
| • Molecule 74:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39S ribosomal protein L48, mitochondrial                                                                                                                                                                                                                 |                                                                                                                                                               |
| Chain f:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74%                                                                                                                                                                                                                                                      | 26%                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                          |                                                                                                                                                               |
| MET<br>SER<br>GLY<br>THR<br>LEU<br>CLEU<br>CVS<br>CVS<br>LEU<br>LEU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ARIG<br>ARIG<br>ASIN<br>ASIN<br>ASIN<br>ASIN<br>AILE<br>CLEU<br>CLEU<br>ALEU<br>ARIG<br>ALEU<br>ARIG<br>ALEU<br>CLU<br>CLU<br>PRIO<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                 | ILE<br>SER<br>ARG<br>PRO<br>PRO<br>LIYS<br>LIYS<br>LIYS<br>LIYS<br>CLIY<br>CLIY<br>CLIY<br>CLIY<br>CLIY                                                       |
| R78 MET<br>SER<br>D139 CLY<br>THR<br>K212 CLU<br>LVS<br>V1L<br>V1L<br>V1L<br>V1L<br>V1L<br>V1L<br>V1L<br>V1L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ARG<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN                                                                                                                                                                                | ILE<br>SER<br>ARG<br>ARG<br>ARG<br>ARG<br>C<br>ARG<br>F<br>B68<br>C<br>C<br>V<br>AL<br>V<br>AL<br>C<br>V<br>AL<br>V<br>AL<br>C<br>V<br>AL<br>C<br>V<br>AL     |
| Image: Section of the section of t  | <sup>編</sup> 業業業計算業計算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算                                                                                                                                                                                                      | ILLE<br>SER<br>ARG<br>PRO<br>PRO<br>LYS<br>LYS<br>LYS<br>LYS<br>CLY<br>UXS<br>CLY<br>VAL<br>CLY                                                               |
| Image: Second state sta | <sup>29</sup> 業業業計算業計算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算算                                                                                                                                                                                                     | HIT<br>HIT<br>HIT<br>HIT<br>HIT<br>HIT<br>HIT<br>HIT                                                                                                          |

|    |    |    |    |   |    |    |    |   |   |    |   |   |    |   |    |    |   |    |   |    |   |   |    |   |   |    |    |   |   |    |    | -  | <b>.</b> |         |
|----|----|----|----|---|----|----|----|---|---|----|---|---|----|---|----|----|---|----|---|----|---|---|----|---|---|----|----|---|---|----|----|----|----------|---------|
|    | A  | A  | 22 | H | ш  | 5  | A  | Ж | D | 5  | Y | д | 5  | ж | Y  |    | N | 5  | Y | ß  | Y | D | 5  | D | D | ж  | N  | ж | N | Y  | 0  | e  | 4        | ee<br>B |
| ¥. | AL | AL | E  | 븻 | Ηd | AR | AL | E | 믭 | AR | G | Ĕ | AR | E | GL | VA | Б | AR | Б | ςγ | Ę | 믭 | AR | 믭 | Ξ | SE | GL | E | g | GL | PR | P3 | D3       | ù       |

 $\bullet$  Molecule 76: 39S ribosomal protein L50, mitochondrial

| Chain h:                                                                                       | 70%                                                                                                                                   | 30%                                                                                                                                                    |                     |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| MET<br>ALA<br>ALA<br>ARG<br>SER<br>VAL<br>SER<br>CLY<br>THE<br>THR<br>ARG<br>ARG               | PHE<br>THRP<br>THRP<br>THRP<br>THRP<br>THR<br>SER<br>GLU<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS        | GLU<br>GLU<br>LYS<br>LYS<br>CLY<br>PRO<br>PRO<br>PRO<br>S81<br>182<br>S81<br>S81<br>S84<br>S84<br>S84<br>S84<br>S84<br>S84<br>S84<br>S84<br>S84<br>S84 | Y1 <mark>5</mark> 8 |
| • Molecule 77: 39                                                                              | 9S ribosomal protein L51, mitochondrial                                                                                               |                                                                                                                                                        |                     |
| Chain i:                                                                                       | 76%                                                                                                                                   | 24%                                                                                                                                                    |                     |
| MET<br>ALA<br>GLY<br>GLY<br>ASN<br>LEU<br>LEU<br>LEU<br>SER<br>GLY<br>ALA<br>ALA<br>ALA<br>ALA | TRP<br>VAL<br>VAL<br>PRO<br>CTS<br>CTS<br>CTS<br>CTS<br>CTS<br>CTS<br>CTS<br>CTS<br>CTS<br>CTS                                        |                                                                                                                                                        |                     |
| • Molecule 78: 39                                                                              | 9S ribosomal protein L52, mitochondrial                                                                                               |                                                                                                                                                        |                     |
| Chain j:                                                                                       | 76%                                                                                                                                   | 24%                                                                                                                                                    |                     |
| MET<br>ALA<br>ALA<br>LEU<br>LEU<br>LEU<br>VAL<br>FHE<br>THR<br>THR<br>THR<br>CUV               | ARG<br>ARG<br>CYS<br>SER<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                         |                                                                                                                                                        |                     |
| • Molecule 79: 39                                                                              | 9S ribosomal protein L53, mitochondrial                                                                                               |                                                                                                                                                        |                     |
| Chain k:                                                                                       | 90%                                                                                                                                   | 10%                                                                                                                                                    |                     |
| MET<br>A2<br>R11<br>811<br>818<br>499<br>4100<br>6101<br>5102                                  | GLY<br>GLY<br>PRO<br>CLY<br>ALA<br>ASP<br>ALA<br>ASP<br>ASP<br>ALA<br>ASP<br>ASP                                                      |                                                                                                                                                        |                     |
| • Molecule 80: 39                                                                              | 9S ribosomal protein L54, mitochondrial                                                                                               |                                                                                                                                                        |                     |
| Chain l:                                                                                       | 59%                                                                                                                                   | 41%                                                                                                                                                    |                     |
| MET<br>ALA<br>THR<br>LYS<br>LYS<br>ARG<br>LEU<br>PHE<br>ARG<br>ALA<br>ALA<br>ARG<br>THR<br>THR | LIAP<br>ALLA<br>GLY<br>CLY<br>CLY<br>CLY<br>CLEU<br>CLEU<br>CLEU<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL | CLY<br>ALA<br>ALA<br>LAR<br>LYS<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                    | D58<br>P59<br>D60   |
| T63         M73         K79         K79         C81         C81         Q82         D83        | D89<br>A90<br>E91<br>E98<br>Ang<br>LEU                                                                                                |                                                                                                                                                        |                     |
| • Molecule 81: 39                                                                              | 9S ribosomal protein L55, mitochondrial                                                                                               |                                                                                                                                                        |                     |
| Chain m:                                                                                       | 72%                                                                                                                                   | 28%                                                                                                                                                    |                     |



|                                                                                                                                                                     | •••                                                                                                                                            |                                                                                                                                                      |                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| MET<br>ALA<br>ALA<br>ALA<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY                                                                      | THR<br>CLY<br>ALA<br>ALA<br>ALA<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>AR                                                         | R96<br>E97<br>A98<br>A98<br>A98<br>A100<br>A1100<br>K100<br>K100<br>K100<br>K100<br>K100<br>K10                                                      | TYS LTYS                                                                                            |
| • Molecule 82: Ribosom                                                                                                                                              | al protein 63, mitochondrial                                                                                                                   | l                                                                                                                                                    |                                                                                                     |
| Chain o:                                                                                                                                                            | 92%                                                                                                                                            | 8                                                                                                                                                    | %                                                                                                   |
| MET<br>PHE<br>LEU<br>THR<br>ALA<br>LEU<br>LEU<br>TRP<br>R9<br>R9<br>R9<br>R9                                                                                        |                                                                                                                                                |                                                                                                                                                      |                                                                                                     |
| • Molecule 83: Peptidyl-                                                                                                                                            | -tRNA hydrolase ICT1, mit                                                                                                                      | ochondrial                                                                                                                                           |                                                                                                     |
| Chain p:                                                                                                                                                            | 71%                                                                                                                                            | 29%                                                                                                                                                  | _                                                                                                   |
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>ARG<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS                                                        | LEU<br>PRO<br>PRO<br>PRO<br>PRO<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS                                          | M63<br>C64<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>C36<br>C36<br>C36<br>C36<br>C36<br>C36<br>C36<br>C36<br>C36<br>C36      | dLY<br>GLY<br>CLN<br>VASN<br>VASN<br>VASN<br>VASN<br>VASN<br>VASN<br>VASN<br>VAS                    |
| K166<br>E167<br>P168<br>K170<br>E171<br>B172<br>B172<br>B172<br>A14<br>A14<br>A1A<br>A1A<br>A1A<br>A1A<br>SER                                                       | ARG<br>VAL<br>ASP<br>ASP<br>ASP<br>ASP                                                                                                         |                                                                                                                                                      |                                                                                                     |
| • Molecule 84: Growth a                                                                                                                                             | arrest and DNA damage-ind                                                                                                                      | lucible proteins-inter                                                                                                                               | acting protein 1                                                                                    |
| Chain q:                                                                                                                                                            | 74%                                                                                                                                            | 26%                                                                                                                                                  | _                                                                                                   |
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>SER<br>VAL<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA                                                        | ALA<br>PRO<br>CLY<br>SER<br>SER<br>SER<br>ARG<br>CLY<br>M143<br>A144<br>A148<br>M143<br>CLY<br>E151<br>E151<br>R152<br>E151                    | A154<br>A154<br>C155<br>C155<br>A156<br>C155<br>A160<br>C161<br>C163<br>C161<br>C163<br>C164<br>C164<br>C164<br>C164<br>C164<br>C164<br>C164<br>C164 | 0165<br>V166<br>0LM<br>V168<br>P170<br>P170<br>R171<br>S172<br>A173<br>A173<br>A173<br>P176<br>P176 |
| LI 75<br>RI B7<br>CUU<br>CUU<br>CUU<br>CUU<br>CUU<br>CUU<br>CUU<br>CU                                                                                               | ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA                                                                             |                                                                                                                                                      |                                                                                                     |
| • Molecule 85: 39S ribos                                                                                                                                            | somal protein S18a, mitocho                                                                                                                    | ondrial                                                                                                                                              |                                                                                                     |
| Chain r:                                                                                                                                                            | 83%                                                                                                                                            | 17%                                                                                                                                                  | -                                                                                                   |
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>LEU<br>LEU<br>VAL<br>CYS<br>GLY<br>GLY<br>GLY<br>CYS<br>GLY<br>CYS<br>GLY<br>CYS<br>GLY<br>LEU<br>LEU<br>LEU                     | LEU<br>ALA<br>GLY<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ARG<br>PRO<br>PRO<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL | E137<br>6138<br>H196                                                                                                                                 |                                                                                                     |
| • Molecule 86: 39S ribos                                                                                                                                            | somal protein S30, mitochor                                                                                                                    | ıdrial                                                                                                                                               |                                                                                                     |
| Chain s:                                                                                                                                                            | 88%                                                                                                                                            | 12%                                                                                                                                                  | -                                                                                                   |
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ARG<br>CYS<br>TRP<br>ARG<br>CYS<br>ARG<br>CLY<br>ARG<br>CLY<br>PRO<br>CLY<br>FEU<br>SER<br>ARG<br>FLU<br>EU<br>LEU | HIS<br>THR<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>GLU<br>GLU<br>CYS<br>GLN<br>ASP<br>ALA<br>ALA                            | T39<br>A123<br>A123<br>E124<br>P125<br>CLU<br>PR0<br>CLU<br>PR0<br>CLU<br>PR0<br>CLU<br>PR0<br>CLU                                                   | P135<br>E431<br>E431<br>E432<br>K433<br>SER<br>GLN<br>LEU                                           |
| GLU<br>ASN                                                                                                                                                          |                                                                                                                                                |                                                                                                                                                      |                                                                                                     |



| • Molecule 8                                                       | 37: 39S ribosomal protein L12, mitc                                                                                                                                                                                                      | ochondrial                                                                                                                                                                                                                                                             |                                                                                                                                                         |
|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Chain t:                                                           | 21%<br>23%                                                                                                                                                                                                                               | 77%                                                                                                                                                                                                                                                                    |                                                                                                                                                         |
|                                                                    |                                                                                                                                                                                                                                          | <u>••</u> •                                                                                                                                                                                                                                                            | •••••                                                                                                                                                   |
| MET<br>LEU<br>PRO<br>ALA<br>ALA<br>ALA<br>ARG<br>PRO<br>LEU        | TRP<br>PRO<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ARG<br>CAS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CY                                                        | HIS<br>MET<br>ARG<br>SER<br>SER<br>GLY<br>GLY<br>GLY<br>GL<br>GS<br>CYS<br>CYS<br>GS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>CY                                                                                                              | A56<br>P57<br>K58<br>E59<br>P61<br>P61<br>P62                                                                                                           |
| ******                                                             | •••••                                                                                                                                                                                                                                    | <b>◆◆</b>                                                                                                                                                                                                                                                              |                                                                                                                                                         |
| K63<br>164<br>065<br>066<br>167<br>V68<br>V68                      | 070<br>171<br>772<br>174<br>175<br>177<br>175<br>177<br>175<br>177<br>175<br>177<br>177<br>177                                                                                                                                           | L90<br>TILE<br>TILE<br>GLIN<br>GLN<br>VAL<br>LEU<br>VAL<br>LEU<br>VAL<br>CLY<br>VAL<br>MET<br>GLY<br>VAL<br>ALA<br>ALA<br>ALA<br>ALA                                                                                                                                   | ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                   |
| ILE<br>ALA<br>LYS<br>GLU<br>ARG<br>HIS<br>PHE<br>THR               | VAL<br>ARG<br>LLEU<br>THR<br>ALA<br>ALA<br>ALA<br>LLYS<br>PRO<br>PRO<br>LLYS<br>LLYS<br>LLEU<br>LLEU<br>LLEU<br>LLEU<br>LLEU<br>LLEU<br>LLYS<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>ASN<br>AS                        | LEU<br>VAL<br>GLM<br>GLM<br>LYS<br>LYS<br>LYS<br>LLEU<br>VAL<br>CLU<br>SER<br>FLEU<br>FLEU<br>CLU<br>SER<br>LIS<br>GLN<br>GLN<br>ALA<br>ALA                                                                                                                            | LYS<br>ALA<br>GLU<br>GLU<br>GLU                                                                                                                         |
| LYS<br>TLE<br>LYS<br>ALA<br>ALA<br>LEU<br>GLU<br>ALA<br>VAL        | GLY<br>THR<br>VAL<br>LEU<br>GLU<br>GLU                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                        |                                                                                                                                                         |
| • Molecule 8                                                       | 37: 39S ribosomal protein L12, mitc                                                                                                                                                                                                      | ochondrial                                                                                                                                                                                                                                                             |                                                                                                                                                         |
| Chain m                                                            | 16%                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                        |                                                                                                                                                         |
| Chain u:                                                           | 16% 84                                                                                                                                                                                                                                   | 1%                                                                                                                                                                                                                                                                     |                                                                                                                                                         |
| MET<br>LEU<br>PRO<br>ALA<br>ALA<br>ALA<br>ARG<br>PRO<br>LEU        | TRP<br>PRD<br>PLEU<br>CYS<br>CYS<br>CYS<br>CLEU<br>CLEU<br>CLEU<br>CLEU<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>CYS<br>VAL<br>CYS<br>VAL<br>CYS<br>VAL<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG | HIS<br>MET<br>ARC<br>SER<br>SER<br>SER<br>CLY<br>HIS<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>ALA<br>ALA<br>ALA<br>ALA<br>ASN<br>ASN                                                                                                                 |                                                                                                                                                         |
| <b>*****</b>                                                       | •••••                                                                                                                                                                                                                                    | ****                                                                                                                                                                                                                                                                   |                                                                                                                                                         |
| P61<br>P62<br>P63<br>K63<br>I64<br>Q65<br>Q65<br>Q66               | V68<br>9699<br>771<br>772<br>7755<br>1775<br>1775<br>1775<br>1775<br>1775<br>1                                                                                                                                                           | K88<br>T89<br>T89<br>L90<br>L90<br>L90<br>ASP<br>ASP<br>ASP<br>ASP<br>C41<br>YAL<br>C41<br>YAL<br>C41<br>YAL<br>C41<br>YAL<br>C41<br>YAL<br>C41<br>YAL<br>C41<br>YAC<br>C41<br>YAC<br>C41<br>ASP<br>C41<br>C41<br>C41<br>C41<br>C41<br>C41<br>C41<br>C41<br>C41<br>C41 | ALA<br>VAL<br>PRO<br>PRO<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                              |
| ILE<br>PRO<br>ILE<br>ALA<br>LYS<br>GLU<br>ARG<br>HIS               | PHE<br>THR<br>VAL<br>THR<br>VAL<br>LEU<br>THR<br>GJU<br>VAL<br>LYS<br>PRO<br>GJU<br>VAL<br>LYS<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU                                                                     | ILE<br>LEU<br>VAL<br>VAL<br>VAL<br>LEU<br>ALA<br>ALA<br>ALA<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>CLU<br>ALA<br>ALA                                                                                                                                                    | VAL<br>ALA<br>LYS<br>ALA<br>GLU<br>GLU                                                                                                                  |
| ALA<br>GLU<br>LYS<br>LYS<br>LYS<br>ALA<br>ALA<br>ALA<br>ALA<br>GLU | ALA<br>GLY<br>THR<br>THR<br>VAL<br>LEU<br>GLU                                                                                                                                                                                            |                                                                                                                                                                                                                                                                        |                                                                                                                                                         |
| • Molecule 8                                                       | 37: 39S ribosomal protein L12, mitc                                                                                                                                                                                                      | ochondrial                                                                                                                                                                                                                                                             |                                                                                                                                                         |
| Chain v:                                                           | 16%                                                                                                                                                                                                                                      | 1%                                                                                                                                                                                                                                                                     |                                                                                                                                                         |
|                                                                    |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                        | •                                                                                                                                                       |
| MET<br>LEU<br>PRO<br>ALA<br>ALA<br>ALA<br>ARG<br>PRO<br>LEU        | TRP<br>PRO<br>CYS<br>CYS<br>CYS<br>CYS<br>CYS<br>ALA<br>ALA<br>ALA<br>ARG<br>ALA<br>ARG<br>ALA<br>ARG<br>CYS<br>VAL<br>VAL<br>VAL<br>VAL<br>VAL                                                                                          | HIS<br>ARG<br>SER<br>SER<br>SER<br>GLY<br>GLY<br>GLV<br>CYS<br>GLU<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ASP<br>ASN<br>ASN                                                                                                                                             | ALA<br>PRO<br>LYS<br>GLV<br>Y60                                                                                                                         |
| •••••                                                              | •••••                                                                                                                                                                                                                                    | ****                                                                                                                                                                                                                                                                   |                                                                                                                                                         |
| P61<br>P62<br>K63<br>K63<br>I64<br>Q65<br>Q65<br>L67<br>L67        | V68<br>070<br>171<br>171<br>171<br>171<br>177<br>1775<br>1775<br>1775                                                                                                                                                                    | K88<br>189<br>189<br>189<br>112<br>112<br>112<br>112<br>129<br>120<br>129<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120<br>120                                                                                                                        | ALA<br>VALL<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>GLU<br>VAL<br>CLU<br>VAL<br>CLU<br>SCU<br>VAL<br>ASP<br>GLU<br>SCU<br>VAL |
| ILE<br>PRO<br>ILE<br>ALA<br>LYS<br>GLU<br>ARG<br>HIR               | PHE<br>VIL<br>VIL<br>ARG<br>ARG<br>ARG<br>ARA<br>ARA<br>ARA<br>VIL<br>ASP<br>LIYS<br>CLYS<br>CLYS<br>CLYS<br>CLYS<br>CLYS<br>CLYS<br>CLYS<br>CL                                                                                          | ILE<br>LEU<br>VAL<br>VAL<br>ALA<br>ALA<br>ALA<br>CIN<br>VAL<br>CYS<br>CIU<br>SER<br>CIU<br>SER<br>CIU<br>SER<br>CIU<br>SAIA<br>ASN                                                                                                                                     | VAL<br>ALA<br>ALA<br>GLU<br>GLU                                                                                                                         |
| ALA<br>GLU<br>LYS<br>LYS<br>LYS<br>LYS<br>ALA<br>ALA<br>ALA<br>CLU | ALA<br>GLY<br>GLY<br>THR<br>THR<br>VAL<br>LEU<br>GLU                                                                                                                                                                                     |                                                                                                                                                                                                                                                                        |                                                                                                                                                         |
| • Molecule 8                                                       | 37: 39S ribosomal protein L12, mitc                                                                                                                                                                                                      | ochondrial                                                                                                                                                                                                                                                             |                                                                                                                                                         |
| Chain w:                                                           | 16%                                                                                                                                                                                                                                      | 1%                                                                                                                                                                                                                                                                     |                                                                                                                                                         |
| VIIVIII VV.                                                        | + V / V 0'                                                                                                                                                                                                                               | 170                                                                                                                                                                                                                                                                    |                                                                                                                                                         |

WORLDWIDE PROTEIN DATA BANK

| MET<br>NET<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO<br>PRO                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------|
| P61<br>P61<br>F62<br>F63<br>F64<br>F64<br>F64<br>G65<br>G65<br>G65<br>F71<br>F71<br>F71<br>F77<br>F77<br>F77<br>F77<br>F77<br>F77<br>F77 |
| 111<br>114<br>114<br>114<br>114<br>114<br>114<br>114<br>114<br>114                                                                       |
| ALA<br>LYS<br>ALA<br>ALA<br>ALA<br>ALA<br>CUS<br>CUS<br>VAL<br>CUS<br>VAL<br>CUS<br>VAL<br>CUS<br>CUS<br>VAL<br>CUS<br>CUS<br>VAL        |
| • Molecule 87: 39S ribosomal protein L12, mitochondrial                                                                                  |
| Chain x: 16% 84%                                                                                                                         |
| MET<br>MET<br>PRO<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                   |
| P61<br>P61<br>F62<br>F63<br>F64<br>F64<br>F64<br>G65<br>G65<br>G65<br>F71<br>F71<br>F71<br>F77<br>F77<br>F77<br>F77<br>F77<br>F77<br>F77 |
| LILE<br>TILE<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>AS       |
| ALA<br>LYS<br>LYS<br>LYS<br>LLEU<br>ALA<br>ALA<br>ALA<br>ALA<br>CLU<br>CLU<br>VAL<br>CLU<br>VAL<br>CLU<br>CLU<br>CLU                     |
| • Molecule 87: 39S ribosomal protein L12, mitochondrial                                                                                  |
| Chain y: 16% 84%                                                                                                                         |
| MET<br>PERO<br>PERO<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                 |
| P61<br>P62<br>P65<br>P65<br>P65<br>P65<br>P65<br>P65<br>P65<br>P65<br>P65<br>P65                                                         |
| LLE<br>LLE<br>LLE<br>LLE<br>LLE<br>LLE<br>LLE<br>LLE<br>LLE<br>LLE                                                                       |
| ALA<br>LYS<br>LYS<br>ALA<br>ALA<br>GLU<br>GLU<br>GLU<br>GLU                                                                              |
| • Molecule 88: 39S ribosomal protein L9, mitochondrial                                                                                   |
| Chain H: 69% 7% 24%                                                                                                                      |
| MET<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>AL                                                                 |
| R78<br>146<br>146<br>146<br>146<br>146<br>146<br>146<br>146                                                                              |
|                                                                                                                                          |

 $\bullet$  Molecule 89: 39S ribosomal protein L1, mitochondrial







## 4 Experimental information (i)

| Property                           | Value                           | Source    |
|------------------------------------|---------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE                 | Depositor |
| Imposed symmetry                   | POINT, Not provided             |           |
| Number of particles used           | 82522                           | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF               | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE    | Depositor |
|                                    | CORRECTION                      |           |
| Microscope                         | FEI TITAN KRIOS                 | Depositor |
| Voltage (kV)                       | 300                             | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 30                              | Depositor |
| Minimum defocus (nm)               | 600                             | Depositor |
| Maximum defocus (nm)               | 2800                            | Depositor |
| Magnification                      | Not provided                    |           |
| Image detector                     | GATAN K2 SUMMIT $(4k \ge 4k)$   | Depositor |
| Maximum map value                  | 61.722                          | Depositor |
| Minimum map value                  | -28.634                         | Depositor |
| Average map value                  | 0.003                           | Depositor |
| Map value standard deviation       | 1.267                           | Depositor |
| Recommended contour level          | 2.8                             | Depositor |
| Map size (Å)                       | 448.19998, 448.19998, 448.19998 | wwPDB     |
| Map dimensions                     | 540, 540, 540                   | wwPDB     |
| Map angles (°)                     | 90.0, 90.0, 90.0                | wwPDB     |
| Pixel spacing (Å)                  | 0.83, 0.83, 0.83                | Depositor |



## 5 Model quality (i)

### 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GDP, 5MU, PUT, 2MG, OMG, ZN, FES, 1MA, ATP, OMU, SAC, MG, PSU, SPM, SPD, K, MA6, 5F0, NAD, B8T, 5MC, ACE, AYA

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal  | Chain   | Bo   | ond lengths | Bond angles |          |
|------|---------|------|-------------|-------------|----------|
| WIOI | Ullaili | RMSZ | # Z  > 5    | RMSZ        | # Z  > 5 |
| 1    | AA      | 0.20 | 0/22537     | 0.67        | 0/35085  |
| 2    | AB      | 0.24 | 0/1859      | 0.49        | 0/2513   |
| 3    | AC      | 0.25 | 0/1113      | 0.48        | 0/1505   |
| 4    | AD      | 0.24 | 0/2783      | 0.51        | 0/3724   |
| 5    | AE      | 0.24 | 0/989       | 0.50        | 0/1335   |
| 6    | AF      | 0.24 | 0/1767      | 0.47        | 0/2373   |
| 7    | AG      | 0.24 | 0/2746      | 0.48        | 0/3681   |
| 8    | AH      | 0.25 | 0/1178      | 0.47        | 0/1598   |
| 9    | AI      | 0.25 | 0/1030      | 0.49        | 0/1386   |
| 10   | AJ      | 0.25 | 0/855       | 0.55        | 0/1148   |
| 11   | AK      | 0.22 | 0/880       | 0.57        | 0/1182   |
| 12   | AL      | 0.24 | 0/1477      | 0.46        | 0/1974   |
| 13   | AM      | 0.24 | 0/963       | 0.53        | 0/1295   |
| 14   | AN      | 0.24 | 0/886       | 0.49        | 0/1199   |
| 15   | AO      | 0.24 | 0/1648      | 0.48        | 0/2243   |
| 16   | AP      | 0.24 | 0/798       | 0.44        | 0/1070   |
| 17   | AQ      | 0.23 | 0/748       | 0.55        | 0/994    |
| 18   | AR      | 0.23 | 0/2456      | 0.44        | 0/3317   |
| 19   | AS      | 0.24 | 0/1138      | 0.50        | 0/1533   |
| 20   | AT      | 0.24 | 0/1402      | 0.46        | 0/1883   |
| 21   | AU      | 0.23 | 0/1510      | 0.53        | 0/2025   |
| 22   | AV      | 0.23 | 0/3030      | 0.40        | 0/4093   |
| 23   | AW      | 0.25 | 0/801       | 0.51        | 0/1079   |
| 24   | AX      | 0.24 | 0/2921      | 0.44        | 0/3954   |
| 25   | AY      | 0.24 | 0/1280      | 0.39        | 0/1725   |
| 26   | AZ      | 0.25 | 0/857       | 0.49        | 0/1141   |
| 27   | A0      | 0.23 | 0/1834      | 0.52        | 0/2484   |
| 28   | A1      | 0.24 | 0/2313      | 0.45        | 0/3129   |
| 29   | A2      | 0.24 | 0/941       | 0.54        | 0/1257   |
| 30   | A3      | 0.23 | 0/636       | 0.58        | 0/839    |
| 31   | A4      | 0.24 | 0/4877      | 0.43        | 0/6598   |



| Mal | Chain | Bo                | ond lengths         | Bond angles |                     |  |
|-----|-------|-------------------|---------------------|-------------|---------------------|--|
|     | Chain | RMSZ              | # Z  > 5            | RMSZ        | # Z  > 5            |  |
| 32  | Aw    | 0.30              | 1/1603~(0.1%)       | 0.65        | 0/2488              |  |
| 33  | Ax    | 0.30              | 1/1655~(0.1%)       | 0.66        | 0/2569              |  |
| 34  | Ay    | 0.29              | 1/1656~(0.1%)       | 0.66        | 0/2571              |  |
| 35  | Az    | 0.16              | 0/803               | 0.68        | 0/1244              |  |
| 36  | А     | 0.21              | 1/36876~(0.0%)      | 0.68        | 0/57402             |  |
| 37  | В     | 0.34              | 1/1627~(0.1%)       | 0.67        | 0/2527              |  |
| 38  | D     | 0.24              | 0/1896              | 0.56        | 0/2549              |  |
| 39  | Ε     | 0.24              | 0/2475              | 0.46        | 0/3355              |  |
| 40  | F     | 0.24              | 0/2090              | 0.51        | 0/2842              |  |
| 41  | Ι     | 0.24              | 0/1731              | 0.48        | 0/2345              |  |
| 42  | J     | 0.25              | 0/1348              | 0.48        | 0/1813              |  |
| 43  | Κ     | 0.24              | 0/1490              | 0.47        | 0/2021              |  |
| 44  | L     | 0.24              | 0/905               | 0.53        | 0/1218              |  |
| 45  | М     | 0.25              | 0/2368              | 0.53        | 0/3195              |  |
| 46  | Ν     | 0.24              | 0/1833              | 0.51        | 0/2468              |  |
| 47  | 0     | 0.23              | 0/1283              | 0.53        | 0/1727              |  |
| 48  | Р     | 0.24              | 0/1199              | 0.54        | 0/1623              |  |
| 49  | Q     | 0.24              | 0/2039              | 0.50        | 0/2750              |  |
| 50  | R     | 0.23              | 0/1175              | 0.54        | 0/1572              |  |
| 51  | S     | 0.23              | 0/1320              | 0.52        | 0/1789              |  |
| 52  | Т     | 0.25              | 0/1403              | 0.51        | 0/1886              |  |
| 53  | U     | 0.25              | 0/1274              | 0.54        | 0/1723              |  |
| 54  | V     | 0.24              | 0/1721              | 0.52        | 0/2333              |  |
| 55  | W     | 0.25              | 0/926               | 0.48        | 0/1244              |  |
| 56  | Х     | 0.25              | 0/2099              | 0.47        | 0/2837              |  |
| 57  | Y     | 0.23              | 0/1593              | 0.50        | 0/2136              |  |
| 58  | Ζ     | 0.23              | 0/1021              | 0.47        | 0/1378              |  |
| 59  | 0     | 0.23              | 0/913               | 0.52        | 0/1224              |  |
| 60  | 1     | 0.24              | 0/469               | 0.56        | 0/621               |  |
| 61  | 2     | 0.22              | 0/383               | 0.56        | 0/507               |  |
| 62  | 3     | 0.24              | 0/853               | 0.53        | 0/1136              |  |
| 63  | 4     | 0.24              | 0/350               | 0.55        | 0/461               |  |
| 64  | 5     | 0.24              | 0/3305              | 0.48        | 0/4502              |  |
| 65  | 6     | 0.26              | 0/3043              | 0.51        | 0/4140              |  |
| 66  | 7     | 0.24              | 0/2447              | 0.46        | 0/3310              |  |
| 67  | 8     | 0.24              | $0/1\overline{354}$ | 0.48        | $0/1\overline{819}$ |  |
| 68  | 9     | 0.26              | 0/1025              | 0.48        | 0/1379              |  |
| 69  | а     | 0.24              | 0/866               | 0.50        | $0/1\overline{174}$ |  |
| 70  | b     | $0.2\overline{4}$ | $0/121\overline{9}$ | 0.54        | $0/16\overline{51}$ |  |
| 71  | с     | 0.24              | 0/2347              | 0.47        | 0/3171              |  |
| 72  | d     | $0.2\overline{4}$ | $0/203\overline{9}$ | 0.47        | $0/27\overline{59}$ |  |
| 73  | е     | 0.24              | 0/1970              | 0.47        | 0/2658              |  |
| 74  | f     | 0.25              | $0/1\overline{273}$ | 0.44        | $0/1\overline{716}$ |  |



| Mol Chair |      | Bo   | ond lengths                   | Bond angles |          |  |
|-----------|------|------|-------------------------------|-------------|----------|--|
|           | Unam | RMSZ | # Z  > 5                      | RMSZ        | # Z  > 5 |  |
| 75        | g    | 0.24 | 0/1151                        | 0.49        | 0/1569   |  |
| 76        | h    | 0.23 | 0/918                         | 0.45        | 0/1249   |  |
| 77        | i    | 0.24 | 0/850                         | 0.53        | 0/1135   |  |
| 78        | j    | 0.24 | 0/760                         | 0.51        | 0/1023   |  |
| 79        | k    | 0.24 | 0/777                         | 0.52        | 0/1048   |  |
| 80        | 1    | 0.23 | 0/707                         | 0.49        | 0/960    |  |
| 81        | m    | 0.23 | 0/805                         | 0.58        | 0/1081   |  |
| 82        | 0    | 0.23 | 0/819                         | 0.57        | 0/1097   |  |
| 83        | р    | 0.23 | 0/1223                        | 0.50        | 0/1641   |  |
| 84        | q    | 0.24 | 0/1422                        | 0.51        | 0/1916   |  |
| 85        | r    | 0.24 | 0/1362                        | 0.53        | 0/1846   |  |
| 86        | S    | 0.24 | 0/3239                        | 0.51        | 0/4400   |  |
| 87        | t    | 0.23 | 0/358                         | 0.35        | 0/486    |  |
| 87        | u    | 0.22 | 0/259                         | 0.34        | 0/350    |  |
| 87        | V    | 0.22 | 0/259                         | 0.34        | 0/350    |  |
| 87        | W    | 0.22 | 0/246                         | 0.35        | 0/331    |  |
| 87        | Х    | 0.22 | 0/246                         | 0.34        | 0/331    |  |
| 87        | У    | 0.22 | 0/246                         | 0.34        | 0/331    |  |
| 88        | Н    | 0.24 | 0/1698                        | 0.49        | 0/2292   |  |
| 89        | Z    | 0.25 | 0/2067                        | 0.48        | 0/2793   |  |
| All       | All  | 0.23 | $5/1\overline{90930}~(0.0\%)$ | 0.57        | 0/271424 |  |

All (5) bond length outliers are listed below:

| Mol | Chain | Res  | Type | Atoms | Z      | Observed(Å) | Ideal(Å) |
|-----|-------|------|------|-------|--------|-------------|----------|
| 36  | А     | 1671 | G    | OP3-P | -10.76 | 1.48        | 1.61     |
| 33  | Ax    | 1    | U    | OP3-P | -10.61 | 1.48        | 1.61     |
| 32  | Aw    | 1    | U    | OP3-P | -10.59 | 1.48        | 1.61     |
| 34  | Ay    | 1    | U    | OP3-P | -10.59 | 1.48        | 1.61     |
| 37  | В     | 1    | С    | OP3-P | -10.55 | 1.48        | 1.61     |

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.



| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | AA    | 20260 | 10304    | 10285    | 106     | 0            |
| 2   | AB    | 1818  | 1809     | 1807     | 10      | 0            |
| 3   | AC    | 1083  | 1089     | 1088     | 8       | 0            |
| 4   | AD    | 2731  | 2805     | 2804     | 13      | 0            |
| 5   | AE    | 972   | 1000     | 1000     | 1       | 0            |
| 6   | AF    | 1725  | 1771     | 1769     | 11      | 0            |
| 7   | AG    | 2688  | 2689     | 2687     | 18      | 0            |
| 8   | AH    | 1152  | 1187     | 1183     | 7       | 0            |
| 9   | AI    | 1020  | 1061     | 1053     | 4       | 0            |
| 10  | AJ    | 839   | 889      | 887      | 10      | 0            |
| 11  | AK    | 862   | 886      | 885      | 3       | 0            |
| 12  | AL    | 1453  | 1541     | 1540     | 4       | 0            |
| 13  | AM    | 942   | 966      | 965      | 3       | 0            |
| 14  | AN    | 868   | 929      | 928      | 4       | 0            |
| 15  | AO    | 1592  | 1561     | 1557     | 3       | 0            |
| 16  | AP    | 781   | 807      | 806      | 1       | 0            |
| 17  | AQ    | 744   | 758      | 758      | 4       | 0            |
| 18  | AR    | 2409  | 2430     | 2428     | 4       | 0            |
| 19  | AS    | 1111  | 1116     | 1115     | 4       | 0            |
| 20  | AT    | 1371  | 1393     | 1393     | 4       | 0            |
| 21  | AU    | 1488  | 1501     | 1499     | 5       | 0            |
| 22  | AV    | 2969  | 2964     | 2961     | 11      | 0            |
| 23  | AW    | 789   | 804      | 802      | 4       | 0            |
| 24  | AX    | 2849  | 2845     | 2843     | 20      | 0            |
| 25  | AY    | 1246  | 1198     | 1197     | 6       | 0            |
| 26  | AZ    | 839   | 859      | 858      | 1       | 0            |
| 27  | A0    | 1787  | 1797     | 1796     | 4       | 0            |
| 28  | A1    | 2265  | 2296     | 2294     | 14      | 0            |
| 29  | A2    | 935   | 971      | 971      | 10      | 0            |
| 30  | A3    | 625   | 701      | 699      | 4       | 0            |
| 31  | A4    | 4768  | 4770     | 4766     | 12      | 0            |
| 32  | Aw    | 1434  | 725      | 725      | 0       | 0            |
| 33  | Ax    | 1482  | 751      | 752      | 0       | 0            |
| 34  | Ay    | 1483  | 752      | 753      | 0       | 0            |
| 35  | Az    | 719   | 360      | 360      | 0       | 0            |
| 36  | А     | 33070 | 16801    | 16795    | 161     | 0            |
| 37  | В     | 1524  | 779      | 779      | 4       | 0            |
| 38  | D     | 1859  | 1921     | 1920     | 7       | 0            |
| 39  | Е     | 2406  | 2416     | 2415     | 10      | 0            |
| 40  | F     | 2031  | 2066     | 2065     | 6       | 0            |
| 41  | Ι     | 1695  | 1789     | 1785     | 8       | 0            |
| 42  | J     | 1330  | 1409     | 1407     | 3       | 0            |
| 43  | K     | 1455  | 1452     | 1452     | 4       | 0            |



| Contre | nucu jion | i previous | page     |          |         |              |
|--------|-----------|------------|----------|----------|---------|--------------|
| Mol    | Chain     | Non-H      | H(model) | H(added) | Clashes | Symm-Clashes |
| 44     | L         | 890        | 942      | 941      | 6       | 0            |
| 45     | М         | 2314       | 2385     | 2384     | 10      | 0            |
| 46     | N         | 1786       | 1818     | 1817     | 5       | 0            |
| 47     | 0         | 1259       | 1295     | 1294     | 4       | 0            |
| 48     | Р         | 1173       | 1166     | 1165     | 3       | 0            |
| 49     | Q         | 1990       | 2031     | 2031     | 8       | 0            |
| 50     | R         | 1154       | 1215     | 1214     | 3       | 0            |
| 51     | S         | 1293       | 1366     | 1365     | 4       | 0            |
| 52     | Т         | 1369       | 1412     | 1410     | 1       | 0            |
| 53     | U         | 1251       | 1232     | 1232     | 6       | 0            |
| 54     | V         | 1676       | 1689     | 1687     | 12      | 0            |
| 55     | W         | 904        | 936      | 935      | 2       | 0            |
| 56     | Х         | 2044       | 2061     | 2060     | 4       | 0            |
| 57     | Y         | 1556       | 1598     | 1597     | 2       | 0            |
| 58     | Ζ         | 996        | 1045     | 1044     | 3       | 0            |
| 59     | 0         | 898        | 917      | 916      | 5       | 0            |
| 60     | 1         | 464        | 513      | 511      | 3       | 0            |
| 61     | 2         | 377        | 407      | 406      | 1       | 0            |
| 62     | 3         | 832        | 884      | 883      | 6       | 0            |
| 63     | 4         | 342        | 362      | 361      | 2       | 0            |
| 64     | 5         | 3210       | 3209     | 3206     | 7       | 0            |
| 65     | 6         | 2948       | 2844     | 2841     | 12      | 0            |
| 66     | 7         | 2390       | 2399     | 2397     | 10      | 0            |
| 67     | 8         | 1327       | 1369     | 1368     | 3       | 0            |
| 68     | 9         | 997        | 988      | 987      | 3       | 0            |
| 69     | a         | 840        | 812      | 810      | 0       | 0            |
| 70     | b         | 1196       | 1196     | 1195     | 0       | 0            |
| 71     | с         | 2299       | 2322     | 2320     | 0       | 0            |
| 72     | d         | 1985       | 1979     | 1976     | 0       | 0            |
| 73     | е         | 1931       | 1917     | 1916     | 0       | 0            |
| 74     | f         | 1252       | 1271     | 1269     | 0       | 0            |
| 75     | g         | 1113       | 1097     | 1097     | 0       | 0            |
| 76     | h         | 895        | 882      | 881      | 0       | 0            |
| 77     | i         | 828        | 859      | 857      | 0       | 0            |
| 78     | j         | 745        | 747      | 746      | 0       | 0            |
| 79     | k         | 774        | 785      | 784      | 0       | 0            |
| 80     | 1         | 688        | 675      | 674      | 0       | 0            |
| 81     | m         | 791        | 760      | 796      | 0       | 0            |
| 82     | 0         | 798        | 806      | 804      | 0       | 0            |
| 83     | р         | 1205       | 1224     | 1223     | 0       | 0            |
| 84     | q         | 1389       | 1376     | 1374     | 0       | 0            |
| 85     | r         | 1322       | 1349     | 1348     | 0       | 0            |



| 001111 |              | i previous | puye     |          |         |              |
|--------|--------------|------------|----------|----------|---------|--------------|
| Mol    | Chain        | Non-H      | H(model) | H(added) | Clashes | Symm-Clashes |
| 86     | $\mathbf{S}$ | 3155       | 3143     | 3139     | 0       | 0            |
| 87     | t            | 354        | 378      | 377      | 0       | 0            |
| 87     | u            | 257        | 284      | 283      | 0       | 0            |
| 87     | V            | 257        | 284      | 283      | 0       | 0            |
| 87     | W            | 245        | 275      | 275      | 0       | 0            |
| 87     | Х            | 245        | 275      | 275      | 0       | 0            |
| 87     | у            | 245        | 275      | 275      | 0       | 0            |
| 88     | Н            | 1661       | 1736     | 1734     | 12      | 0            |
| 89     | Z            | 2027       | 2077     | 2076     | 0       | 0            |
| 90     | AA           | 44         | 26       | 26       | 1       | 0            |
| 91     | AA           | 14         | 30       | 26       | 0       | 0            |
| 92     | А            | 30         | 66       | 57       | 0       | 0            |
| 92     | AA           | 10         | 22       | 19       | 0       | 0            |
| 93     | А            | 138        | 0        | 0        | 0       | 0            |
| 93     | A3           | 1          | 0        | 0        | 0       | 0            |
| 93     | AA           | 63         | 0        | 0        | 0       | 0            |
| 93     | AB           | 1          | 0        | 0        | 0       | 0            |
| 93     | AX           | 1          | 0        | 0        | 0       | 0            |
| 93     | D            | 2          | 0        | 0        | 0       | 0            |
| 93     | Е            | 1          | 0        | 0        | 0       | 0            |
| 93     | g            | 1          | 0        | 0        | 0       | 0            |
| 94     | 3            | 1          | 0        | 0        | 0       | 0            |
| 94     | 6            | 1          | 0        | 0        | 0       | 0            |
| 94     | А            | 29         | 0        | 0        | 0       | 0            |
| 94     | AA           | 18         | 0        | 0        | 0       | 0            |
| 94     | D            | 1          | 0        | 0        | 0       | 0            |
| 94     | М            | 1          | 0        | 0        | 0       | 0            |
| 94     | W            | 1          | 0        | 0        | 0       | 0            |
| 94     | i            | 1          | 0        | 0        | 0       | 0            |
| 94     | 0            | 1          | 0        | 0        | 0       | 0            |
| 95     | 0            | 1          | 0        | 0        | 0       | 0            |
| 95     | 4            | 1          | 0        | 0        | 0       | 0            |
| 95     | AO           | 1          | 0        | 0        | 0       | 0            |
| 96     | AP           | 4          | 0        | 0        | 0       | 0            |
| 96     | AT           | 4          | 0        | 0        | 0       | 0            |
| 96     | r            | 4          | 0        | 0        | 0       | 0            |
| 97     | AX           | 31         | 12       | 12       | 0       | 0            |
| 98     | AX           | 28         | 12       | 12       | 0       | 0            |
| 99     | А            | 6          | 14       | 12       | 0       | 0            |
| 100    | В            | 7          | 11       | 8        | 1       | 0            |
| 101    | 0            | 28         | 0        | 0        | 2       | 0            |
| 101    | 1            | 3          | 0        | 0        | 0       | 0            |



| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 101 | 2     | 34    | 0        | 0        | 0       | 0            |
| 101 | 3     | 44    | 0        | 0        | 2       | 0            |
| 101 | 4     | 11    | 0        | 0        | 0       | 0            |
| 101 | 5     | 14    | 0        | 0        | 1       | 0            |
| 101 | 6     | 100   | 0        | 0        | 4       | 0            |
| 101 | 7     | 15    | 0        | 0        | 0       | 0            |
| 101 | 8     | 15    | 0        | 0        | 2       | 0            |
| 101 | 9     | 17    | 0        | 0        | 0       | 0            |
| 101 | А     | 2955  | 0        | 0        | 87      | 0            |
| 101 | A0    | 1     | 0        | 0        | 0       | 0            |
| 101 | A1    | 35    | 0        | 0        | 0       | 0            |
| 101 | A2    | 32    | 0        | 0        | 0       | 0            |
| 101 | A3    | 50    | 0        | 0        | 1       | 0            |
| 101 | A4    | 9     | 0        | 0        | 0       | 0            |
| 101 | AA    | 2039  | 0        | 0        | 60      | 0            |
| 101 | AB    | 78    | 0        | 0        | 7       | 0            |
| 101 | AC    | 55    | 0        | 0        | 3       | 0            |
| 101 | AD    | 82    | 0        | 0        | 2       | 0            |
| 101 | AE    | 27    | 0        | 0        | 0       | 0            |
| 101 | AF    | 39    | 0        | 0        | 2       | 0            |
| 101 | AG    | 64    | 0        | 0        | 3       | 0            |
| 101 | AH    | 57    | 0        | 0        | 1       | 0            |
| 101 | AI    | 39    | 0        | 0        | 2       | 0            |
| 101 | AJ    | 25    | 0        | 0        | 2       | 0            |
| 101 | AK    | 51    | 0        | 0        | 2       | 0            |
| 101 | AL    | 42    | 0        | 0        | 2       | 0            |
| 101 | AM    | 22    | 0        | 0        | 1       | 0            |
| 101 | AN    | 39    | 0        | 0        | 0       | 0            |
| 101 | AO    | 37    | 0        | 0        | 2       | 0            |
| 101 | AP    | 31    | 0        | 0        | 1       | 0            |
| 101 | AQ    | 77    | 0        | 0        | 1       | 0            |
| 101 | AR    | 11    | 0        | 0        | 1       | 0            |
| 101 | AS    | 25    | 0        | 0        | 0       | 0            |
| 101 | AT    | 44    | 0        | 0        | 0       | 0            |
| 101 | AU    | 8     | 0        | 0        | 2       | 0            |
| 101 | AW    | 16    | 0        | 0        |         | 0            |
| 101 | AX    | 56    | 0        | 0        | 4       | 0            |
| 101 | AY    | 18    | 0        | 0        |         | 0            |
| 101 | AZ    | 30    | 0        | 0        |         | 0            |
| 101 | Aw    | 6     | 0        | 0        | 0       | 0            |
| 101 | Ax    | 1     | 0        | 0        |         | 0            |
| 101 | Ay    | 3     | 0        | 0        | 0       | 0            |



| Mol | Chain | Non-H               | H(model)            | H(added)            | Clashes | Symm-Clashes |
|-----|-------|---------------------|---------------------|---------------------|---------|--------------|
| 101 | Az    | 13                  | 0                   | 0                   | 0       | 0            |
| 101 | В     | 66                  | 0                   | 0                   | 0       | 0            |
| 101 | D     | 68                  | 0                   | 0                   | 0       | 0            |
| 101 | Е     | 66                  | 0                   | 0                   | 2       | 0            |
| 101 | F     | 79                  | 0                   | 0                   | 3       | 0            |
| 101 | Н     | 7                   | 0                   | 0                   | 1       | 0            |
| 101 | Ι     | 27                  | 0                   | 0                   | 3       | 0            |
| 101 | J     | 1                   | 0                   | 0                   | 0       | 0            |
| 101 | Κ     | 57                  | 0                   | 0                   | 2       | 0            |
| 101 | L     | 31                  | 0                   | 0                   | 4       | 0            |
| 101 | М     | 51                  | 0                   | 0                   | 2       | 0            |
| 101 | Ν     | 58                  | 0                   | 0                   | 1       | 0            |
| 101 | 0     | 33                  | 0                   | 0                   | 0       | 0            |
| 101 | Р     | 81                  | 0                   | 0                   | 3       | 0            |
| 101 | Q     | 29                  | 0                   | 0                   | 1       | 0            |
| 101 | R     | 63                  | 0                   | 0                   | 2       | 0            |
| 101 | S     | 49                  | 0                   | 0                   | 1       | 0            |
| 101 | Т     | 45                  | 0                   | 0                   | 1       | 0            |
| 101 | U     | 24                  | 0                   | 0                   | 0       | 0            |
| 101 | V     | 5                   | 0                   | 0                   | 0       | 0            |
| 101 | W     | 55                  | 0                   | 0                   | 1       | 0            |
| 101 | Х     | 11                  | 0                   | 0                   | 0       | 0            |
| 101 | Y     | 25                  | 0                   | 0                   | 0       | 0            |
| 101 | Ζ     | 32                  | 0                   | 0                   | 0       | 0            |
| 101 | а     | 11                  | 0                   | 0                   | 0       | 0            |
| 101 | b     | 35                  | 0                   | 0                   | 0       | 0            |
| 101 | с     | 18                  | 0                   | 0                   | 0       | 0            |
| 101 | d     | 9                   | 0                   | 0                   | 0       | 0            |
| 101 | е     | 13                  | 0                   | 0                   | 0       | 0            |
| 101 | f     | 19                  | 0                   | 0                   | 0       | 0            |
| 101 | g     | 13                  | 0                   | 0                   | 0       | 0            |
| 101 | i     | 46                  | 0                   | 0                   | 0       | 0            |
| 101 | j     | 22                  | 0                   | 0                   | 0       | 0            |
| 101 | k     | 5                   | 0                   | 0                   | 0       | 0            |
| 101 | 1     | 5                   | 0                   | 0                   | 0       | 0            |
| 101 | m     | 8                   | 0                   | 0                   | 0       | 0            |
| 101 | 0     | 34                  | 0                   | 0                   | 0       | 0            |
| 101 | р     | 8                   | 0                   | 0                   | 0       | 0            |
| 101 | r     | 49                  | 0                   | 0                   | 0       | 0            |
| 101 | s     | 51                  | 0                   | 0                   | 0       | 0            |
| All | All   | $1895\overline{66}$ | $1539\overline{78}$ | $1538\overline{43}$ | 573     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including



hydrogen atoms). The all-atom clashscore for this structure is 2.

All (573) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom 1            | Atom 2             | Interatomic  | Clash       |
|-------------------|--------------------|--------------|-------------|
| Atom-1            | Atom-2             | distance (Å) | overlap (Å) |
| 1:AA:1046:A:O2'   | 1:AA:1048:C:OP2    | 1.97         | 0.82        |
| 1:AA:1327:G:O6    | 101:AA:1801:HOH:O  | 1.99         | 0.80        |
| 36:A:3063:G:O2'   | 36:A:3066:C:OP2    | 1.98         | 0.80        |
| 36:A:3042:U:OP2   | 101:A:3501:HOH:O   | 1.99         | 0.78        |
| 13:AM:85:LYS:NZ   | 101:AM:201:HOH:O   | 2.18         | 0.77        |
| 36:A:2103:A:HO2'  | 58:Z:35:LYS:N      | 1.83         | 0.77        |
| 45:M:43:ARG:NH2   | 101:M:402:HOH:O    | 2.18         | 0.77        |
| 36:A:1777:A:N6    | 36:A:1780:U:OP2    | 2.18         | 0.76        |
| 36:A:3147:G:OP1   | 101:A:3502:HOH:O   | 2.03         | 0.76        |
| 36:A:3110:C:O2'   | 39:E:266:ARG:NH1   | 2.20         | 0.75        |
| 52:T:78:LYS:NZ    | 101:T:301:HOH:O    | 2.20         | 0.75        |
| 36:A:2708:C:O2'   | 59:0:96:ASN:OD1    | 2.04         | 0.74        |
| 50:R:20:ARG:NH2   | 101:R:202:HOH:O    | 2.19         | 0.74        |
| 11:AK:128:TRP:OXT | 101:AK:201:HOH:O   | 2.05         | 0.74        |
| 49:Q:145:LEU:O    | 101:Q:301:HOH:O    | 2.05         | 0.74        |
| 6:AF:159:VAL:HG23 | 6:AF:172:VAL:HG21  | 1.70         | 0.74        |
| 36:A:2198:A:N1    | 101:A:3572:HOH:O   | 2.21         | 0.73        |
| 40:F:126:LYS:O    | 101:F:6501:HOH:O   | 2.05         | 0.73        |
| 1:AA:979:C:N3     | 101:AA:1850:HOH:O  | 2.21         | 0.73        |
| 62:3:170:ASN:O    | 101:3:301:HOH:O    | 2.06         | 0.73        |
| 36:A:2539:A:OP1   | 101:A:3507:HOH:O   | 2.07         | 0.73        |
| 1:AA:1151:C:N3    | 101:AA:1856:HOH:O  | 2.22         | 0.72        |
| 48:P:138:GLU:OE2  | 101:P:201:HOH:O    | 2.07         | 0.72        |
| 36:A:1703:C:OP2   | 101:A:3509:HOH:O   | 2.07         | 0.72        |
| 1:AA:1165:C:OP2   | 101:AA:1804:HOH:O  | 2.06         | 0.72        |
| 36:A:1970:G:O6    | 101:A:3503:HOH:O   | 2.06         | 0.72        |
| 36:A:2090:A:N7    | 101:A:3584:HOH:O   | 2.22         | 0.72        |
| 1:AA:1118:A:O2'   | 4:AD:351:ARG:NH2   | 2.22         | 0.72        |
| 36:A:2008:G:OP1   | 101:A:3506:HOH:O   | 2.07         | 0.72        |
| 1:AA:1139:A:OP2   | 101:AA:1802:HOH:O  | 2.05         | 0.72        |
| 36:A:2098:G:O2'   | 36:A:2099:U:OP2    | 2.06         | 0.72        |
| 36:A:2132:A:OP2   | 101:A:3508:HOH:O   | 2.07         | 0.72        |
| 39:E:337:VAL:O    | 101:E:501:HOH:O    | 2.07         | 0.72        |
| 36:A:2865:C:OP1   | 101:A:3504:HOH:O   | 2.06         | 0.72        |
| 1:AA:916:C:OP2    | 101:AA:1805:HOH:O  | 2.08         | 0.71        |
| 4:AD:127:ASN:OD1  | 101:AD:501:HOH:O   | 2.08         | 0.71        |
| 8:AH:94:PHE:CE1   | 28:A1:114:LEU:HD22 | 2.25         | 0.71        |
| 36:A:3090:G:N7    | 101:A:3582:HOH:O   | 2.22         | 0.71        |



|                   |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 36:A:2725:A:OP2   | 101:A:3510:HOH:O  | 2.08                    | 0.71        |
| 7:AG:299:ASP:OD2  | 7:AG:301:GLN:NE2  | 2.23                    | 0.71        |
| 1:AA:1057:G:OP2   | 101:AA:1803:HOH:O | 2.06                    | 0.71        |
| 3:AC:67:GLY:O     | 101:AC:201:HOH:O  | 2.07                    | 0.71        |
| 24:AX:86:ARG:O    | 101:AX:601:HOH:O  | 2.08                    | 0.71        |
| 36:A:2479:C:OP1   | 101:A:3505:HOH:O  | 2.06                    | 0.71        |
| 1:AA:1169:G:N7    | 101:AA:1858:HOH:O | 2.23                    | 0.71        |
| 12:AL:210:CYS:O   | 101:AL:302:HOH:O  | 2.07                    | 0.71        |
| 12:AL:172:ASN:O   | 101:AL:303:HOH:O  | 2.08                    | 0.71        |
| 36:A:1856:A:OP2   | 36:A:2986:C:O2'   | 2.09                    | 0.70        |
| 1:AA:976:A:N7     | 101:AA:1868:HOH:O | 2.24                    | 0.70        |
| 1:AA:1039:A:OP1   | 101:AA:1807:HOH:O | 2.09                    | 0.70        |
| 36:A:1863:A:OP2   | 101:A:3514:HOH:O  | 2.08                    | 0.70        |
| 36:A:2453:G:OP2   | 101:A:3517:HOH:O  | 2.10                    | 0.70        |
| 11:AK:122:GLY:O   | 101:AK:202:HOH:O  | 2.09                    | 0.70        |
| 36:A:2240:C:OP2   | 101:A:3513:HOH:O  | 2.08                    | 0.70        |
| 36:A:3015:U:OP1   | 101:A:3515:HOH:O  | 2.09                    | 0.70        |
| 36:A:3176:A:OP2   | 101:A:3511:HOH:O  | 2.08                    | 0.70        |
| 1:AA:1289:G:O2'   | 1:AA:1297:G:OP2   | 2.09                    | 0.70        |
| 1:AA:1384:A:N7    | 101:AA:1873:HOH:O | 2.25                    | 0.70        |
| 48:P:126:GLU:OE2  | 101:P:203:HOH:O   | 2.10                    | 0.70        |
| 36:A:2045:A:N7    | 101:A:3602:HOH:O  | 2.25                    | 0.69        |
| 59:0:102:LYS:O    | 101:0:301:HOH:O   | 2.10                    | 0.69        |
| 36:A:1782:G:OP2   | 101:A:3512:HOH:O  | 2.08                    | 0.69        |
| 65:6:170:ARG:NH1  | 101:6:8105:HOH:O  | 2.22                    | 0.69        |
| 1:AA:1015:A:N7    | 101:AA:1872:HOH:O | 2.25                    | 0.69        |
| 36:A:2003:A:N1    | 101:A:3598:HOH:O  | 2.24                    | 0.69        |
| 56:X:44:ARG:NH2   | 88:H:84:GLU:OE1   | 2.26                    | 0.69        |
| 18:AR:190:ASP:O   | 101:AR:401:HOH:O  | 2.10                    | 0.69        |
| 1:AA:1027:A:N1    | 101:AA:1874:HOH:O | 2.25                    | 0.69        |
| 36:A:2404:U:OP1   | 101:A:3519:HOH:O  | 2.10                    | 0.69        |
| 36:A:2740:A:N3    | 36:A:2921:A:O2'   | 2.24                    | 0.69        |
| 1:AA:1401:G:OP2   | 101:AA:1814:HOH:O | 2.11                    | 0.69        |
| 36:A:1969:G:N7    | 101:A:3614:HOH:O  | 2.26                    | 0.69        |
| 8:AH:135:GLU:OE1  | 101:AH:301:HOH:O  | 2.12                    | 0.68        |
| 46:N:212:PRO:O    | 101:N:301:HOH:O   | 2.10                    | 0.68        |
| 1:AA:970:A:N3     | 101:AA:1871:HOH:O | 2.25                    | 0.68        |
| 36:A:1730:U:OP2   | 101:A:3522:HOH:O  | 2.11                    | 0.68        |
| 1:AA:1148:A:OP2   | 101:AA:1815:HOH:O | 2.11                    | 0.68        |
| 25:AY:318:GLU:OE1 | 101:AY:401:HOH:O  | 2.11                    | 0.68        |
| 58:Z:78:ARG:O     | 58:Z:83:LYS:NZ    | 2.26                    | 0.68        |



| A + a 1           | A t ama 0         | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 65:6:154:TYR:O    | 101:6:8103:HOH:O  | 2.11                    | 0.68        |
| 1:AA:1287:A:OP2   | 4:AD:260:LYS:NZ   | 2.27                    | 0.68        |
| 24:AX:167:ASP:OD1 | 101:AX:602:HOH:O  | 2.11                    | 0.68        |
| 64:5:295:ASP:OD2  | 101:5:501:HOH:O   | 2.12                    | 0.68        |
| 67:8:126:GLN:OE1  | 101:8:301:HOH:O   | 2.10                    | 0.68        |
| 2:AB:164:GLU:OE2  | 101:AB:401:HOH:O  | 2.10                    | 0.68        |
| 36:A:3014:G:OP1   | 101:A:3525:HOH:O  | 2.12                    | 0.68        |
| 36:A:2111:C:OP2   | 101:A:3521:HOH:O  | 2.11                    | 0.67        |
| 1:AA:1486:B8T:OP1 | 101:AA:1817:HOH:O | 2.11                    | 0.67        |
| 36:A:2526:C:OP1   | 101:A:3518:HOH:O  | 2.10                    | 0.67        |
| 15:AO:125:GLN:O   | 101:AO:401:HOH:O  | 2.12                    | 0.67        |
| 24:AX:393:ARG:O   | 101:AX:603:HOH:O  | 2.12                    | 0.67        |
| 36:A:1830:G:OP2   | 101:A:3524:HOH:O  | 2.12                    | 0.67        |
| 36:A:2562:U:O2'   | 38:D:284:ARG:O    | 2.07                    | 0.67        |
| 36:A:2719:G:O6    | 101:A:3520:HOH:O  | 2.10                    | 0.67        |
| 54:V:55:TYR:HB2   | 54:V:133:ILE:HD11 | 1.77                    | 0.67        |
| 57:Y:134:LYS:NZ   | 68:9:76:TYR:OH    | 2.27                    | 0.67        |
| 36:A:1739:A:OP2   | 101:A:3533:HOH:O  | 2.13                    | 0.67        |
| 39:E:69:ASP:OD1   | 39:E:154:ARG:NH1  | 2.28                    | 0.67        |
| 1:AA:1554:G:O6    | 101:AA:1821:HOH:O | 2.13                    | 0.67        |
| 36:A:1702:A:OP2   | 101:A:3526:HOH:O  | 2.12                    | 0.67        |
| 36:A:1815:A:N1    | 101:A:3635:HOH:O  | 2.28                    | 0.67        |
| 45:M:22:VAL:O     | 101:M:401:HOH:O   | 2.11                    | 0.67        |
| 45:M:91:ARG:NH1   | 45:M:209:GLU:OE2  | 2.28                    | 0.67        |
| 1:AA:941:G:OP2    | 101:AA:1822:HOH:O | 2.13                    | 0.66        |
| 1:AA:1063:A:OP2   | 101:AA:1818:HOH:O | 2.12                    | 0.66        |
| 1:AA:1485:G:OP2   | 101:AA:1820:HOH:O | 2.13                    | 0.66        |
| 36:A:2944:C:OP2   | 101:A:3534:HOH:O  | 2.13                    | 0.66        |
| 36:A:2566:C:OP1   | 101:A:3528:HOH:O  | 2.12                    | 0.66        |
| 65:6:275:GLN:O    | 101:6:8102:HOH:O  | 2.11                    | 0.66        |
| 43:K:123:GLU:OE2  | 101:K:201:HOH:O   | 2.12                    | 0.66        |
| 1:AA:992:U:O2'    | 1:AA:994:A:OP2    | 2.09                    | 0.66        |
| 36:A:2196:A:O2'   | 36:A:2213:A:N1    | 2.28                    | 0.66        |
| 55:W:139:GLU:OE1  | 101:W:301:HOH:O   | 2.12                    | 0.66        |
| 1:AA:1112:A:N7    | 101:AA:1882:HOH:O | 2.27                    | 0.66        |
| 36:A:2704:A:N7    | 101:A:3622:HOH:O  | 2.27                    | 0.66        |
| 88:H:178:ASN:OD1  | 88:H:179:ASN:N    | 2.28                    | 0.66        |
| 1:AA:1068:A:OP2   | 101:AA:1819:HOH:O | 2.13                    | 0.66        |
| 2:AB:166:ALA:O    | 101:AB:403:HOH:O  | 2.14                    | 0.66        |
| 10:AJ:117:ASP:OD1 | 101:AJ:201:HOH:O  | 2.13                    | 0.66        |
| 24:AX:272:THR:OG1 | 24:AX:282:ILE:O   | 2.14                    | 0.66        |



|                   |                   | Interatomic             | Clash       |
|-------------------|-------------------|-------------------------|-------------|
| Atom-1            | Atom-2            | distance $(\text{\AA})$ | overlap (Å) |
| 1:AA:1015:A:OP2   | 101:AA:1827:HOH:O | 2.14                    | 0.66        |
| 17:AQ:55:GLU:OE1  | 101:AQ:101:HOH:O  | 2.14                    | 0.66        |
| 36:A:1778:U:OP2   | 101:A:3531:HOH:O  | 2.13                    | 0.66        |
| 36:A:1852:C:OP1   | 101:A:3530:HOH:O  | 2.12                    | 0.66        |
| 36:A:2388:A:OP2   | 101:A:3529:HOH:O  | 2.12                    | 0.66        |
| 1:AA:1114:U:O4    | 101:AA:1810:HOH:O | 2.10                    | 0.65        |
| 36:A:1829:A:OP2   | 101:A:3535:HOH:O  | 2.14                    | 0.65        |
| 67:8:181:PRO:O    | 101:8:302:HOH:O   | 2.13                    | 0.65        |
| 36:A:2661:U:OP2   | 101:A:3539:HOH:O  | 2.15                    | 0.65        |
| 44:L:76:ALA:O     | 101:L:202:HOH:O   | 2.15                    | 0.65        |
| 36:A:2767:A:O2'   | 36:A:2769:A:N7    | 2.29                    | 0.65        |
| 2:AB:148:ASN:OD1  | 101:AB:402:HOH:O  | 2.13                    | 0.65        |
| 1:AA:1221:A:N3    | 101:AA:1895:HOH:O | 2.29                    | 0.65        |
| 41:I:151:ASN:O    | 101:I:301:HOH:O   | 2.14                    | 0.65        |
| 62:3:144:LEU:O    | 101:3:302:HOH:O   | 2.14                    | 0.65        |
| 1:AA:662:U:O4     | 101:AA:1811:HOH:O | 2.10                    | 0.65        |
| 31:A4:200:ASP:OD2 | 31:A4:243:ASN:N   | 2.30                    | 0.65        |
| 36:A:2142:A:OP1   | 101:A:3537:HOH:O  | 2.14                    | 0.65        |
| 22:AV:270:PRO:O   | 22:AV:346:LYS:NZ  | 2.30                    | 0.64        |
| 28:A1:152:ASP:OD2 | 28:A1:174:ARG:NH1 | 2.29                    | 0.64        |
| 1:AA:693:A:N7     | 101:AA:1898:HOH:O | 2.30                    | 0.64        |
| 36:A:1882:A:N7    | 101:A:3643:HOH:O  | 2.29                    | 0.64        |
| 1:AA:667:U:OP1    | 101:AA:1826:HOH:O | 2.14                    | 0.64        |
| 4:AD:235:GLU:OE2  | 101:AD:502:HOH:O  | 2.14                    | 0.64        |
| 36:A:2289:G:N7    | 101:A:3651:HOH:O  | 2.30                    | 0.64        |
| 36:A:2030:U:H3    | 36:A:2095:U:HO2'  | 1.45                    | 0.64        |
| 1:AA:1287:A:OP1   | 101:AA:1828:HOH:O | 2.15                    | 0.64        |
| 36:A:3013:G:HO2'  | 63:4:66:PHE:N     | 1.96                    | 0.64        |
| 3:AC:113:ARG:NH1  | 101:AC:202:HOH:O  | 2.28                    | 0.64        |
| 39:E:129:VAL:CG1  | 39:E:145:LEU:HD11 | 2.28                    | 0.64        |
| 1:AA:1294:A:OP1   | 2:AB:201:ASN:ND2  | 2.30                    | 0.63        |
| 36:A:1978:A:OP1   | 101:A:3541:HOH:O  | 2.15                    | 0.63        |
| 44:L:130:ARG:NH1  | 44:L:133:GLU:OE2  | 2.31                    | 0.63        |
| 36:A:1990:G:OP1   | 38:D:269:ARG:NH2  | 2.30                    | 0.63        |
| 1:AA:905:A:O2'    | 1:AA:907:A:OP1    | 2.17                    | 0.63        |
| 1:AA:895:C:O2     | 101:AA:1823:HOH:O | 2.13                    | 0.63        |
| 21:AU:38:LYS:NZ   | 101:AU:301:HOH:O  | 2.31                    | 0.63        |
| 1:AA:1107:U:O4    | 30:A3:128:LYS:NZ  | 2.30                    | 0.63        |
| 49:Q:77:SER:OG    | 49:Q:79:GLU:OE1   | 2.12                    | 0.63        |
| 20:AT:132:ARG:NH1 | 20:AT:136:LEU:O   | 2.32                    | 0.62        |
| 68:9:16:ASP:OD1   | 68:9:25:ARG:NH2   | 2.33                    | 0.62        |



|                   |                    | Interatomic  | Clash       |
|-------------------|--------------------|--------------|-------------|
| Atom-1            | Atom-2             | distance (Å) | overlap (Å) |
| 1:AA:899:G:O2'    | 1:AA:907:A:N1      | 2.23         | 0.62        |
| 3:AC:152:ARG:NH1  | 31:A4:87:TYR:OH    | 2.33         | 0.62        |
| 7:AG:275:LYS:O    | 101:AG:402:HOH:O   | 2.16         | 0.62        |
| 29:A2:33:VAL:HG21 | 29:A2:104:LEU:HD23 | 1.82         | 0.61        |
| 36:A:2014:A:O2'   | 101:A:3546:HOH:O   | 2.16         | 0.61        |
| 36:A:2652:G:O6    | 101:A:3536:HOH:O   | 2.14         | 0.61        |
| 40:F:212:TRP:O    | 40:F:258:THR:OG1   | 2.14         | 0.61        |
| 66:7:175:ILE:O    | 66:7:319:ARG:NH2   | 2.33         | 0.61        |
| 1:AA:1154:A:OP2   | 30:A3:155:ARG:NH2  | 2.34         | 0.61        |
| 36:A:2447:A:OP2   | 101:A:3544:HOH:O   | 2.15         | 0.61        |
| 29:A2:64:ASP:OD1  | 29:A2:65:ALA:N     | 2.34         | 0.61        |
| 36:A:2702:G:OP2   | 101:A:3548:HOH:O   | 2.16         | 0.60        |
| 88:H:75:ARG:O     | 101:H:301:HOH:O    | 2.17         | 0.60        |
| 36:A:2005:C:N4    | 101:A:3666:HOH:O   | 2.32         | 0.60        |
| 36:A:3060:C:OP2   | 101:A:3549:HOH:O   | 2.17         | 0.60        |
| 39:E:129:VAL:HG11 | 39:E:145:LEU:HD11  | 1.84         | 0.60        |
| 36:A:2045:A:N3    | 101:A:3664:HOH:O   | 2.32         | 0.60        |
| 36:A:2545:U:O2'   | 101:A:3532:HOH:O   | 2.13         | 0.60        |
| 38:D:281:TRP:O    | 38:D:285:LYS:NZ    | 2.32         | 0.60        |
| 1:AA:1549:G:O6    | 101:AA:1831:HOH:O  | 2.16         | 0.60        |
| 36:A:2239:A:N7    | 101:A:3667:HOH:O   | 2.32         | 0.59        |
| 36:A:1787:G:N2    | 36:A:1790:A:OP2    | 2.34         | 0.59        |
| 36:A:2048:U:OP2   | 101:A:3550:HOH:O   | 2.17         | 0.59        |
| 36:A:2013:U:OP2   | 101:A:3543:HOH:O   | 2.15         | 0.59        |
| 1:AA:1574:G:OP1   | 101:AA:1830:HOH:O  | 2.16         | 0.59        |
| 65:6:367:ASP:OD1  | 65:6:370:ARG:NH1   | 2.35         | 0.59        |
| 7:AG:226:GLU:O    | 7:AG:230:THR:HG23  | 2.02         | 0.59        |
| 7:AG:295:VAL:HG22 | 7:AG:330:CYS:SG    | 2.42         | 0.58        |
| 7:AG:356:VAL:HG23 | 7:AG:361:VAL:HG23  | 1.85         | 0.58        |
| 53:U:11:ARG:NH2   | 54:V:211:LYS:O     | 2.36         | 0.58        |
| 1:AA:1222:A:N7    | 101:AA:1913:HOH:O  | 2.32         | 0.58        |
| 66:7:62:THR:HG23  | 66:7:62:THR:O      | 2.03         | 0.58        |
| 44:L:95:ARG:NH2   | 101:L:204:HOH:O    | 2.30         | 0.58        |
| 1:AA:1199:G:N1    | 1:AA:1422:G:OP2    | 2.37         | 0.58        |
| 59:0:153:THR:HG22 | 59:0:153:THR:O     | 2.04         | 0.57        |
| 50:R:58:TYR:OH    | 101:R:201:HOH:O    | 2.11         | 0.57        |
| 29:A2:48:GLU:OE1  | 29:A2:48:GLU:N     | 2.35         | 0.57        |
| 22:AV:226:TYR:HE1 | 22:AV:282:VAL:HG21 | 1.69         | 0.57        |
| 53:U:9:LEU:O      | 53:U:11:ARG:NH1    | 2.38         | 0.57        |
| 1:AA:700:A:N1     | 1:AA:709:G:O2'     | 2.33         | 0.57        |
| 36:A:1741:A:OP1   | 101:A:3551:HOH:O   | 2.17         | 0.57        |



|                   |                    | Interatomic             | Clash       |
|-------------------|--------------------|-------------------------|-------------|
| Atom-1            | Atom-2             | distance $(\text{\AA})$ | overlap (Å) |
| 36:A:2364:C:OP2   | 53:U:78:LYS:NZ     | 2.36                    | 0.57        |
| 88:H:53:THR:N     | 88:H:86:THR:HG1    | 2.03                    | 0.57        |
| 1:AA:1162:A:N7    | 101:AA:1915:HOH:O  | 2.32                    | 0.57        |
| 22:AV:226:TYR:CE1 | 22:AV:282:VAL:HG21 | 2.40                    | 0.56        |
| 36:A:1737:A:H61   | 36:A:1760:G:H1'    | 1.70                    | 0.56        |
| 1:AA:970:A:O2'    | 101:AA:1808:HOH:O  | 2.09                    | 0.56        |
| 36:A:2499:U:OP2   | 36:A:2504:A:N6     | 2.33                    | 0.56        |
| 47:O:140:SER:O    | 47:O:146:ASN:ND2   | 2.39                    | 0.56        |
| 1:AA:841:A:OP1    | 13:AM:39:ASN:ND2   | 2.38                    | 0.56        |
| 1:AA:973:C:OP2    | 101:AA:1834:HOH:O  | 2.17                    | 0.56        |
| 1:AA:1232:A:OP2   | 101:AA:1836:HOH:O  | 2.18                    | 0.56        |
| 36:A:2196:A:N3    | 101:A:3675:HOH:O   | 2.32                    | 0.56        |
| 36:A:2860:G:O6    | 101:A:3540:HOH:O   | 2.15                    | 0.56        |
| 47:O:62:TYR:OH    | 49:Q:272:GLU:OE2   | 2.23                    | 0.56        |
| 51:S:112:ASP:OD2  | 101:S:301:HOH:O    | 2.18                    | 0.56        |
| 1:AA:1412:G:OP1   | 24:AX:279:LYS:NZ   | 2.38                    | 0.56        |
| 31:A4:470:GLN:NE2 | 31:A4:472:ASP:OD2  | 2.38                    | 0.56        |
| 36:A:2355:A:HO2'  | 36:A:2673:G:HO2'   | 1.51                    | 0.56        |
| 36:A:2697:G:OP2   | 101:A:3553:HOH:O   | 2.18                    | 0.56        |
| 40:F:70:ARG:NH2   | 40:F:194:GLU:OE1   | 2.39                    | 0.56        |
| 31:A4:556:LYS:NZ  | 31:A4:560:GLU:OE2  | 2.39                    | 0.56        |
| 36:A:1958:G:O2'   | 101:A:3538:HOH:O   | 2.14                    | 0.56        |
| 36:A:2108:G:O6    | 46:N:67:LYS:NZ     | 2.38                    | 0.55        |
| 36:A:3219:G:O2'   | 36:A:3221:A:OP2    | 2.20                    | 0.55        |
| 22:AV:92:LEU:HD21 | 22:AV:137:ILE:HD11 | 1.89                    | 0.54        |
| 36:A:1805:A:OP2   | 54:V:94:HIS:NE2    | 2.33                    | 0.54        |
| 1:AA:689:U:OP1    | 101:AA:1838:HOH:O  | 2.18                    | 0.54        |
| 1:AA:1021:U:OP2   | 29:A2:9:ARG:NH2    | 2.40                    | 0.54        |
| 1:AA:1496:U:OP1   | 10:AJ:82:ARG:NH2   | 2.41                    | 0.54        |
| 2:AB:211:ASP:OD2  | 101:AB:405:HOH:O   | 2.18                    | 0.54        |
| 36:A:3152:C:OP1   | 49:Q:141:SER:OG    | 2.15                    | 0.54        |
| 1:AA:930:G:O6     | 10:AJ:47:ARG:NH2   | 2.40                    | 0.54        |
| 1:AA:1263:G:N2    | 101:AA:1958:HOH:O  | 2.38                    | 0.54        |
| 36:A:1953:A:O2'   | 36:A:2463:A:OP1    | 2.25                    | 0.54        |
| 36:A:1800:G:N1    | 36:A:1803:A:OP2    | 2.40                    | 0.54        |
| 1:AA:1037:A:OP2   | 101:AA:1839:HOH:O  | 2.18                    | 0.54        |
| 36:A:2059:C:N4    | 101:A:3783:HOH:O   | 2.41                    | 0.54        |
| 36:A:3006:U:OP2   | 101:A:3557:HOH:O   | 2.19                    | 0.54        |
| 1:AA:843:G:N2     | 1:AA:846:A:OP2     | 2.36                    | 0.54        |
| 1:AA:1595:G:OP2   | 101:AA:1833:HOH:O  | 2.17                    | 0.54        |
| 20:AT:91:GLU:OE1  | 21:AU:120:ARG:NH2  | 2.41                    | 0.54        |



| A + 1             |                    | Interatomic             | Clash       |
|-------------------|--------------------|-------------------------|-------------|
| Atom-1            | Atom-2             | distance $(\text{\AA})$ | overlap (Å) |
| 36:A:1720:C:OP2   | 101:A:3555:HOH:O   | 2.18                    | 0.54        |
| 36:A:2512:A:O2'   | 36:A:2541:C:OP1    | 2.20                    | 0.54        |
| 29:A2:99:LEU:HD11 | 29:A2:103:LYS:HB2  | 1.89                    | 0.54        |
| 14:AN:8:VAL:O     | 14:AN:11:ARG:NH1   | 2.40                    | 0.54        |
| 19:AS:83:ARG:NH1  | 19:AS:93:LYS:O     | 2.41                    | 0.53        |
| 1:AA:760:A:OP1    | 101:AA:1841:HOH:O  | 2.19                    | 0.53        |
| 1:AA:1134:G:OP2   | 10:AJ:38:ARG:NH2   | 2.40                    | 0.53        |
| 1:AA:1142:A:OP1   | 101:AA:1842:HOH:O  | 2.19                    | 0.53        |
| 36:A:1742:G:O2'   | 36:A:1754:G:O6     | 2.21                    | 0.53        |
| 36:A:2458:A:O2'   | 39:E:215:PHE:O     | 2.23                    | 0.53        |
| 65:6:215:THR:OG1  | 65:6:275:GLN:OE1   | 2.23                    | 0.53        |
| 7:AG:337:ARG:NH2  | 101:AG:408:HOH:O   | 2.42                    | 0.53        |
| 1:AA:1525:C:O5'   | 22:AV:105:ARG:NH2  | 2.42                    | 0.53        |
| 6:AF:116:GLU:OE1  | 101:AF:301:HOH:O   | 2.19                    | 0.53        |
| 19:AS:7:GLU:N     | 19:AS:7:GLU:OE1    | 2.40                    | 0.53        |
| 1:AA:1576:G:OP2   | 101:AA:1840:HOH:O  | 2.18                    | 0.52        |
| 36:A:2531:U:O4    | 38:D:246:ARG:NH2   | 2.42                    | 0.52        |
| 1:AA:1294:A:N1    | 101:AA:1930:HOH:O  | 2.34                    | 0.52        |
| 4:AD:245:VAL:HG22 | 4:AD:271:ALA:HB1   | 1.90                    | 0.52        |
| 9:AI:178:ASN:ND2  | 101:AI:205:HOH:O   | 2.41                    | 0.52        |
| 15:AO:217:ARG:NH1 | 15:AO:227:GLU:OE2  | 2.42                    | 0.52        |
| 24:AX:151:LEU:CD2 | 24:AX:247:LEU:HD22 | 2.39                    | 0.52        |
| 36:A:1747:G:OP2   | 36:A:1749:C:N4     | 2.41                    | 0.52        |
| 2:AB:241:ASP:CG   | 101:AB:404:HOH:O   | 2.47                    | 0.52        |
| 48:P:162:GLN:NE2  | 101:P:210:HOH:O    | 2.36                    | 0.52        |
| 36:A:1749:C:OP2   | 36:A:2899:C:O2'    | 2.27                    | 0.52        |
| 47:O:144:LEU:HD12 | 66:7:174:VAL:HG11  | 1.92                    | 0.52        |
| 2:AB:241:ASP:OD1  | 101:AB:404:HOH:O   | 2.18                    | 0.51        |
| 36:A:1745:U:O4    | 62:3:108:LYS:NZ    | 2.41                    | 0.51        |
| 38:D:257:ILE:O    | 38:D:262:ARG:NH1   | 2.40                    | 0.51        |
| 1:AA:894:C:N4     | 10:AJ:117:ASP:OD2  | 2.43                    | 0.51        |
| 36:A:2989:G:O2'   | 101:A:3523:HOH:O   | 2.11                    | 0.51        |
| 65:6:188:TYR:OH   | 101:6:8101:HOH:O   | 2.07                    | 0.51        |
| 1:AA:1022:A:OP1   | 101:AA:1845:HOH:O  | 2.19                    | 0.51        |
| 8:AH:125:HIS:CE1  | 8:AH:126:ILE:HG23  | 2.45                    | 0.51        |
| 28:A1:46:ARG:HB2  | 28:A1:47:PRO:HD3   | 1.92                    | 0.51        |
| 1:AA:702:C:OP1    | 1:AA:848:U:O2'     | 2.27                    | 0.51        |
| 1:AA:1326:A:OP1   | 101:AA:1837:HOH:O  | 2.18                    | 0.51        |
| 36:A:2237:A:OP2   | 101:A:3561:HOH:O   | 2.19                    | 0.51        |
| 40:F:98:GLN:NE2   | 101:F:6509:HOH:O   | 2.44                    | 0.51        |
| 24:AX:81:HIS:CD2  | 24:AX:190:ASN:HB3  | 2.46                    | 0.51        |



|                   |                    | Interatomic             | Clash       |
|-------------------|--------------------|-------------------------|-------------|
| Atom-1            | Atom-2             | distance $(\text{\AA})$ | overlap (Å) |
| 28:A1:250:GLU:OE2 | 28:A1:301:ASN:ND2  | 2.44                    | 0.51        |
| 10:AJ:78:ARG:NH2  | 10:AJ:117:ASP:OD2  | 2.43                    | 0.50        |
| 14:AN:67:ARG:NH1  | 14:AN:80:GLU:OE2   | 2.44                    | 0.50        |
| 24:AX:183:GLU:N   | 24:AX:183:GLU:OE1  | 2.41                    | 0.50        |
| 36:A:2221:C:OP2   | 101:A:3556:HOH:O   | 2.18                    | 0.50        |
| 1:AA:1485:G:O6    | 101:AA:1843:HOH:O  | 2.19                    | 0.50        |
| 41:I:128:ASN:OD1  | 101:I:302:HOH:O    | 2.19                    | 0.50        |
| 56:X:177:HIS:O    | 56:X:184:ARG:NH1   | 2.44                    | 0.50        |
| 1:AA:1004:G:O2'   | 9:AI:98:GLN:NE2    | 2.44                    | 0.50        |
| 36:A:2866:A:OP2   | 101:A:3558:HOH:O   | 2.19                    | 0.50        |
| 46:N:73:ARG:O     | 46:N:155:LYS:NZ    | 2.45                    | 0.50        |
| 51:S:109:THR:HG22 | 51:S:112:ASP:OD2   | 2.11                    | 0.50        |
| 54:V:188:VAL:O    | 54:V:188:VAL:HG23  | 2.11                    | 0.50        |
| 1:AA:1229:U:O2'   | 1:AA:1442:G:O4'    | 2.30                    | 0.50        |
| 3:AC:109:VAL:HG23 | 28:A1:103:LEU:HD11 | 1.93                    | 0.50        |
| 36:A:2170:G:OP1   | 101:A:3564:HOH:O   | 2.19                    | 0.50        |
| 36:A:3089:A:H3'   | 36:A:3090:G:H5"    | 1.94                    | 0.50        |
| 1:AA:1443:U:OP2   | 101:AA:1844:HOH:O  | 2.19                    | 0.50        |
| 7:AG:200:LEU:HD11 | 7:AG:204:GLU:HB3   | 1.94                    | 0.50        |
| 36:A:3001:G:N7    | 101:A:3693:HOH:O   | 2.35                    | 0.50        |
| 4:AD:340:ILE:HG22 | 4:AD:340:ILE:O     | 2.12                    | 0.50        |
| 36:A:2110:A:H5'   | 46:N:67:LYS:HZ3    | 1.77                    | 0.50        |
| 36:A:2149:G:OP1   | 101:A:3568:HOH:O   | 2.20                    | 0.50        |
| 62:3:188:VAL:O    | 65:6:356:ARG:NH2   | 2.44                    | 0.50        |
| 36:A:1740:A:OP1   | 101:A:3560:HOH:O   | 2.19                    | 0.49        |
| 24:AX:297:MET:HE3 | 24:AX:306:ILE:HG21 | 1.93                    | 0.49        |
| 36:A:2075:U:O2'   | 36:A:2833:A:N7     | 2.34                    | 0.49        |
| 36:A:2477:G:OP1   | 101:A:3565:HOH:O   | 2.19                    | 0.49        |
| 66:7:156:ARG:HG3  | 66:7:156:ARG:HH11  | 1.77                    | 0.49        |
| 36:A:1817:C:OP2   | 101:A:3567:HOH:O   | 2.20                    | 0.49        |
| 44:L:97:THR:OG1   | 101:L:201:HOH:O    | 2.14                    | 0.49        |
| 36:A:1760:G:OP1   | 45:M:196:ARG:NE    | 2.39                    | 0.49        |
| 49:Q:237:ASN:OD1  | 49:Q:238:PHE:N     | 2.46                    | 0.49        |
| 36:A:1851:G:H2'   | 36:A:2693:A:N7     | 2.28                    | 0.49        |
| 28:A1:198:TYR:OH  | 28:A1:203:ASP:OD1  | 2.22                    | 0.49        |
| 56:X:91:TYR:CE2   | 88:H:79:VAL:HG11   | 2.47                    | 0.49        |
| 1:AA:845:A:H4'    | 21:AU:60:TYR:CE2   | 2.47                    | 0.49        |
| 3:AC:106:ASP:OD1  | 3:AC:107:GLN:N     | 2.42                    | 0.49        |
| 36:A:1735:A:H2'   | 36:A:1735:A:N3     | 2.28                    | 0.49        |
| 36:A:2712:G:OP1   | 101:A:3563:HOH:O   | 2.19                    | 0.49        |
| 1:AA:1486:B8T:O2' | 101:AA:1848:HOH:O  | 2.20                    | 0.49        |



|                    |                    | Interatomic  | Clash       |
|--------------------|--------------------|--------------|-------------|
| Atom-1             | Atom-2             | distance (Å) | overlap (Å) |
| 41:I:53:TYR:O      | 101:I:303:HOH:O    | 2.20         | 0.49        |
| 7:AG:259:PRO:O     | 101:AG:403:HOH:O   | 2.20         | 0.48        |
| 36:A:2472:A:OP2    | 101:A:3566:HOH:O   | 2.20         | 0.48        |
| 4:AD:312:TYR:N     | 4:AD:331:ASP:OD2   | 2.45         | 0.48        |
| 51:S:109:THR:N     | 51:S:112:ASP:OD2   | 2.45         | 0.48        |
| 1:AA:769:G:OP2     | 14:AN:73:ARG:NH2   | 2.45         | 0.48        |
| 6:AF:172:VAL:HG12  | 6:AF:240:ARG:HD3   | 1.94         | 0.48        |
| 37:B:76:A:O2'      | 100:B:101:VAL:O    | 2.30         | 0.48        |
| 6:AF:159:VAL:CG2   | 6:AF:172:VAL:HG21  | 2.42         | 0.48        |
| 36:A:2777:G:N3     | 88:H:179:ASN:ND2   | 2.61         | 0.48        |
| 66:7:257:ILE:O     | 66:7:257:ILE:HG13  | 2.14         | 0.48        |
| 29:A2:33:VAL:HG22  | 29:A2:105:ASN:OD1  | 2.13         | 0.48        |
| 29:A2:15:ASN:OD1   | 29:A2:17:ARG:NH1   | 2.46         | 0.48        |
| 36:A:2016:C:OP2    | 45:M:59:ARG:NH1    | 2.47         | 0.48        |
| 36:A:2160:A:OP2    | 63:4:88:TRP:NE1    | 2.40         | 0.48        |
| 59:0:95:ARG:O      | 101:0:302:HOH:O    | 2.20         | 0.48        |
| 1:AA:1455:U:OP1    | 101:AA:1847:HOH:O  | 2.20         | 0.48        |
| 36:A:2339:G:OP2    | 101:A:3569:HOH:O   | 2.20         | 0.48        |
| 36:A:3089:A:H3'    | 36:A:3090:G:C5'    | 2.44         | 0.48        |
| 15:AO:130:HIS:ND1  | 101:AO:403:HOH:O   | 2.26         | 0.48        |
| 18:AR:162:SER:O    | 18:AR:170:ARG:NH1  | 2.47         | 0.48        |
| 65:6:257:PRO:HB3   | 65:6:268:LEU:HD21  | 1.95         | 0.48        |
| 7:AG:102:GLU:OE1   | 7:AG:102:GLU:N     | 2.43         | 0.47        |
| 51:S:152:ASP:OD1   | 51:S:153:LEU:N     | 2.48         | 0.47        |
| 60:1:34:ARG:NH1    | 60:1:38:ARG:O      | 2.47         | 0.47        |
| 66:7:276:PHE:HB2   | 66:7:304:VAL:HG22  | 1.96         | 0.47        |
| 41:I:148:VAL:HG23  | 41:I:148:VAL:O     | 2.14         | 0.47        |
| 1:AA:702:C:OP1     | 21:AU:41:ARG:NH2   | 2.45         | 0.47        |
| 1:AA:1080:A:O2'    | 1:AA:1082:A:N7     | 2.43         | 0.47        |
| 28:A1:299:LEU:HD21 | 28:A1:309:ILE:HD13 | 1.96         | 0.47        |
| 42:J:75:ASP:OD1    | 42:J:77:THR:HG22   | 2.15         | 0.47        |
| 47:O:64:LYS:NZ     | 47:O:100:GLN:O     | 2.48         | 0.47        |
| 64:5:173:ARG:HA    | 64:5:176:TYR:CE1   | 2.50         | 0.47        |
| 1:AA:1378:C:O2     | 24:AX:389:SER:OG   | 2.30         | 0.47        |
| 36:A:3201:A:H2'    | 36:A:3202:U:O4'    | 2.15         | 0.47        |
| 36:A:2725:A:N7     | 36:A:2990:A:N6     | 2.64         | 0.46        |
| 22:AV:173:PHE:O    | 22:AV:179:GLN:NE2  | 2.48         | 0.46        |
| 1:AA:1557:A:OP1    | 10:AJ:72:LYS:N     | 2.47         | 0.46        |
| 4:AD:268:PHE:HB3   | 7:AG:56:ILE:HD11   | 1.98         | 0.46        |
| 19:AS:106:LEU:HB2  | 19:AS:117:LEU:HD11 | 1.98         | 0.46        |
| 24:AX:108:LEU:HD23 | 24:AX:141:VAL:HG21 | 1.98         | 0.46        |



|                    |                   | Interatomic  | Clash       |
|--------------------|-------------------|--------------|-------------|
| Atom-1             | Atom-2            | distance (Å) | overlap (Å) |
| 1:AA:1520:U:OP2    | 22:AV:407:GLN:NE2 | 2.46         | 0.46        |
| 27:A0:13:GLU:OE2   | 27:A0:16:ARG:NH1  | 2.49         | 0.46        |
| 36:A:1954:U:O4     | 101:A:3562:HOH:O  | 2.19         | 0.46        |
| 46:N:59:VAL:O      | 46:N:59:VAL:HG13  | 2.15         | 0.46        |
| 1:AA:1188:A:OP2    | 1:AA:1429:C:O2'   | 2.21         | 0.46        |
| 5:AE:17:GLU:OE1    | 5:AE:17:GLU:N     | 2.48         | 0.46        |
| 24:AX:153:LEU:HD21 | 24:AX:244:LEU:CD2 | 2.45         | 0.46        |
| 1:AA:1454:G:OP2    | 7:AG:377:ARG:NH1  | 2.44         | 0.46        |
| 6:AF:159:VAL:HG23  | 6:AF:172:VAL:CG2  | 2.44         | 0.46        |
| 7:AG:198:ARG:NH1   | 7:AG:201:ILE:HG23 | 2.31         | 0.46        |
| 45:M:250:ASP:OD1   | 45:M:251:GLU:N    | 2.49         | 0.46        |
| 1:AA:1598:G:OP2    | 101:AA:1851:HOH:O | 2.21         | 0.46        |
| 36:A:2220:A:HO2'   | 36:A:2221:C:P     | 2.36         | 0.46        |
| 41:I:128:ASN:ND2   | 41:I:149:GLY:O    | 2.49         | 0.46        |
| 56:X:87:LEU:O      | 88:H:78:ARG:NH1   | 2.47         | 0.46        |
| 1:AA:1038:C:O2'    | 12:AL:155:TYR:OH  | 2.31         | 0.46        |
| 6:AF:85:VAL:HG22   | 24:AX:379:GLU:OE1 | 2.16         | 0.46        |
| 53:U:47:GLU:OE1    | 53:U:47:GLU:N     | 2.45         | 0.46        |
| 54:V:124:ASP:OD1   | 54:V:125:PRO:HD2  | 2.16         | 0.46        |
| 14:AN:93:ASP:O     | 14:AN:97:GLY:N    | 2.44         | 0.45        |
| 24:AX:153:LEU:HD12 | 24:AX:187:TRP:HZ2 | 1.81         | 0.45        |
| 88:H:146:LEU:O     | 88:H:150:GLY:N    | 2.45         | 0.45        |
| 1:AA:1044:U:OP1    | 1:AA:1110:A:O2'   | 2.30         | 0.45        |
| 25:AY:377:ARG:O    | 25:AY:381:ASN:ND2 | 2.49         | 0.45        |
| 37:B:38:C:OP1      | 65:6:52:ARG:NH1   | 2.50         | 0.45        |
| 1:AA:1583:MA6:OP1  | 30:A3:145:LYS:NZ  | 2.48         | 0.45        |
| 20:AT:92:THR:O     | 20:AT:92:THR:HG22 | 2.16         | 0.45        |
| 36:A:2883:A:N3     | 36:A:2883:A:H2'   | 2.31         | 0.45        |
| 42:J:20:ILE:HD11   | 42:J:42:ARG:HD3   | 1.98         | 0.45        |
| 90:AA:1701:NAD:O2D | 101:AA:1849:HOH:O | 2.20         | 0.45        |
| 36:A:2946:A:OP2    | 101:A:3571:HOH:O  | 2.21         | 0.45        |
| 88:H:223:VAL:N     | 88:H:231:VAL:O    | 2.45         | 0.45        |
| 40:F:115:LYS:NZ    | 101:F:6510:HOH:O  | 2.44         | 0.45        |
| 22:AV:35:VAL:O     | 22:AV:35:VAL:HG12 | 2.17         | 0.45        |
| 62:3:146:GLU:HA    | 62:3:146:GLU:OE1  | 2.17         | 0.45        |
| 31:A4:305:ILE:HG22 | 31:A4:306:ASN:N   | 2.32         | 0.45        |
| 36:A:1889:C:OP1    | 45:M:133:LYS:NZ   | 2.43         | 0.45        |
| 36:A:2353:A:O2'    | 36:A:2355:A:OP2   | 2.17         | 0.45        |
| 42:J:102:ARG:N     | 42:J:107:GLU:OE2  | 2.49         | 0.45        |
| 54:V:169:THR:HG22  | 54:V:169:THR:O    | 2.16         | 0.45        |
| 1:AA:709:G:OP1     | 13:AM:13:ARG:NH2  | 2.50         | 0.44        |



|                   |                    | Interatomic  | Clash       |
|-------------------|--------------------|--------------|-------------|
| Atom-1            | Atom-2             | distance (Å) | overlap (Å) |
| 31:A4:303:CYS:SG  | 31:A4:344:ARG:NH2  | 2.89         | 0.44        |
| 1:AA:769:G:N2     | 1:AA:772:A:OP2     | 2.44         | 0.44        |
| 1:AA:1431:G:O2'   | 1:AA:1457:G:O6     | 2.32         | 0.44        |
| 36:A:2259:C:O2'   | 36:A:2261:C:OP2    | 2.24         | 0.44        |
| 36:A:2281:A:O2'   | 101:A:3559:HOH:O   | 2.19         | 0.44        |
| 36:A:1871:A:N3    | 62:3:104:ARG:NH2   | 2.65         | 0.44        |
| 45:M:177:ALA:HA   | 45:M:222:TYR:CD1   | 2.53         | 0.44        |
| 18:AR:317:ALA:O   | 18:AR:321:ALA:N    | 2.50         | 0.44        |
| 24:AX:119:TYR:OH  | 28:A1:273:GLU:OE2  | 2.22         | 0.44        |
| 29:A2:99:LEU:HD11 | 29:A2:103:LYS:CB   | 2.47         | 0.44        |
| 31:A4:58:VAL:O    | 31:A4:58:VAL:HG23  | 2.17         | 0.44        |
| 49:Q:251:GLU:OE1  | 49:Q:251:GLU:HA    | 2.16         | 0.44        |
| 54:V:176:ASP:OD1  | 57:Y:82:GLY:N      | 2.51         | 0.44        |
| 36:A:2137:C:OP2   | 58:Z:77:ARG:NH1    | 2.49         | 0.44        |
| 37:B:44:A:H2'     | 37:B:45:G:O4'      | 2.17         | 0.44        |
| 36:A:2135:A:N3    | 36:A:2135:A:H2'    | 2.33         | 0.44        |
| 38:D:207:ILE:HG22 | 38:D:207:ILE:O     | 2.18         | 0.44        |
| 53:U:66:ALA:HB2   | 53:U:100:ALA:HA    | 1.99         | 0.44        |
| 54:V:122:LEU:HD22 | 54:V:133:ILE:HD13  | 2.00         | 0.44        |
| 26:AZ:46:LYS:HA   | 26:AZ:49:TYR:CE1   | 2.53         | 0.44        |
| 31:A4:458:TYR:HB3 | 31:A4:486:TYR:CD1  | 2.53         | 0.44        |
| 1:AA:1490:U:O2'   | 101:AA:1812:HOH:O  | 2.10         | 0.44        |
| 36:A:2231:A:N3    | 36:A:3003:A:O2'    | 2.39         | 0.44        |
| 36:A:3211:C:HO2'  | 36:A:3212:C:H5     | 1.59         | 0.44        |
| 54:V:134:GLU:HG3  | 54:V:148:THR:HG22  | 1.99         | 0.44        |
| 66:7:51:GLU:OE1   | 66:7:51:GLU:HA     | 2.18         | 0.44        |
| 64:5:289:HIS:CE1  | 64:5:290:THR:HG1   | 2.33         | 0.43        |
| 1:AA:1208:U:OP1   | 101:AA:1852:HOH:O  | 2.21         | 0.43        |
| 41:I:180:CYS:SG   | 41:I:184:THR:N     | 2.92         | 0.43        |
| 43:K:67:PHE:HB3   | 43:K:71:LYS:HB2    | 2.00         | 0.43        |
| 49:Q:62:ILE:HG23  | 49:Q:62:ILE:O      | 2.17         | 0.43        |
| 54:V:159:PHE:CD1  | 54:V:160:PRO:HD2   | 2.53         | 0.43        |
| 1:AA:1293:C:N4    | 17:AQ:80:ARG:O     | 2.51         | 0.43        |
| 4:AD:415:GLN:NE2  | 4:AD:417:MET:SD    | 2.92         | 0.43        |
| 7:AG:312:GLN:OE1  | 7:AG:345:ARG:NH1   | 2.51         | 0.43        |
| 10:AJ:48:LYS:NZ   | 101:AJ:207:HOH:O   | 2.47         | 0.43        |
| 28:A1:113:HIS:CD2 | 28:A1:114:LEU:HG   | 2.53         | 0.43        |
| 31:A4:596:LEU:H   | 31:A4:596:LEU:HD12 | 1.84         | 0.43        |
| 36:A:1807:U:O2'   | 36:A:1808:A:OP2    | 2.28         | 0.43        |
| 36:A:2506:A:H1'   | 36:A:2601:A:N6     | 2.33         | 0.43        |
| 3:AC:115:ASN:ND2  | 25:AY:309:LYS:O    | 2.52         | 0.43        |



| Atom 1             | Atom 2             | Interatomic             | Clash       |
|--------------------|--------------------|-------------------------|-------------|
| Atom-1             | Atom-2             | distance $(\text{\AA})$ | overlap (Å) |
| 30:A3:144:ARG:NH2  | 101:A3:304:HOH:O   | 2.51                    | 0.43        |
| 36:A:1991:A:H5"    | 36:A:1992:C:OP1    | 2.19                    | 0.43        |
| 39:E:151:THR:HG23  | 39:E:171:PRO:HB2   | 2.00                    | 0.43        |
| 1:AA:1088:C:O2'    | 101:AA:1824:HOH:O  | 2.14                    | 0.43        |
| 8:AH:155:VAL:HG21  | 28:A1:129:PHE:HB2  | 2.01                    | 0.43        |
| 36:A:2710:C:O2'    | 36:A:3220:A:N1     | 2.38                    | 0.43        |
| 39:E:131:LYS:O     | 39:E:145:LEU:HD12  | 2.18                    | 0.43        |
| 88:H:65:ALA:HB2    | 88:H:71:PRO:HA     | 2.00                    | 0.43        |
| 3:AC:65:ARG:NH1    | 101:AC:205:HOH:O   | 2.38                    | 0.43        |
| 8:AH:155:VAL:HG21  | 28:A1:129:PHE:CB   | 2.49                    | 0.43        |
| 41:I:197:LEU:HD23  | 41:I:198:PRO:O     | 2.18                    | 0.43        |
| 1:AA:691:A:N7      | 1:AA:716:U:O2'     | 2.50                    | 0.42        |
| 7:AG:229:LEU:HD13  | 7:AG:241:VAL:HG11  | 2.01                    | 0.42        |
| 24:AX:153:LEU:HD21 | 24:AX:244:LEU:HD22 | 2.01                    | 0.42        |
| 36:A:2015:G:O4'    | 45:M:56:GLU:HG3    | 2.19                    | 0.42        |
| 36:A:2075:U:OP1    | 101:A:3577:HOH:O   | 2.21                    | 0.42        |
| 36:A:2855:G:O6     | 101:A:3552:HOH:O   | 2.18                    | 0.42        |
| 7:AG:237:GLU:OE1   | 7:AG:237:GLU:N     | 2.51                    | 0.42        |
| 9:AI:189:ARG:NH2   | 101:AI:208:HOH:O   | 2.53                    | 0.42        |
| 28:A1:86:ARG:NH1   | 28:A1:96:PRO:O     | 2.50                    | 0.42        |
| 36:A:2112:A:H4'    | 36:A:2113:G:OP1    | 2.19                    | 0.42        |
| 43:K:16:ARG:O      | 101:K:202:HOH:O    | 2.21                    | 0.42        |
| 44:L:95:ARG:NH2    | 101:L:207:HOH:O    | 2.51                    | 0.42        |
| 66:7:87:THR:O      | 66:7:90:SER:OG     | 2.30                    | 0.42        |
| 1:AA:1279:C:O2'    | 1:AA:1296:A:N1     | 2.48                    | 0.42        |
| 18:AR:162:SER:HB2  | 18:AR:165:ILE:HD12 | 2.01                    | 0.42        |
| 36:A:2039:A:N1     | 36:A:2932:G:O2'    | 2.45                    | 0.42        |
| 1:AA:894:C:OP1     | 101:AA:1846:HOH:O  | 2.20                    | 0.42        |
| 8:AH:60:LYS:NZ     | 28:A1:128:ASP:OD2  | 2.38                    | 0.42        |
| 3:AC:45:SER:OG     | 3:AC:46:LYS:N      | 2.51                    | 0.42        |
| 21:AU:27:ARG:N     | 101:AU:303:HOH:O   | 2.51                    | 0.42        |
| 55:W:102:GLU:OE2   | 65:6:74:TYR:N      | 2.53                    | 0.42        |
| 88:H:238:VAL:HG12  | 88:H:239:ASN:N     | 2.35                    | 0.42        |
| 1:AA:1322:C:N3     | 4:AD:234:LYS:NZ    | 2.66                    | 0.42        |
| 25:AY:255:ARG:NH1  | 25:AY:256:LEU:O    | 2.53                    | 0.42        |
| 27:A0:37:ASP:O     | 27:A0:41:LEU:N     | 2.52                    | 0.42        |
| 28:A1:304:GLU:OE2  | 28:A1:309:ILE:HD11 | 2.20                    | 0.42        |
| 36:A:2483:U:H2'    | 36:A:2484:C:O4'    | 2.19                    | 0.42        |
| 36:A:2868:C:H2'    | 36:A:2869:A:O4'    | 2.20                    | 0.42        |
| 65:6:217:LEU:HD11  | 65:6:271:LEU:HD12  | 2.01                    | 0.42        |
| 1:AA:1066:C:O2'    | 9:AI:187:ARG:O     | 2.38                    | 0.42        |



|                   |                    | Interatomic             | Clash       |
|-------------------|--------------------|-------------------------|-------------|
| Atom-1            | Atom-2             | distance $(\text{\AA})$ | overlap (Å) |
| 8:AH:95:ALA:HB3   | 8:AH:143:LEU:HD21  | 2.01                    | 0.42        |
| 17:AQ:80:ARG:NH2  | 23:AW:164:GLU:OE1  | 2.45                    | 0.42        |
| 6:AF:90:VAL:HG13  | 6:AF:184:MET:CE    | 2.50                    | 0.42        |
| 7:AG:320:VAL:HG21 | 7:AG:352:LEU:HD21  | 2.00                    | 0.42        |
| 36:A:2814:G:O2'   | 36:A:2983:G:OP1    | 2.38                    | 0.42        |
| 50:R:65:ARG:HA    | 50:R:68:TRP:CE3    | 2.55                    | 0.42        |
| 53:U:19:VAL:O     | 53:U:19:VAL:HG13   | 2.20                    | 0.42        |
| 54:V:165:ILE:HG21 | 68:9:76:TYR:CD2    | 2.55                    | 0.42        |
| 2:AB:103:GLU:N    | 2:AB:104:PRO:CD    | 2.82                    | 0.41        |
| 27:A0:63:ARG:NH2  | 27:A0:110:ASP:OD2  | 2.53                    | 0.41        |
| 36:A:1980:A:OP1   | 61:2:56:SER:OG     | 2.32                    | 0.41        |
| 37:B:12:U:O2'     | 37:B:14:A:OP1      | 2.38                    | 0.41        |
| 2:AB:222:ILE:O    | 101:AB:406:HOH:O   | 2.22                    | 0.41        |
| 6:AF:46:ILE:O     | 6:AF:46:ILE:HG22   | 2.20                    | 0.41        |
| 27:A0:158:GLU:O   | 27:A0:158:GLU:HG2  | 2.21                    | 0.41        |
| 101:A:3796:HOH:O  | 41:I:29:GLY:N      | 2.53                    | 0.41        |
| 67:8:202:VAL:O    | 67:8:203:GLU:HB3   | 2.20                    | 0.41        |
| 25:AY:259:PHE:HB2 | 31:A4:363:ILE:HD11 | 2.02                    | 0.41        |
| 36:A:2099:U:OP1   | 101:A:3574:HOH:O   | 2.21                    | 0.41        |
| 64:5:56:GLU:O     | 64:5:56:GLU:HG3    | 2.19                    | 0.41        |
| 4:AD:112:LYS:NZ   | 4:AD:235:GLU:O     | 2.53                    | 0.41        |
| 6:AF:35:SER:N     | 101:AF:304:HOH:O   | 2.53                    | 0.41        |
| 45:M:149:THR:O    | 45:M:149:THR:HG22  | 2.19                    | 0.41        |
| 1:AA:1057:G:H4'   | 1:AA:1578:A:H4'    | 2.02                    | 0.41        |
| 16:AP:70:LYS:NZ   | 101:AP:303:HOH:O   | 2.53                    | 0.41        |
| 23:AW:92:MET:O    | 23:AW:98:LYS:NZ    | 2.54                    | 0.41        |
| 23:AW:162:VAL:O   | 23:AW:162:VAL:HG12 | 2.20                    | 0.41        |
| 65:6:224:HIS:HA   | 65:6:232:TYR:CE2   | 2.56                    | 0.41        |
| 4:AD:198:TRP:HA   | 4:AD:201:ILE:HD12  | 2.03                    | 0.41        |
| 22:AV:318:ASP:OD1 | 22:AV:319:ILE:N    | 2.54                    | 0.41        |
| 36:A:2306:A:OP1   | 101:A:3573:HOH:O   | 2.21                    | 0.41        |
| 64:5:105:TYR:CE1  | 64:5:262:ILE:HD12  | 2.56                    | 0.41        |
| 1:AA:1065:C:H2'   | 1:AA:1066:C:O4'    | 2.21                    | 0.41        |
| 1:AA:1143:C:N4    | 101:AA:1853:HOH:O  | 2.22                    | 0.41        |
| 22:AV:87:HIS:ND1  | 49:Q:60:PRO:HB2    | 2.36                    | 0.41        |
| 24:AX:103:LYS:N   | 24:AX:104:PRO:CD   | 2.83                    | 0.41        |
| 36:A:1958:G:OP1   | 101:A:3576:HOH:O   | 2.21                    | 0.41        |
| 36:A:2398:A:H2'   | 36:A:2399:A:O4'    | 2.21                    | 0.41        |
| 64:5:110:ARG:O    | 64:5:110:ARG:HG3   | 2.20                    | 0.41        |
| 31:A4:302:VAL:O   | 31:A4:312:LYS:NZ   | 2.51                    | 0.41        |
| 36:A:2227:A:N3    | 36:A:2227:A:H2'    | 2.35                    | 0.41        |


| Atom 1             | Atom 2             | Interatomic             | Clash       |
|--------------------|--------------------|-------------------------|-------------|
| Atom-1             | Atom-2             | distance $(\text{\AA})$ | overlap (Å) |
| 36:A:2728:C:H4'    | 36:A:2815:OMG:HM22 | 2.02                    | 0.41        |
| 36:A:2778:U:OP1    | 36:A:2782:A:N6     | 2.48                    | 0.41        |
| 36:A:2909:G:OP1    | 60:1:63:ARG:NH1    | 2.47                    | 0.41        |
| 43:K:7:ALA:HB3     | 43:K:8:PRO:HD3     | 2.02                    | 0.41        |
| 88:H:208:LEU:HB3   | 88:H:209:PRO:HD2   | 2.03                    | 0.41        |
| 1:AA:894:C:H41     | 10:AJ:78:ARG:NH2   | 2.19                    | 0.41        |
| 7:AG:310:ARG:NE    | 24:AX:383:LEU:O    | 2.54                    | 0.41        |
| 7:AG:337:ARG:HG3   | 7:AG:338:SER:N     | 2.36                    | 0.41        |
| 17:AQ:63:ILE:HD13  | 29:A2:6:LEU:HD21   | 2.03                    | 0.41        |
| 24:AX:129:GLU:OE1  | 101:AX:605:HOH:O   | 2.22                    | 0.41        |
| 29:A2:59:ASN:ND2   | 29:A2:66:CYS:SG    | 2.87                    | 0.41        |
| 36:A:2595:A:H2'    | 36:A:2596:G:O4'    | 2.21                    | 0.41        |
| 44:L:128:ARG:O     | 44:L:131:GLU:HG3   | 2.20                    | 0.41        |
| 54:V:133:ILE:HD12  | 54:V:145:ARG:HB3   | 2.02                    | 0.41        |
| 59:0:166:SER:OG    | 59:0:167:GLU:N     | 2.54                    | 0.41        |
| 4:AD:363:ALA:O     | 4:AD:367:GLY:N     | 2.53                    | 0.41        |
| 6:AF:174:LEU:O     | 6:AF:179:ARG:NH1   | 2.53                    | 0.41        |
| 20:AT:6:ARG:HG2    | 20:AT:7:PHE:CD2    | 2.56                    | 0.41        |
| 24:AX:384:SER:O    | 24:AX:385:ASN:HB3  | 2.20                    | 0.41        |
| 25:AY:290:ASN:OD1  | 25:AY:290:ASN:O    | 2.38                    | 0.41        |
| 31:A4:560:GLU:O    | 31:A4:565:ARG:NH1  | 2.51                    | 0.41        |
| 36:A:1961:A:N1     | 101:A:3730:HOH:O   | 2.37                    | 0.41        |
| 36:A:1994:A:H61    | 36:A:2736:C:H4'    | 1.86                    | 0.41        |
| 38:D:230:SER:O     | 38:D:231:LYS:HB2   | 2.20                    | 0.41        |
| 64:5:177:CYS:HB3   | 64:5:178:PRO:HD3   | 2.02                    | 0.41        |
| 66:7:36:SER:HB2    | 66:7:37:PRO:HD2    | 2.02                    | 0.41        |
| 19:AS:111:GLU:HB2  | 19:AS:117:LEU:HD13 | 2.03                    | 0.40        |
| 36:A:3067:PSU:OP1  | 39:E:234:THR:OG1   | 2.24                    | 0.40        |
| 22:AV:225:LEU:HD11 | 22:AV:283:LEU:HD22 | 2.02                    | 0.40        |
| 23:AW:113:TYR:CD1  | 23:AW:123:VAL:HG22 | 2.56                    | 0.40        |
| 36:A:2757:A:N1     | 36:A:2789:C:O2'    | 2.50                    | 0.40        |
| 40:F:191:ASP:OD1   | 40:F:192:SER:N     | 2.51                    | 0.40        |
| 60:1:54:VAL:HG12   | 60:1:55:LEU:N      | 2.37                    | 0.40        |
| 66:7:106:ALA:O     | 66:7:113:TRP:N     | 2.46                    | 0.40        |
| 10:AJ:61:VAL:HG22  | 10:AJ:107:ILE:CD1  | 2.52                    | 0.40        |
| 11:AK:120:LEU:HB3  | 11:AK:123:ILE:HD12 | 2.03                    | 0.40        |
| 12:AL:126:GLU:HG2  | 12:AL:177:VAL:HG11 | 2.03                    | 0.40        |
| 36:A:1810:A:H2'    | 36:A:1811:A:O4'    | 2.21                    | 0.40        |
| 2:AB:146:SER:O     | 2:AB:168:THR:HA    | 2.22                    | 0.40        |
| 6:AF:90:VAL:HG13   | 6:AF:184:MET:HE2   | 2.03                    | 0.40        |
| 36:A:2257:C:OP2    | 101:A:3580:HOH:O   | 2.22                    | 0.40        |



| Atom-1           | Atom-2            | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|------------------|-------------------|-----------------------------|----------------------|
| 1:AA:717:G:O2'   | 101:AA:1854:HOH:O | 2.22                        | 0.40                 |
| 39:E:281:ASN:ND2 | 101:E:513:HOH:O   | 2.54                        | 0.40                 |

There are no symmetry-related clashes.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed                    | Favoured       | Allowed | Outliers | Perce | ntiles |
|-----|-------|-----------------------------|----------------|---------|----------|-------|--------|
| 2   | AB    | 220/296~(74%)               | 218 (99%)      | 2 (1%)  | 0        | 100   | 100    |
| 3   | AC    | 130/167~(78%)               | 125~(96%)      | 5 (4%)  | 0        | 100   | 100    |
| 4   | AD    | 341/430~(79%)               | $331 \ (97\%)$ | 10 (3%) | 0        | 100   | 100    |
| 5   | AE    | 120/125~(96%)               | 119 (99%)      | 1 (1%)  | 0        | 100   | 100    |
| 6   | AF    | 206/242~(85%)               | 204 (99%)      | 2 (1%)  | 0        | 100   | 100    |
| 7   | AG    | 323/396~(82%)               | 315~(98%)      | 8 (2%)  | 0        | 100   | 100    |
| 8   | AH    | 138/201~(69%)               | 137 (99%)      | 0       | 1 (1%)   | 22    | 32     |
| 9   | AI    | 134/194~(69%)               | 133 (99%)      | 1 (1%)  | 0        | 100   | 100    |
| 10  | AJ    | 106/138~(77%)               | 105 (99%)      | 1 (1%)  | 0        | 100   | 100    |
| 11  | AK    | 99/128~(77%)                | 99 (100%)      | 0       | 0        | 100   | 100    |
| 12  | AL    | 172/257~(67%)               | 170 (99%)      | 2 (1%)  | 0        | 100   | 100    |
| 13  | AM    | 117/137~(85%)               | 117 (100%)     | 0       | 0        | 100   | 100    |
| 14  | AN    | 108/130~(83%)               | 106 (98%)      | 2 (2%)  | 0        | 100   | 100    |
| 15  | AO    | 191/258~(74%)               | 188 (98%)      | 3 (2%)  | 0        | 100   | 100    |
| 16  | AP    | 95/142~(67%)                | 94 (99%)       | 1 (1%)  | 0        | 100   | 100    |
| 17  | AQ    | 84/87~(97%)                 | 82 (98%)       | 2 (2%)  | 0        | 100   | 100    |
| 18  | AR    | 293/360~(81%)               | 284 (97%)      | 9 (3%)  | 0        | 100   | 100    |
| 19  | AS    | $13\overline{3}/190~(70\%)$ | 133 (100%)     | 0       | 0        | 100   | 100    |



| Continued | from | nrevious | naae |
|-----------|------|----------|------|
| Continuea | from | previous | page |

| Mol | Chain | Analysed      | Favoured   | Allowed | Outliers | Perce | ntiles |
|-----|-------|---------------|------------|---------|----------|-------|--------|
| 20  | AT    | 166/173~(96%) | 164 (99%)  | 2 (1%)  | 0        | 100   | 100    |
| 21  | AU    | 174/205~(85%) | 174 (100%) | 0       | 0        | 100   | 100    |
| 22  | AV    | 358/414~(86%) | 351 (98%)  | 7 (2%)  | 0        | 100   | 100    |
| 23  | AW    | 98/187~(52%)  | 95 (97%)   | 3 (3%)  | 0        | 100   | 100    |
| 24  | AX    | 350/398~(88%) | 342 (98%)  | 7 (2%)  | 1 (0%)   | 41    | 56     |
| 25  | AY    | 147/395~(37%) | 147 (100%) | 0       | 0        | 100   | 100    |
| 26  | AZ    | 98/106~(92%)  | 97 (99%)   | 1 (1%)  | 0        | 100   | 100    |
| 27  | A0    | 213/217~(98%) | 209 (98%)  | 4 (2%)  | 0        | 100   | 100    |
| 28  | A1    | 277/323~(86%) | 273 (99%)  | 4 (1%)  | 0        | 100   | 100    |
| 29  | A2    | 115/118 (98%) | 115 (100%) | 0       | 0        | 100   | 100    |
| 30  | A3    | 68/199~(34%)  | 67 (98%)   | 1 (2%)  | 0        | 100   | 100    |
| 31  | A4    | 584/689~(85%) | 577 (99%)  | 7 (1%)  | 0        | 100   | 100    |
| 38  | D     | 236/305~(77%) | 231 (98%)  | 5 (2%)  | 0        | 100   | 100    |
| 39  | Е     | 303/348~(87%) | 298 (98%)  | 4 (1%)  | 1 (0%)   | 41    | 56     |
| 40  | F     | 250/311~(80%) | 245 (98%)  | 5 (2%)  | 0        | 100   | 100    |
| 41  | Ι     | 210/261~(80%) | 200 (95%)  | 10 (5%) | 0        | 100   | 100    |
| 42  | J     | 173/192~(90%) | 173 (100%) | 0       | 0        | 100   | 100    |
| 43  | K     | 175/178~(98%) | 173 (99%)  | 2 (1%)  | 0        | 100   | 100    |
| 44  | L     | 113/145~(78%) | 112 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 45  | М     | 287/296~(97%) | 284 (99%)  | 3 (1%)  | 0        | 100   | 100    |
| 46  | Ν     | 220/251~(88%) | 218 (99%)  | 2 (1%)  | 0        | 100   | 100    |
| 47  | Ο     | 152/175~(87%) | 149 (98%)  | 3 (2%)  | 0        | 100   | 100    |
| 48  | Р     | 142/180~(79%) | 142 (100%) | 0       | 0        | 100   | 100    |
| 49  | Q     | 237/292~(81%) | 235 (99%)  | 1 (0%)  | 1 (0%)   | 34    | 48     |
| 50  | R     | 138/149~(93%) | 138 (100%) | 0       | 0        | 100   | 100    |
| 51  | S     | 159/205~(78%) | 156 (98%)  | 3 (2%)  | 0        | 100   | 100    |
| 52  | Т     | 164/206~(80%) | 164 (100%) | 0       | 0        | 100   | 100    |
| 53  | U     | 150/153~(98%) | 148 (99%)  | 2 (1%)  | 0        | 100   | 100    |
| 54  | V     | 203/216~(94%) | 199 (98%)  | 4 (2%)  | 0        | 100   | 100    |
| 55  | W     | 114/148 (77%) | 113 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 56  | Х     | 242/256~(94%) | 241 (100%) | 1 (0%)  | 0        | 100   | 100    |



| Mol | Chain | Analysed                   | Favoured   | Allowed | Outliers | Perce | ntiles |
|-----|-------|----------------------------|------------|---------|----------|-------|--------|
| 57  | Y     | 179/250~(72%)              | 176 (98%)  | 3 (2%)  | 0        | 100   | 100    |
| 58  | Ζ     | 120/161~(74%)              | 119 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 59  | 0     | 108/188~(57%)              | 108 (100%) | 0       | 0        | 100   | 100    |
| 60  | 1     | 54/65~(83%)                | 54 (100%)  | 0       | 0        | 100   | 100    |
| 61  | 2     | 44/92~(48%)                | 43 (98%)   | 1 (2%)  | 0        | 100   | 100    |
| 62  | 3     | 93/188~(50%)               | 92 (99%)   | 1 (1%)  | 0        | 100   | 100    |
| 63  | 4     | 36/103~(35%)               | 36 (100%)  | 0       | 0        | 100   | 100    |
| 64  | 5     | 392/423~(93%)              | 384 (98%)  | 8 (2%)  | 0        | 100   | 100    |
| 65  | 6     | 352/380~(93%)              | 344 (98%)  | 8 (2%)  | 0        | 100   | 100    |
| 66  | 7     | 292/338~(86%)              | 284 (97%)  | 8 (3%)  | 0        | 100   | 100    |
| 67  | 8     | 155/206~(75%)              | 153 (99%)  | 2 (1%)  | 0        | 100   | 100    |
| 68  | 9     | 122/137~(89%)              | 121 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 69  | a     | 96/142~(68%)               | 95 (99%)   | 1 (1%)  | 0        | 100   | 100    |
| 70  | b     | 149/215~(69%)              | 147 (99%)  | 2 (1%)  | 0        | 100   | 100    |
| 71  | с     | 282/332~(85%)              | 279 (99%)  | 3 (1%)  | 0        | 100   | 100    |
| 72  | d     | 235/306~(77%)              | 231 (98%)  | 4 (2%)  | 0        | 100   | 100    |
| 73  | е     | 236/279~(85%)              | 230 (98%)  | 6 (2%)  | 0        | 100   | 100    |
| 74  | f     | 153/212~(72%)              | 151 (99%)  | 2 (1%)  | 0        | 100   | 100    |
| 75  | g     | 132/166~(80%)              | 130 (98%)  | 2 (2%)  | 0        | 100   | 100    |
| 76  | h     | 108/158~(68%)              | 108 (100%) | 0       | 0        | 100   | 100    |
| 77  | i     | 95/128 (74%)               | 93 (98%)   | 2 (2%)  | 0        | 100   | 100    |
| 78  | j     | 92/123~(75%)               | 90 (98%)   | 2 (2%)  | 0        | 100   | 100    |
| 79  | k     | 99/112~(88%)               | 99 (100%)  | 0       | 0        | 100   | 100    |
| 80  | 1     | 80/138~(58%)               | 79 (99%)   | 1 (1%)  | 0        | 100   | 100    |
| 81  | m     | 90/128~(70%)               | 89 (99%)   | 1 (1%)  | 0        | 100   | 100    |
| 82  | О     | 92/102~(90%)               | 91 (99%)   | 1 (1%)  | 0        | 100   | 100    |
| 83  | р     | 141/206~(68%)              | 140 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 84  | q     | $\overline{161/222}$ (72%) | 160 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 85  | r     | 160/196~(82%)              | 159 (99%)  | 1 (1%)  | 0        | 100   | 100    |
| 86  | s     | 382/439~(87%)              | 375 (98%)  | 7 (2%)  | 0        | 100   | 100    |
| 87  | t     | 44/198~(22%)               | 44 (100%)  | 0       | 0        | 100   | 100    |



| Mol | Chain | Analysed          | Favoured    | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-------------------|-------------|----------|----------|-------|--------|
| 87  | u     | 30/198~(15%)      | 30 (100%)   | 0        | 0        | 100   | 100    |
| 87  | v     | 30/198~(15%)      | 30 (100%)   | 0        | 0        | 100   | 100    |
| 87  | W     | 29/198~(15%)      | 29 (100%)   | 0        | 0        | 100   | 100    |
| 87  | х     | 29/198~(15%)      | 29 (100%)   | 0        | 0        | 100   | 100    |
| 87  | У     | 29/198~(15%)      | 29 (100%)   | 0        | 0        | 100   | 100    |
| 88  | Н     | 200/267~(75%)     | 194 (97%)   | 6 (3%)   | 0        | 100   | 100    |
| 89  | Z     | 250/325~(77%)     | 237~(95%)   | 12 (5%)  | 1 (0%)   | 34    | 48     |
| All | All   | 14697/19484~(75%) | 14472 (98%) | 220 (2%) | 5 (0%)   | 100   | 100    |

All (5) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 8   | AH    | 126 | ILE  |
| 89  | Z     | 128 | ASP  |
| 24  | AX    | 81  | HIS  |
| 39  | Е     | 150 | LYS  |
| 49  | Q     | 62  | ILE  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Rotameric  | Outliers | Percentiles |
|-----|-------|---------------|------------|----------|-------------|
| 2   | AB    | 197/249~(79%) | 197~(100%) | 0        | 100 100     |
| 3   | AC    | 115/143~(80%) | 115 (100%) | 0        | 100 100     |
| 4   | AD    | 286/357~(80%) | 286~(100%) | 0        | 100 100     |
| 5   | AE    | 104/107~(97%) | 104 (100%) | 0        | 100 100     |
| 6   | AF    | 185/209~(88%) | 185~(100%) | 0        | 100 100     |
| 7   | AG    | 285/342~(83%) | 285~(100%) | 0        | 100 100     |
| 8   | AH    | 130/180~(72%) | 130 (100%) | 0        | 100 100     |
| 9   | AI    | 104/146~(71%) | 104 (100%) | 0        | 100 100     |



| Mol | Chain | Analysed                    | Rotameric  | Outliers | Perce | entiles |
|-----|-------|-----------------------------|------------|----------|-------|---------|
| 10  | AJ    | 93/118~(79%)                | 93~(100%)  | 0        | 100   | 100     |
| 11  | AK    | 91/113~(80%)                | 91 (100%)  | 0        | 100   | 100     |
| 12  | AL    | 158/226~(70%)               | 158~(100%) | 0        | 100   | 100     |
| 13  | AM    | 97/113~(86%)                | 97~(100%)  | 0        | 100   | 100     |
| 14  | AN    | 96/115~(84%)                | 96 (100%)  | 0        | 100   | 100     |
| 15  | AO    | 174/230~(76%)               | 174 (100%) | 0        | 100   | 100     |
| 16  | AP    | 88/123~(72%)                | 88 (100%)  | 0        | 100   | 100     |
| 17  | AQ    | 78/79~(99%)                 | 78 (100%)  | 0        | 100   | 100     |
| 18  | AR    | 264/318~(83%)               | 264 (100%) | 0        | 100   | 100     |
| 19  | AS    | 116/164~(71%)               | 116 (100%) | 0        | 100   | 100     |
| 20  | AT    | 153/157~(98%)               | 153 (100%) | 0        | 100   | 100     |
| 21  | AU    | 152/174~(87%)               | 152 (100%) | 0        | 100   | 100     |
| 22  | AV    | 325/364~(89%)               | 325 (100%) | 0        | 100   | 100     |
| 23  | AW    | 87/158~(55%)                | 87 (100%)  | 0        | 100   | 100     |
| 24  | AX    | 311/351~(89%)               | 311 (100%) | 0        | 100   | 100     |
| 25  | AY    | 137/357~(38%)               | 137 (100%) | 0        | 100   | 100     |
| 26  | AZ    | 90/95~(95%)                 | 90 (100%)  | 0        | 100   | 100     |
| 27  | A0    | 188/189~(100%)              | 188 (100%) | 0        | 100   | 100     |
| 28  | A1    | 257/291~(88%)               | 257 (100%) | 0        | 100   | 100     |
| 29  | A2    | 100/101~(99%)               | 100 (100%) | 0        | 100   | 100     |
| 30  | A3    | 65/166~(39%)                | 65 (100%)  | 0        | 100   | 100     |
| 31  | A4    | 526/609~(86%)               | 526 (100%) | 0        | 100   | 100     |
| 38  | D     | 192/245~(78%)               | 192 (100%) | 0        | 100   | 100     |
| 39  | Ε     | 260/290~(90%)               | 260 (100%) | 0        | 100   | 100     |
| 40  | F     | 219/262~(84%)               | 219 (100%) | 0        | 100   | 100     |
| 41  | Ι     | 194/232~(84%)               | 194 (100%) | 0        | 100   | 100     |
| 42  | J     | $\overline{138/150}~(92\%)$ | 138 (100%) | 0        | 100   | 100     |
| 43  | K     | $\overline{154/155}~(99\%)$ | 154 (100%) | 0        | 100   | 100     |
| 44  | L     | 98/124~(79%)                | 98 (100%)  | 0        | 100   | 100     |
| 45  | М     | 245/249~(98%)               | 245 (100%) | 0        | 100   | 100     |
| 46  | N     | $189/211 \ (90\%)$          | 189 (100%) | 0        | 100   | 100     |



| Mol | Chain | Analysed      | Rotameric  | Outliers | Perce | ntiles |
|-----|-------|---------------|------------|----------|-------|--------|
| 47  | Ο     | 134/150~(89%) | 134 (100%) | 0        | 100   | 100    |
| 48  | Р     | 126/155~(81%) | 126~(100%) | 0        | 100   | 100    |
| 49  | Q     | 221/256~(86%) | 221 (100%) | 0        | 100   | 100    |
| 50  | R     | 118/126~(94%) | 118 (100%) | 0        | 100   | 100    |
| 51  | S     | 146/180~(81%) | 146 (100%) | 0        | 100   | 100    |
| 52  | Т     | 146/176~(83%) | 146 (100%) | 0        | 100   | 100    |
| 53  | U     | 134/135~(99%) | 134 (100%) | 0        | 100   | 100    |
| 54  | V     | 183/191~(96%) | 183 (100%) | 0        | 100   | 100    |
| 55  | W     | 94/119~(79%)  | 94 (100%)  | 0        | 100   | 100    |
| 56  | Х     | 220/229~(96%) | 220 (100%) | 0        | 100   | 100    |
| 57  | Y     | 163/223~(73%) | 162 (99%)  | 1 (1%)   | 86    | 93     |
| 58  | Z     | 113/147~(77%) | 113 (100%) | 0        | 100   | 100    |
| 59  | 0     | 99/164~(60%)  | 99 (100%)  | 0        | 100   | 100    |
| 60  | 1     | 53/60~(88%)   | 53 (100%)  | 0        | 100   | 100    |
| 61  | 2     | 40/72~(56%)   | 40 (100%)  | 0        | 100   | 100    |
| 62  | 3     | 88/166~(53%)  | 88 (100%)  | 0        | 100   | 100    |
| 63  | 4     | 37/89~(42%)   | 37 (100%)  | 0        | 100   | 100    |
| 64  | 5     | 353/368~(96%) | 353~(100%) | 0        | 100   | 100    |
| 65  | 6     | 313/332~(94%) | 313 (100%) | 0        | 100   | 100    |
| 66  | 7     | 270/303~(89%) | 270 (100%) | 0        | 100   | 100    |
| 67  | 8     | 146/190~(77%) | 146 (100%) | 0        | 100   | 100    |
| 68  | 9     | 104/112~(93%) | 104 (100%) | 0        | 100   | 100    |
| 69  | a     | 96/133~(72%)  | 95~(99%)   | 1 (1%)   | 76    | 86     |
| 70  | b     | 132/185~(71%) | 132 (100%) | 0        | 100   | 100    |
| 71  | с     | 251/288~(87%) | 251 (100%) | 0        | 100   | 100    |
| 72  | d     | 223/274 (81%) | 223 (100%) | 0        | 100   | 100    |
| 73  | е     | 207/236~(88%) | 207 (100%) | 0        | 100   | 100    |
| 74  | f     | 139/188 (74%) | 139 (100%) | 0        | 100   | 100    |
| 75  | g     | 124/148 (84%) | 124 (100%) | 0        | 100   | 100    |
| 76  | h     | 104/148~(70%) | 104 (100%) | 0        | 100   | 100    |
| 77  | i     | 86/110 (78%)  | 86 (100%)  | 0        | 100   | 100    |



| Mol | Chain | Analysed          | Rotameric    | Outliers | Perce | ntiles |
|-----|-------|-------------------|--------------|----------|-------|--------|
| 78  | j     | 74/97~(76%)       | 74 (100%)    | 0        | 100   | 100    |
| 79  | k     | 83/90~(92%)       | 83 (100%)    | 0        | 100   | 100    |
| 80  | 1     | 76/116~(66%)      | 76 (100%)    | 0        | 100   | 100    |
| 81  | m     | 85/113~(75%)      | 85 (100%)    | 0        | 100   | 100    |
| 82  | О     | 80/87~(92%)       | 80 (100%)    | 0        | 100   | 100    |
| 83  | р     | 135/181~(75%)     | 135 (100%)   | 0        | 100   | 100    |
| 84  | q     | 142/178~(80%)     | 142 (100%)   | 0        | 100   | 100    |
| 85  | r     | 147/169~(87%)     | 147 (100%)   | 0        | 100   | 100    |
| 86  | s     | 340/381~(89%)     | 340 (100%)   | 0        | 100   | 100    |
| 87  | t     | 40/158~(25%)      | 40 (100%)    | 0        | 100   | 100    |
| 87  | u     | 31/158~(20%)      | 31 (100%)    | 0        | 100   | 100    |
| 87  | v     | 31/158~(20%)      | 31 (100%)    | 0        | 100   | 100    |
| 87  | W     | 30/158~(19%)      | 30 (100%)    | 0        | 100   | 100    |
| 87  | х     | 30/158~(19%)      | 30 (100%)    | 0        | 100   | 100    |
| 87  | У     | 30/158~(19%)      | 30 (100%)    | 0        | 100   | 100    |
| 88  | Н     | 182/228~(80%)     | 182 (100%)   | 0        | 100   | 100    |
| 89  | Z     | 226/287~(79%)     | 226 (100%)   | 0        | 100   | 100    |
| All | All   | 13166/16790~(78%) | 13164 (100%) | 2(0%)    | 100   | 100    |

All (2) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 57  | Y     | 198 | ARG  |
| 69  | a     | 122 | ARG  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (46) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 4   | AD    | 302 | HIS  |
| 4   | AD    | 356 | GLN  |
| 5   | AE    | 56  | GLN  |
| 6   | AF    | 113 | GLN  |
| 6   | AF    | 146 | HIS  |
| 8   | AH    | 125 | HIS  |
| 9   | AI    | 87  | HIS  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 9   | AI    | 96  | GLN  |
| 9   | AI    | 178 | ASN  |
| 10  | AJ    | 105 | HIS  |
| 18  | AR    | 288 | GLN  |
| 20  | AT    | 101 | HIS  |
| 21  | AU    | 188 | ASN  |
| 22  | AV    | 380 | GLN  |
| 24  | AX    | 69  | ASN  |
| 24  | AX    | 159 | HIS  |
| 24  | AX    | 250 | GLN  |
| 28  | A1    | 185 | HIS  |
| 31  | A4    | 306 | ASN  |
| 38  | D     | 221 | ASN  |
| 39  | Е     | 125 | GLN  |
| 39  | Е     | 281 | ASN  |
| 40  | F     | 98  | GLN  |
| 40  | F     | 188 | HIS  |
| 46  | Ν     | 181 | HIS  |
| 47  | 0     | 100 | GLN  |
| 49  | Q     | 139 | GLN  |
| 51  | S     | 118 | ASN  |
| 53  | U     | 84  | ASN  |
| 53  | U     | 98  | GLN  |
| 58  | Ζ     | 150 | HIS  |
| 59  | 0     | 120 | HIS  |
| 64  | 5     | 331 | ASN  |
| 64  | 5     | 367 | ASN  |
| 65  | 6     | 320 | GLN  |
| 65  | 6     | 354 | GLN  |
| 69  | a     | 126 | HIS  |
| 70  | b     | 58  | ASN  |
| 70  | b     | 131 | HIS  |
| 73  | е     | 252 | HIS  |
| 77  | i     | 124 | HIS  |
| 82  | 0     | 21  | HIS  |
| 82  | 0     | 94  | HIS  |
| 86  | S     | 239 | ASN  |
| 89  | Z     | 241 | HIS  |
| 89  | Z     | 266 | GLN  |

# 5.3.3 RNA (i)



| Mol | Chain | Analysed        | Backbone Outliers | Pucker Outliers |
|-----|-------|-----------------|-------------------|-----------------|
| 1   | AA    | 950/954~(99%)   | 135~(14%)         | 1 (0%)          |
| 32  | Aw    | 67/68~(98%)     | 18 (26%)          | 0               |
| 33  | Ax    | 68/70~(97%)     | 13 (19%)          | 0               |
| 34  | Ay    | 68/70~(97%)     | 14 (20%)          | 0               |
| 35  | Az    | 32/34~(94%)     | 13 (40%)          | 0               |
| 36  | А     | 1556/1561~(99%) | 224 (14%)         | 3~(0%)          |
| 37  | В     | 71/72~(98%)     | 12 (16%)          | 0               |
| All | All   | 2812/2829~(99%) | 429~(15%)         | 4 (0%)          |

All (429) RNA backbone outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | AA    | 651 | А    |
| 1   | AA    | 673 | U    |
| 1   | AA    | 680 | U    |
| 1   | AA    | 688 | А    |
| 1   | AA    | 695 | А    |
| 1   | AA    | 704 | U    |
| 1   | AA    | 721 | U    |
| 1   | AA    | 722 | С    |
| 1   | AA    | 737 | С    |
| 1   | AA    | 738 | А    |
| 1   | AA    | 753 | А    |
| 1   | AA    | 761 | А    |
| 1   | AA    | 766 | G    |
| 1   | AA    | 777 | G    |
| 1   | AA    | 786 | G    |
| 1   | AA    | 791 | G    |
| 1   | AA    | 794 | U    |
| 1   | AA    | 796 | G    |
| 1   | AA    | 815 | С    |
| 1   | AA    | 830 | U    |
| 1   | AA    | 832 | U    |
| 1   | AA    | 835 | С    |
| 1   | AA    | 836 | А    |
| 1   | AA    | 851 | А    |
| 1   | AA    | 860 | А    |
| 1   | AA    | 861 | U    |
| 1   | AA    | 868 | С    |
| 1   | AA    | 869 | С    |
| 1   | AA    | 871 | А    |
| 1   | AA    | 890 | С    |
| 1   | AA    | 903 | U    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | AA    | 904  | С    |
| 1   | AA    | 907  | А    |
| 1   | AA    | 919  | А    |
| 1   | AA    | 929  | А    |
| 1   | AA    | 931  | С    |
| 1   | AA    | 932  | С    |
| 1   | AA    | 938  | А    |
| 1   | AA    | 939  | А    |
| 1   | AA    | 942  | А    |
| 1   | AA    | 946  | U    |
| 1   | AA    | 947  | U    |
| 1   | AA    | 960  | С    |
| 1   | AA    | 962  | С    |
| 1   | AA    | 967  | A    |
| 1   | AA    | 992  | U    |
| 1   | AA    | 1001 | С    |
| 1   | AA    | 1011 | С    |
| 1   | AA    | 1015 | А    |
| 1   | AA    | 1019 | А    |
| 1   | AA    | 1042 | U    |
| 1   | AA    | 1046 | А    |
| 1   | AA    | 1081 | U    |
| 1   | AA    | 1082 | А    |
| 1   | AA    | 1103 | А    |
| 1   | AA    | 1105 | С    |
| 1   | AA    | 1106 | С    |
| 1   | AA    | 1107 | U    |
| 1   | AA    | 1109 | А    |
| 1   | AA    | 1118 | A    |
| 1   | AA    | 1119 | U    |
| 1   | AA    | 1120 | С    |
| 1   | AA    | 1121 | A    |
| 1   | AA    | 1126 | A    |
| 1   | AA    | 1137 | A    |
| 1   | AA    | 1151 | С    |
| 1   | AA    | 1153 | С    |
| 1   | AA    | 1160 | A    |
| 1   | AA    | 1167 | A    |
| 1   | AA    | 1179 | G    |
| 1   | AA    | 1187 | U    |
| 1   | AA    | 1188 | A    |
| 1   | AA    | 1189 | U    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | AA    | 1190 | С    |
| 1   | AA    | 1193 | U    |
| 1   | AA    | 1220 | А    |
| 1   | AA    | 1223 | С    |
| 1   | AA    | 1225 | С    |
| 1   | AA    | 1229 | U    |
| 1   | AA    | 1247 | G    |
| 1   | AA    | 1248 | С    |
| 1   | AA    | 1250 | С    |
| 1   | AA    | 1251 | А    |
| 1   | AA    | 1258 | А    |
| 1   | AA    | 1271 | С    |
| 1   | AA    | 1273 | G    |
| 1   | AA    | 1275 | A    |
| 1   | AA    | 1283 | А    |
| 1   | AA    | 1284 | U    |
| 1   | AA    | 1285 | G    |
| 1   | AA    | 1290 | С    |
| 1   | AA    | 1291 | U    |
| 1   | AA    | 1307 | G    |
| 1   | AA    | 1326 | А    |
| 1   | AA    | 1327 | G    |
| 1   | AA    | 1343 | А    |
| 1   | AA    | 1344 | U    |
| 1   | AA    | 1353 | А    |
| 1   | AA    | 1354 | А    |
| 1   | AA    | 1356 | А    |
| 1   | AA    | 1378 | С    |
| 1   | AA    | 1387 | A    |
| 1   | AA    | 1390 | A    |
| 1   | AA    | 1405 | С    |
| 1   | AA    | 1406 | U    |
| 1   | AA    | 1407 | U    |
| 1   | AA    | 1422 | G    |
| 1   | AA    | 1430 | A    |
| 1   | AA    | 1462 | G    |
| 1   | AA    | 1463 | G    |
| 1   | AA    | 1469 | G    |
| 1   | AA    | 1474 | G    |
| 1   | AA    | 1481 | С    |
| 1   | AA    | 1503 | G    |
| 1   | AA    | 1519 | А    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | AA    | 1525 | С    |
| 1   | AA    | 1526 | U    |
| 1   | AA    | 1527 | А    |
| 1   | AA    | 1533 | С    |
| 1   | AA    | 1534 | С    |
| 1   | AA    | 1536 | А    |
| 1   | AA    | 1537 | С    |
| 1   | AA    | 1539 | С    |
| 1   | AA    | 1540 | А    |
| 1   | AA    | 1541 | U    |
| 1   | AA    | 1544 | А    |
| 1   | AA    | 1551 | G    |
| 1   | AA    | 1557 | A    |
| 1   | AA    | 1562 | G    |
| 1   | AA    | 1568 | U    |
| 1   | AA    | 1571 | U    |
| 1   | AA    | 1582 | G    |
| 1   | AA    | 1594 | G    |
| 1   | AA    | 1595 | G    |
| 1   | AA    | 1599 | А    |
| 32  | Aw    | 3    | G    |
| 32  | Aw    | 7    | А    |
| 32  | Aw    | 9    | А    |
| 32  | Aw    | 16   | А    |
| 32  | Aw    | 21   | А    |
| 32  | Aw    | 22   | А    |
| 32  | Aw    | 30   | G    |
| 32  | Aw    | 46   | А    |
| 32  | Aw    | 49   | U    |
| 32  | Aw    | 50   | A    |
| 32  | Aw    | 55   | A    |
| 32  | Aw    | 56   | A    |
| 32  | Aw    | 61   | U    |
| 32  | Aw    | 65   | A    |
| 32  | Aw    | 68   | U    |
| 32  | Aw    | 71   | C    |
| 32  | Aw    | 73   | U    |
| 32  | Aw    | 74   | C    |
| 33  | Ax    | 2    | A    |
| 33  | Ax    | 3    | G    |
| 33  | Ax    | 8    | U    |
| 33  | Ax    | 9    | А    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 33  | Ax    | 25   | С    |
| 33  | Ax    | 44   | А    |
| 33  | Ax    | 45   | G    |
| 33  | Ax    | 46   | А    |
| 33  | Ax    | 48   | U    |
| 33  | Ax    | 49   | G    |
| 33  | Ax    | 59   | U    |
| 33  | Ax    | 62   | С    |
| 33  | Ax    | 76   | А    |
| 34  | Ay    | 3    | G    |
| 34  | Ay    | 4    | G    |
| 34  | Ay    | 23   | A    |
| 34  | Ay    | 28   | С    |
| 34  | Ay    | 29   | U    |
| 34  | Ay    | 30   | G    |
| 34  | Ay    | 37   | A    |
| 34  | Ay    | 44   | A    |
| 34  | Ay    | 45   | G    |
| 34  | Ay    | 48   | U    |
| 34  | Ay    | 49   | G    |
| 34  | Ay    | 59   | U    |
| 34  | Ay    | 75   | С    |
| 34  | Ay    | 76   | A    |
| 35  | Az    | 0    | U    |
| 35  | Az    | 1    | U    |
| 35  | Az    | 8    | U    |
| 35  | Az    | 11   | U    |
| 35  | Az    | 12   | U    |
| 35  | Az    | 13   | U    |
| 35  | Az    | 15   | U    |
| 35  | Az    | 18   | A    |
| 35  | Az    | 22   | A    |
| 35  | Az    | 25   | U    |
| 35  | Az    | 26   | A    |
| 35  | Az    | 27   | C    |
| 35  | Az    | 32   | A    |
| 36  | A     | 1681 | G    |
| 36  | A     | 1689 | C    |
| 36  | A     | 1692 | A    |
| 36  | A     | 1693 | C    |
| 36  | A     | 1694 | U    |
| 36  | A     | 1699 | C    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 36  | А     | 1700 | U    |
| 36  | А     | 1704 | U    |
| 36  | А     | 1708 | А    |
| 36  | А     | 1711 | С    |
| 36  | А     | 1724 | А    |
| 36  | А     | 1727 | A    |
| 36  | А     | 1728 | U    |
| 36  | А     | 1748 | G    |
| 36  | А     | 1765 | С    |
| 36  | А     | 1805 | А    |
| 36  | А     | 1807 | U    |
| 36  | А     | 1808 | А    |
| 36  | А     | 1809 | U    |
| 36  | А     | 1810 | А    |
| 36  | А     | 1821 | А    |
| 36  | А     | 1827 | С    |
| 36  | А     | 1828 | А    |
| 36  | А     | 1829 | А    |
| 36  | А     | 1832 | А    |
| 36  | А     | 1836 | А    |
| 36  | А     | 1844 | А    |
| 36  | А     | 1854 | U    |
| 36  | А     | 1856 | А    |
| 36  | А     | 1869 | A    |
| 36  | А     | 1871 | А    |
| 36  | А     | 1882 | А    |
| 36  | А     | 1887 | А    |
| 36  | А     | 1893 | А    |
| 36  | А     | 1901 | С    |
| 36  | А     | 1903 | С    |
| 36  | А     | 1918 | G    |
| 36  | А     | 1937 | A    |
| 36  | А     | 1940 | A    |
| 36  | А     | 1958 | G    |
| 36  | А     | 1985 | G    |
| 36  | А     | 1993 | A    |
| 36  | А     | 1994 | A    |
| 36  | А     | 2003 | A    |
| 36  | А     | 2015 | G    |
| 36  | А     | 2022 | G    |
| 36  | А     | 2030 | U    |
| 36  | А     | 2031 | А    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 36  | А     | 2036 | С    |
| 36  | А     | 2037 | U    |
| 36  | А     | 2039 | А    |
| 36  | А     | 2054 | U    |
| 36  | А     | 2055 | U    |
| 36  | А     | 2060 | А    |
| 36  | А     | 2069 | U    |
| 36  | А     | 2070 | С    |
| 36  | А     | 2071 | U    |
| 36  | А     | 2079 | С    |
| 36  | А     | 2099 | U    |
| 36  | А     | 2113 | G    |
| 36  | А     | 2125 | С    |
| 36  | А     | 2126 | U    |
| 36  | А     | 2147 | G    |
| 36  | А     | 2160 | А    |
| 36  | А     | 2163 | А    |
| 36  | А     | 2168 | U    |
| 36  | А     | 2181 | А    |
| 36  | А     | 2192 | А    |
| 36  | А     | 2198 | А    |
| 36  | А     | 2200 | А    |
| 36  | А     | 2214 | А    |
| 36  | А     | 2219 | С    |
| 36  | А     | 2220 | А    |
| 36  | А     | 2221 | С    |
| 36  | А     | 2222 | U    |
| 36  | А     | 2225 | С    |
| 36  | А     | 2226 | U    |
| 36  | А     | 2227 | А    |
| 36  | А     | 2228 | А    |
| 36  | А     | 2230 | А    |
| 36  | А     | 2237 | А    |
| 36  | А     | 2239 | А    |
| 36  | А     | 2241 | А    |
| 36  | А     | 2243 | A    |
| 36  | А     | 2245 | А    |
| 36  | А     | 2246 | A    |
| 36  | А     | 2262 | С    |
| 36  | А     | 2263 | С    |
| 36  | А     | 2284 | С    |
| 36  | А     | 2285 | U    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 36  | А     | 2297 | А    |
| 36  | А     | 2300 | G    |
| 36  | А     | 2322 | С    |
| 36  | А     | 2331 | С    |
| 36  | А     | 2332 | С    |
| 36  | А     | 2345 | G    |
| 36  | А     | 2350 | А    |
| 36  | А     | 2353 | A    |
| 36  | А     | 2357 | С    |
| 36  | А     | 2363 | A    |
| 36  | А     | 2372 | U    |
| 36  | А     | 2374 | A    |
| 36  | А     | 2390 | А    |
| 36  | А     | 2399 | А    |
| 36  | А     | 2401 | А    |
| 36  | А     | 2404 | U    |
| 36  | А     | 2407 | U    |
| 36  | А     | 2415 | С    |
| 36  | А     | 2444 | А    |
| 36  | А     | 2446 | А    |
| 36  | А     | 2451 | А    |
| 36  | А     | 2478 | G    |
| 36  | А     | 2484 | С    |
| 36  | А     | 2485 | U    |
| 36  | А     | 2493 | С    |
| 36  | А     | 2502 | С    |
| 36  | А     | 2520 | С    |
| 36  | А     | 2521 | А    |
| 36  | А     | 2527 | А    |
| 36  | А     | 2540 | С    |
| 36  | А     | 2558 | А    |
| 36  | А     | 2570 | С    |
| 36  | А     | 2587 | G    |
| 36  | А     | 2592 | G    |
| 36  | А     | 2593 | G    |
| 36  | А     | 2599 | U    |
| 36  | А     | 2600 | А    |
| 36  | А     | 2601 | А    |
| 36  | А     | 2603 | С    |
| 36  | А     | 2618 | U    |
| 36  | А     | 2627 | G    |
| 36  | А     | 2629 | А    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 36  | А     | 2630 | U    |
| 36  | А     | 2633 | А    |
| 36  | А     | 2635 | G    |
| 36  | А     | 2654 | U    |
| 36  | А     | 2656 | U    |
| 36  | А     | 2683 | С    |
| 36  | А     | 2686 | G    |
| 36  | А     | 2694 | А    |
| 36  | А     | 2696 | А    |
| 36  | А     | 2706 | А    |
| 36  | А     | 2718 | С    |
| 36  | А     | 2719 | G    |
| 36  | А     | 2723 | А    |
| 36  | А     | 2724 | G    |
| 36  | А     | 2725 | А    |
| 36  | А     | 2732 | G    |
| 36  | А     | 2745 | А    |
| 36  | А     | 2761 | С    |
| 36  | А     | 2762 | С    |
| 36  | А     | 2765 | А    |
| 36  | А     | 2767 | A    |
| 36  | А     | 2768 | А    |
| 36  | А     | 2775 | А    |
| 36  | А     | 2781 | U    |
| 36  | А     | 2782 | А    |
| 36  | А     | 2786 | U    |
| 36  | А     | 2787 | А    |
| 36  | А     | 2788 | С    |
| 36  | А     | 2791 | А    |
| 36  | А     | 2810 | G    |
| 36  | А     | 2832 | А    |
| 36  | А     | 2833 | А    |
| 36  | A     | 2847 | С    |
| 36  | A     | 2864 | U    |
| 36  | А     | 2865 | С    |
| 36  | A     | 2882 | U    |
| 36  | A     | 2883 | A    |
| 36  | А     | 2884 | С    |
| 36  | A     | 2885 | U    |
| 36  | A     | 2886 | A    |
| 36  | А     | 2887 | U    |
| 36  | А     | 2888 | A    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 36  | А     | 2889 | С    |
| 36  | А     | 2893 | А    |
| 36  | А     | 2910 | А    |
| 36  | А     | 2911 | С    |
| 36  | А     | 2913 | А    |
| 36  | А     | 2917 | G    |
| 36  | А     | 2922 | А    |
| 36  | А     | 2928 | С    |
| 36  | А     | 2932 | G    |
| 36  | А     | 2935 | А    |
| 36  | А     | 2956 | А    |
| 36  | А     | 2989 | G    |
| 36  | А     | 2990 | А    |
| 36  | A     | 2992 | G    |
| 36  | A     | 3005 | А    |
| 36  | А     | 3007 | С    |
| 36  | А     | 3016 | G    |
| 36  | A     | 3041 | U    |
| 36  | А     | 3053 | А    |
| 36  | A     | 3054 | G    |
| 36  | A     | 3060 | С    |
| 36  | A     | 3090 | G    |
| 36  | А     | 3100 | U    |
| 36  | А     | 3102 | U    |
| 36  | A     | 3108 | U    |
| 36  | А     | 3109 | U    |
| 36  | A     | 3110 | С    |
| 36  | A     | 3111 | А    |
| 36  | А     | 3112 | А    |
| 36  | A     | 3113 | А    |
| 36  | A     | 3157 | С    |
| 36  | А     | 3158 | А    |
| 36  | A     | 3162 | C    |
| 36  | A     | 3169 | C    |
| 36  | A     | 3172 | С    |
| 36  | A     | 3176 | A    |
| 36  | A     | 3183 | U    |
| 36  | A     | 3199 | U    |
| 36  | A     | 3200 | U    |
| 36  | A     | 3207 | А    |
| 36  | A     | 3208 | C    |
| 36  | А     | 3209 | А    |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 36  | А     | 3210 | C    |
| 36  | А     | 3212 | С    |
| 36  | А     | 3217 | А    |
| 36  | А     | 3218 | А    |
| 36  | А     | 3228 | U    |
| 36  | А     | 3229 | U    |
| 36  | А     | 3230 | G    |
| 36  | А     | 3231 | U    |
| 37  | В     | 8    | U    |
| 37  | В     | 16   | С    |
| 37  | В     | 21   | А    |
| 37  | В     | 45   | G    |
| 37  | В     | 48   | U    |
| 37  | В     | 54   | С    |
| 37  | В     | 55   | U    |
| 37  | В     | 56   | U    |
| 37  | В     | 58   | А    |
| 37  | В     | 64   | А    |
| 37  | В     | 69   | U    |
| 37  | В     | 76   | А    |

All (4) RNA pucker outliers are listed below:

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | AA    | 1539 | С    |
| 36  | А     | 2030 | U    |
| 36  | А     | 2112 | А    |
| 36  | А     | 2245 | А    |

# 5.4 Non-standard residues in protein, DNA, RNA chains (i)

19 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).



| Mal | Turne | Chain | Dec  | Link     | Bo       | Bond lengths |          |          | Bond angles |         |  |
|-----|-------|-------|------|----------|----------|--------------|----------|----------|-------------|---------|--|
|     | туре  | Chain | nes  |          | Counts   | RMSZ         | # Z  > 2 | Counts   | RMSZ        | # Z >2  |  |
| 1   | 5MC   | AA    | 1488 | 1        | 18,22,23 | 0.31         | 0        | 26,32,35 | 0.42        | 0       |  |
| 79  | AYA   | k     | 2    | 79       | 6,7,8    | 0.83         | 0        | 5,8,10   | 0.52        | 0       |  |
| 1   | 5MU   | AA    | 1076 | 1        | 19,22,23 | 0.62         | 0        | 28,32,35 | 1.20        | 3 (10%) |  |
| 37  | 2MG   | В     | 10   | 37       | 18,26,27 | 1.16         | 2 (11%)  | 16,38,41 | 0.88        | 1 (6%)  |  |
| 29  | AYA   | A2    | 2    | 29       | 6,7,8    | 0.80         | 0        | 5,8,10   | 0.56        | 0       |  |
| 36  | OMU   | А     | 3039 | 94,36    | 19,22,23 | 0.27         | 0        | 26,31,34 | 0.42        | 0       |  |
| 1   | MA6   | AA    | 1583 | 1        | 18,26,27 | 0.74         | 0        | 19,38,41 | 0.55        | 0       |  |
| 36  | PSU   | А     | 3067 | 36       | 18,21,22 | 0.79         | 0        | 22,30,33 | 2.56        | 5 (22%) |  |
| 17  | AYA   | AQ    | 2    | 17       | 6,7,8    | 0.79         | 0        | 5,8,10   | 0.51        | 0       |  |
| 37  | PSU   | В     | 39   | 37       | 18,21,22 | 0.78         | 0        | 22,30,33 | 2.54        | 4 (18%) |  |
| 1   | B8T   | AA    | 1486 | 93,1     | 19,22,23 | 0.31         | 0        | 26,31,34 | 0.32        | 0       |  |
| 36  | OMG   | А     | 3040 | 36,32    | 18,26,27 | 0.92         | 1 (5%)   | 19,38,41 | 0.61        | 0       |  |
| 36  | 1MA   | А     | 2617 | 36       | 16,25,26 | 1.15         | 3 (18%)  | 18,37,40 | 0.91        | 1 (5%)  |  |
| 36  | OMG   | А     | 2815 | 33,94,36 | 18,26,27 | 0.94         | 2 (11%)  | 19,38,41 | 0.62        | 0       |  |
| 53  | AYA   | U     | 2    | 53       | 6,7,8    | 0.80         | 0        | 5,8,10   | 0.58        | 0       |  |
| 1   | MA6   | AA    | 1584 | 1        | 18,26,27 | 0.75         | 0        | 19,38,41 | 0.54        | 0       |  |
| 43  | SAC   | Κ     | 2    | 43       | 7,8,9    | 0.24         | 0        | 8,9,11   | 0.56        | 0       |  |
| 37  | 1MA   | В     | 9    | 37       | 16,25,26 | 1.16         | 2 (12%)  | 18,37,40 | 0.88        | 1 (5%)  |  |
| 9   | 5F0   | AI    | 184  | 9        | 8,8,9    | 0.58         | 0        | 7,9,11   | 1.17        | 1 (14%) |  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type            | Chain | $\mathbf{Res}$ | Link     | Chirals | Torsions  | Rings   |
|-----|-----------------|-------|----------------|----------|---------|-----------|---------|
| 1   | 5MC             | AA    | 1488           | 1        | -       | 0/7/25/26 | 0/2/2/2 |
| 79  | AYA             | k     | 2              | 79       | -       | 1/4/6/8   | -       |
| 1   | $5 \mathrm{MU}$ | AA    | 1076           | 1        | -       | 0/7/25/26 | 0/2/2/2 |
| 37  | 2MG             | В     | 10             | 37       | -       | 0/5/27/28 | 0/3/3/3 |
| 29  | AYA             | A2    | 2              | 29       | -       | 0/4/6/8   | -       |
| 36  | OMU             | А     | 3039           | 94,36    | -       | 0/9/27/28 | 0/2/2/2 |
| 1   | MA6             | AA    | 1583           | 1        | -       | 0/7/29/30 | 0/3/3/3 |
| 36  | PSU             | А     | 3067           | 36       | -       | 0/7/25/26 | 0/2/2/2 |
| 17  | AYA             | AQ    | 2              | 17       | -       | 1/4/6/8   | -       |
| 37  | PSU             | В     | 39             | 37       | -       | 0/7/25/26 | 0/2/2/2 |
| 1   | B8T             | AA    | 1486           | 93,1     | -       | 0/7/27/28 | 0/2/2/2 |
| 36  | OMG             | А     | 3040           | 36,32    | -       | 0/5/27/28 | 0/3/3/3 |
| 36  | 1MA             | A     | 2617           | 36       | -       | 0/3/25/26 | 0/3/3/3 |
| 36  | OMG             | A     | 2815           | 33,94,36 | -       | 0/5/27/28 | 0/3/3/3 |
| 53  | AYA             | U     | 2              | 53       | -       | 0/4/6/8   | -       |



|     | 5    | 1     | 1 5  |      |         |           |         |
|-----|------|-------|------|------|---------|-----------|---------|
| Mol | Type | Chain | Res  | Link | Chirals | Torsions  | Rings   |
| 1   | MA6  | AA    | 1584 | 1    | -       | 2/7/29/30 | 0/3/3/3 |
| 43  | SAC  | K     | 2    | 43   | -       | 0/7/8/10  | -       |
| 37  | 1MA  | В     | 9    | 37   | -       | 0/3/25/26 | 0/3/3/3 |
| 9   | 5F0  | AI    | 184  | 9    | -       | 0/9/9/10  | -       |

All (10) bond length outliers are listed below:

| Mol | Chain | Res  | Type | Atoms |       | Observed(Å) | Ideal(Å) |
|-----|-------|------|------|-------|-------|-------------|----------|
| 37  | В     | 9    | 1MA  | C6-N6 | 3.10  | 1.35        | 1.27     |
| 36  | А     | 2617 | 1MA  | C6-N6 | 3.09  | 1.35        | 1.27     |
| 37  | В     | 10   | 2MG  | C8-N7 | -3.04 | 1.29        | 1.35     |
| 37  | В     | 10   | 2MG  | C5-C6 | -2.39 | 1.42        | 1.47     |
| 36  | А     | 2815 | OMG  | C5-C6 | -2.25 | 1.42        | 1.47     |
| 36  | А     | 3040 | OMG  | C5-C6 | -2.21 | 1.42        | 1.47     |
| 37  | В     | 9    | 1MA  | C5-C4 | -2.14 | 1.37        | 1.43     |
| 36  | А     | 2617 | 1MA  | C5-C4 | -2.10 | 1.37        | 1.43     |
| 36  | А     | 2815 | OMG  | C8-N7 | -2.08 | 1.31        | 1.35     |
| 36  | А     | 2617 | 1MA  | C8-N7 | -2.01 | 1.31        | 1.35     |

All (16) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|-------|------------------|---------------|
| 37  | В     | 39   | PSU  | N1-C2-N3    | 8.06  | 124.26           | 115.13        |
| 36  | А     | 3067 | PSU  | N1-C2-N3    | 8.05  | 124.25           | 115.13        |
| 37  | В     | 39   | PSU  | C4-N3-C2    | -6.54 | 116.92           | 126.34        |
| 36  | А     | 3067 | PSU  | C4-N3-C2    | -6.53 | 116.92           | 126.34        |
| 1   | AA    | 1076 | 5MU  | C4-N3-C2    | -4.78 | 121.17           | 127.35        |
| 36  | А     | 3067 | PSU  | O2-C2-N1    | -3.66 | 118.76           | 122.79        |
| 37  | В     | 39   | PSU  | O2-C2-N1    | -3.62 | 118.81           | 122.79        |
| 9   | AI    | 184  | 5F0  | O-C-CB      | -2.74 | 117.45           | 125.43        |
| 1   | AA    | 1076 | 5MU  | C5-C4-N3    | 2.63  | 117.56           | 115.31        |
| 37  | В     | 39   | PSU  | O2-C2-N3    | -2.59 | 116.93           | 121.82        |
| 36  | А     | 3067 | PSU  | O2-C2-N3    | -2.56 | 116.98           | 121.82        |
| 1   | AA    | 1076 | 5MU  | N3-C2-N1    | 2.23  | 117.85           | 114.89        |
| 36  | А     | 3067 | PSU  | O4'-C1'-C2' | 2.18  | 108.22           | 105.14        |
| 37  | В     | 10   | 2MG  | O6-C6-C5    | 2.17  | 128.61           | 124.37        |
| 37  | В     | 9    | 1MA  | N1-C6-N6    | 2.09  | 125.08           | 119.77        |
| 36  | А     | 2617 | 1MA  | N1-C6-N6    | 2.07  | 125.03           | 119.77        |

There are no chirality outliers.

All (4) torsion outliers are listed below:



| Mol | Chain | Res  | Type | Atoms         |
|-----|-------|------|------|---------------|
| 1   | AA    | 1584 | MA6  | C5-C6-N6-C9   |
| 79  | k     | 2    | AYA  | C-CA-N-CT     |
| 1   | AA    | 1584 | MA6  | C4'-C5'-O5'-P |
| 17  | AQ    | 2    | AYA  | CB-CA-N-CT    |

There are no ring outliers.

4 monomers are involved in 5 short contacts:

| Mol | Chain | Res  | Type | Clashes | Symm-Clashes |
|-----|-------|------|------|---------|--------------|
| 1   | AA    | 1583 | MA6  | 1       | 0            |
| 36  | А     | 3067 | PSU  | 1       | 0            |
| 1   | AA    | 1486 | B8T  | 2       | 0            |
| 36  | А     | 2815 | OMG  | 1       | 0            |

### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

# 5.6 Ligand geometry (i)

Of 278 ligands modelled in this entry, 265 are monoatomic - leaving 13 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal   | Tune | Chain | Chain Res |       | Bo       | ond leng | ths    | B        | ond ang | les    |     |     |  |        |      |          |        |      |          |
|-------|------|-------|-----------|-------|----------|----------|--------|----------|---------|--------|-----|-----|--|--------|------|----------|--------|------|----------|
| INIOI | туре | Unann | ries      | nes   | ries     | nes      | ries   | ries     | nes     | nes    | nes | nes |  | Counts | RMSZ | # Z  > 2 | Counts | RMSZ | # Z  > 2 |
| 92    | SPD  | А     | 3302      | -     | 9,9,9    | 0.33     | 0      | 8,8,8    | 1.17    | 0      |     |     |  |        |      |          |        |      |          |
| 96    | FES  | r     | 201       | 85,41 | 0,4,4    | -        | -      | -        |         | •      |     |     |  |        |      |          |        |      |          |
| 90    | NAD  | AA    | 1701      | 93    | 42,48,48 | 0.57     | 0      | 50,73,73 | 0.65    | 1 (2%) |     |     |  |        |      |          |        |      |          |
| 96    | FES  | AT    | 201       | 20,13 | 0,4,4    | -        | -      | -        |         |        |     |     |  |        |      |          |        |      |          |
| 98    | GDP  | AX    | 503       | -     | 24,30,30 | 0.88     | 1 (4%) | 30,47,47 | 0.61    | 0      |     |     |  |        |      |          |        |      |          |
| 92    | SPD  | А     | 3301      | -     | 9,9,9    | 0.27     | 0      | 8,8,8    | 1.18    | 0      |     |     |  |        |      |          |        |      |          |
| 96    | FES  | AP    | 201       | 5,16  | 0,4,4    | -        | -      | -        |         |        |     |     |  |        |      |          |        |      |          |
| 92    | SPD  | А     | 3303      | -     | 9,9,9    | 0.34     | 0      | 8,8,8    | 1.12    | 0      |     |     |  |        |      |          |        |      |          |
| 97    | ATP  | AX    | 501       | 93    | 26,33,33 | 0.75     | 0      | 31,52,52 | 0.65    | 0      |     |     |  |        |      |          |        |      |          |
| 91    | SPM  | AA    | 1702      | -     | 13,13,13 | 0.28     | 0      | 12,12,12 | 0.97    | 0      |     |     |  |        |      |          |        |      |          |



| Mol Turno |      | Chain | Dec  | Tink | Bond lengths |      |       | Bond angles |      |          |        |      |          |
|-----------|------|-------|------|------|--------------|------|-------|-------------|------|----------|--------|------|----------|
| IVIOI     | туре | Unain | nes  | nes  | nes          | nes  | LIIIK | Counts      | RMSZ | # Z  > 2 | Counts | RMSZ | # Z  > 2 |
| 100       | VAL  | В     | 101  | 37   | 4,6,7        | 0.52 | 0     | 6,7,9       | 0.98 | 0        |        |      |          |
| 99        | PUT  | А     | 3304 | -    | $5,\!5,\!5$  | 0.24 | 0     | 4,4,4       | 0.52 | 0        |        |      |          |
| 92        | SPD  | AA    | 1703 | -    | 9,9,9        | 0.29 | 0     | 8,8,8       | 1.31 | 2 (25%)  |        |      |          |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res  | Link  | Chirals | Torsions   | Rings   |
|-----|------|-------|------|-------|---------|------------|---------|
| 92  | SPD  | А     | 3302 | -     | -       | 0/7/7/7    | -       |
| 96  | FES  | r     | 201  | 85,41 | -       | -          | 0/1/1/1 |
| 90  | NAD  | AA    | 1701 | 93    | -       | 0/26/62/62 | 0/5/5/5 |
| 96  | FES  | AT    | 201  | 20,13 | -       | -          | 0/1/1/1 |
| 98  | GDP  | AX    | 503  | -     | -       | 0/12/32/32 | 0/3/3/3 |
| 92  | SPD  | А     | 3301 | -     | -       | 1/7/7/7    | -       |
| 96  | FES  | AP    | 201  | 5,16  | -       | -          | 0/1/1/1 |
| 92  | SPD  | А     | 3303 | -     | -       | 2/7/7/7    | -       |
| 97  | ATP  | AX    | 501  | 93    | -       | 0/18/38/38 | 0/3/3/3 |
| 91  | SPM  | AA    | 1702 | -     | -       | 0/11/11/11 | -       |
| 100 | VAL  | В     | 101  | 37    | -       | 0/5/6/8    | -       |
| 99  | PUT  | А     | 3304 | -     | -       | 0/3/3/3    | -       |
| 92  | SPD  | AA    | 1703 | -     | -       | 0/7/7/7    | -       |

All (1) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|-------|-------------|----------|
| 98  | AX    | 503 | GDP  | C5-C6 | -2.20 | 1.42        | 1.47     |

All (3) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-------------|-------|------------------|---------------|
| 90  | AA    | 1701 | NAD  | C5A-C6A-N6A | 2.31  | 123.87           | 120.35        |
| 92  | AA    | 1703 | SPD  | C4-C5-N6    | -2.24 | 106.09           | 112.14        |
| 92  | AA    | 1703 | SPD  | C8-C7-N6    | -2.09 | 106.49           | 112.14        |

There are no chirality outliers.

All (3) torsion outliers are listed below:

| WOI | Chain | Res  | Type | Atoms       |
|-----|-------|------|------|-------------|
| 92  | А     | 3303 | SPD  | C4-C5-N6-C7 |



Continued from previous page...

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms       |
|-----|-------|----------------|------|-------------|
| 92  | А     | 3301           | SPD  | N6-C7-C8-C9 |
| 92  | А     | 3303           | SPD  | C8-C7-N6-C5 |

There are no ring outliers.

2 monomers are involved in 2 short contacts:

| Mol | Chain | Res  | Type | Clashes | Symm-Clashes |
|-----|-------|------|------|---------|--------------|
| 90  | AA    | 1701 | NAD  | 1       | 0            |
| 100 | В     | 101  | VAL  | 1       | 0            |

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.









### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

| Mol | Chain | Number of breaks |
|-----|-------|------------------|
| 34  | Ay    | 1                |
| 33  | Ax    | 1                |
| 35  | Az    | 1                |

All chain breaks are listed below:

| Model | Chain | Residue-1 | Atom-1 | Residue-2 | Atom-2 | Distance (Å) |
|-------|-------|-----------|--------|-----------|--------|--------------|
| 1     | Ay    | 15:A      | O3'    | 21:A      | Р      | 9.67         |
| 1     | Ax    | 15:A      | O3'    | 21:A      | Р      | 8.73         |
| 1     | Az    | 3:A       | O3'    | 4:A       | Р      | 3.00         |



# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-13981. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

# 6.1 Orthogonal projections (i)

#### 6.1.1 Primary map



6.1.2 Raw map



The images above show the map projected in three orthogonal directions.



### 6.2 Central slices (i)

### 6.2.1 Primary map



X Index: 270



Y Index: 270



Z Index: 270

#### 6.2.2 Raw map



X Index: 270

Y Index: 270

Z Index: 270

The images above show central slices of the map in three orthogonal directions.



### 6.3 Largest variance slices (i)

### 6.3.1 Primary map



X Index: 237





Z Index: 240

#### 6.3.2 Raw map



X Index: 289

Y Index: 318



The images above show the largest variance slices of the map in three orthogonal directions.



# 6.4 Orthogonal standard-deviation projections (False-color) (i)

### 6.4.1 Primary map



6.4.2 Raw map



The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.



#### 6.5 Orthogonal surface views (i)

6.5.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 2.8. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

#### 6.5.2 Raw map



These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.



# 6.6 Mask visualisation (i)

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

#### 6.6.1 emd\_13981\_msk\_1.map (i)



6.6.2 emd\_13981\_msk\_2.map (i)



Υ



### $6.6.3 \quad \mathrm{emd\_13981\_msk\_3.map}~(i)$



6.6.4 emd\_13981\_msk\_4.map (i)



6.6.5 emd\_13981\_msk\_5.map (i)



### $6.6.6 \quad \mathrm{emd\_13981\_msk\_6.map} \ (i)$



6.6.7 emd\_13981\_msk\_7.map (i)



6.6.8 emd\_13981\_msk\_8.map (i)



# 6.6.9 emd\_13981\_msk\_9.map (i)







Ζ


# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

# 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



## 7.2 Volume estimate (i)



The volume at the recommended contour level is 1416  $\rm nm^3;$  this corresponds to an approximate mass of 1279 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



# 7.3 Rotationally averaged power spectrum (i)



\*Reported resolution corresponds to spatial frequency of 0.380  ${\rm \AA^{-1}}$ 



# 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

#### 8.1 FSC (i)



\*Reported resolution corresponds to spatial frequency of 0.380  $\mathrm{\AA^{-1}}$ 



## 8.2 Resolution estimates (i)

| $\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$ | Estimation criterion (FSC cut-off) |      |          |
|---------------------------------------------------------|------------------------------------|------|----------|
| Resolution estimate (A)                                 | 0.143                              | 0.5  | Half-bit |
| Reported by author                                      | 2.63                               | -    | -        |
| Author-provided FSC curve                               | -                                  | -    | -        |
| Unmasked-calculated*                                    | 3.01                               | 3.87 | 3.07     |

\*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.01 differs from the reported value 2.63 by more than 10 %



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-13981 and PDB model 7QI5. Per-residue inclusion information can be found in section 3 on page 31.

# 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 2.8 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



#### 9.2 Q-score mapped to coordinate model (i)



The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

#### 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (2.8).



## 9.4 Atom inclusion (i)



At the recommended contour level, 91% of all backbone atoms, 90% of all non-hydrogen atoms, are inside the map.



1.0

0.0 <0.0

# 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (2.8) and Q-score for the entire model and for each chain.

| $\operatorname{Chain}$ | Atom inclusion | Q-score |
|------------------------|----------------|---------|
| All                    | 0.9040         | 0.5940  |
| 0                      | 0.9130         | 0.6410  |
| 1                      | 0.8960         | 0.6060  |
| 2                      | 0.9950         | 0.7280  |
| 3                      | 0.9860         | 0.7160  |
| 4                      | 0.9660         | 0.6610  |
| 5                      | 0.9290         | 0.6170  |
| 6                      | 0.9530         | 0.6300  |
| 7                      | 0.8520         | 0.5690  |
| 8                      | 0.8120         | 0.5150  |
| 9                      | 0.8730         | 0.5940  |
| A                      | 0.9740         | 0.6620  |
| A0                     | 0.8550         | 0.5140  |
| A1                     | 0.9160         | 0.5830  |
| A2                     | 0.8650         | 0.5540  |
| A3                     | 0.9400         | 0.6400  |
| A4                     | 0.8730         | 0.4560  |
| AA                     | 0.9850         | 0.6450  |
| AB                     | 0.9400         | 0.6180  |
| AC                     | 0.9830         | 0.6680  |
| AD                     | 0.9130         | 0.5920  |
| AE                     | 0.9320         | 0.6050  |
| AF                     | 0.9390         | 0.6000  |
| AG                     | 0.8930         | 0.5650  |
| AH                     | 0.9540         | 0.6210  |
| AI                     | 0.9480         | 0.6230  |
| AJ                     | 0.9340         | 0.6190  |
| AK                     | 0.9820         | 0.6700  |
| AL                     | 0.8780         | 0.5730  |
| AM                     | 0.9220         | 0.5940  |
| AN                     | 0.9450         | 0.6240  |
| AO                     | 0.9220         | 0.5860  |
| AP                     | 0.9380         | 0.6290  |
| AQ                     | 0.9690         | 0.6520  |
| $\operatorname{AR}$    | 0.8710         | 0.5340  |

Continued on next page...



Continued from previous page...

| Chain | Atom inclusion | Q-score |
|-------|----------------|---------|
| AS    | 0.8610         | 0.5460  |
| AT    | 0.9190         | 0.5990  |
| AU    | 0.8660         | 0.5350  |
| AV    | 0.6510         | 0.3600  |
| AW    | 0.9170         | 0.5840  |
| AX    | 0.9500         | 0.6050  |
| AY    | 0.8340         | 0.5200  |
| AZ    | 0.9290         | 0.6050  |
| Aw    | 0.7910         | 0.4180  |
| Ax    | 0.8270         | 0.4800  |
| Ay    | 0.9240         | 0.3230  |
| Az    | 0.7050         | 0.3920  |
| В     | 0.9690         | 0.5600  |
| D     | 0.9640         | 0.6670  |
| E     | 0.9470         | 0.6590  |
| F     | 0.9670         | 0.6800  |
| Н     | 0.9110         | 0.4640  |
| I     | 0.5630         | 0.4350  |
| J     | 0.5080         | 0.3640  |
| K     | 0.9680         | 0.6860  |
| L     | 0.9550         | 0.6610  |
| М     | 0.9590         | 0.6740  |
| N     | 0.9310         | 0.6530  |
| 0     | 0.9460         | 0.6600  |
| P     | 0.9790         | 0.6660  |
| Q     | 0.8730         | 0.6150  |
| R     | 0.9680         | 0.6990  |
| S     | 0.9500         | 0.6680  |
| Т     | 0.9680         | 0.6820  |
| U     | 0.8550         | 0.6020  |
| V     | 0.8480         | 0.5720  |
| W     | 0.9770         | 0.6850  |
| X     | 0.9070         | 0.6100  |
| Y     | 0.9380         | 0.6460  |
| Z     | 0.9430         | 0.6700  |
| a     | 0.8450         | 0.5740  |
| b     | 0.9620         | 0.6690  |
| с     | 0.9000         | 0.6090  |
| d     | 0.7810         | 0.5240  |
| e     | 0.8530         | 0.5230  |
| f     | 0.8710         | 0.5550  |
| g     | 0.9290         | 0.6400  |

Continued on next page...



| Chain        | Atom inclusion | Q-score |
|--------------|----------------|---------|
| h            | 0.8450         | 0.5610  |
| i            | 0.9770         | 0.7080  |
| j            | 0.8710         | 0.5990  |
| k            | 0.7530         | 0.5080  |
| 1            | 0.5990         | 0.4290  |
| m            | 0.7940         | 0.4870  |
| О            | 0.9700         | 0.6960  |
| р            | 0.8070         | 0.5350  |
| q            | 0.6890         | 0.4570  |
| r            | 0.9260         | 0.6280  |
| S            | 0.9350         | 0.6330  |
| $\mathbf{t}$ | 0.0680         | 0.2330  |
| u            | 0.0000         | 0.2200  |
| V            | 0.0000         | 0.1390  |
| W            | 0.0000         | 0.0470  |
| Х            | 0.0000         | 0.0870  |
| У            | 0.0000         | 0.0550  |
| Z            | 0.8680         | 0.2230  |

Continued from previous page...

