

wwPDB EM Validation Summary Report (i)

May 12, 2024 – 12:12 pm BST

PDB ID	:	80VJ
EMDB ID	:	EMD-17216
Title	:	CRYO-EM STRUCTURE OF LEISHMANIA MAJOR 80S RIBOSOME : PARENTAL STRAIN
Authors	:	Rajan, K.S.; Yonath, A.
Deposited on	:	2023-04-26
Resolution	:	2.40 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 92
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain								
1	1	1782	63%	21%	5% • 10%						
2	3	216	48% 17%	6% •	28%						
3	4	183	• 74%		21% 5%						
4	5	135	• 59%	24%	• 15%						
5	6	73	52%	36%	10% •						
6	7	171	• 71%		22% • •						
7	8	123	80%		15% ••						

Mol	Chain	Length	Quality of chain	
8	А	260	94%	
9	В	419	90%	5% •
10	С	373	97%	
11	D	188	81%	• 15%
12	Е	190	89%	9% •
13	F	195	• 68% 8%	24%
14	G	264	83%	• 14%
15	Н	222	94%	5%•
16	Ι	220	93%	• 5%
17	J	139	5% 96%	
18	Κ	175	93%	5% •
19	L	145	94%	5%•
20	М	204	96%	•
21	Ν	213	• 77%	16% • 7%
22	О	305	86%	• 10%
23	Р	198	95%	
24	Q	254	71% •	25%
25	R	179	94%	5%•
26	S1	2204	51% 23% 5%	20%
27	S4	20	5% 50% 35%	15%
28	SA	264	73% 11%	• 15%
29	SB	246	73% 11%	• 15%
30	SC	219	85%	11% ••
31	SD	190	81%	10% • 8%
32	SE	273	• 84%	10% • 5%

Continued from previous page...

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
33	SF	265	75% 7%	18%
34	SG	249	83%	10% 6%
35	SH	190	91%	5% •
36	SI	200	82%	17%
37	SK	220	• 75% 6%	18%
38	SL	149	93%	
39	SM	116	77% 10%	• 12%
40	SN	168	5 1% 8% • 40%	
41	SO	144	90%	• • 6%
42	SP	143	90%	9% •
43	SQ	141	47% 60% 11%	29%
44	SR	153	• 79% 90	% 12%
45	SS	57	86%	9% 5%
46	ST	151	86%	8% • 5%
47	SU	173	● 86%	• • 9%
48	SV	143	• 46% 7% • 46%	
49	SW	152	5% 66% 10%	24%
50	SX	161	86%	9% 6%
51	SY	164	48% • 48%	
52	SZ	137	77% 1	5% • 7%
53	S	159	97%	
54	Sa	120	59% 41%	
55	Sc	86	• 86%	• 12%
56	Sb	112	90%	• 8%
57	Sd	87	• 71% •	25%

 $Continued \ from \ previous \ page...$ Chain Length Quality of chain Mol ÷. 58Se 66 79% 18% • Sg . . 5931296% 21% 60 \mathbf{Sh} 23564% 33% . ••• SJ61 13098% Т 62 16687% 5% 8% 10% 63 U 12978% 5% 17% V 1456477% 5% 19% W 6514379% 17% • Х 124 66 48% 48% . . Υ 67 13491% 7% • ÷ Ζ 68 1475% •• 93% . . 69127 \mathbf{a} 95% ••• 70 b 7096% 25271 \mathbf{c} 90% 9% • 72 \mathbf{d} 10482% 8% 11% ÷ 73188. . е 94% ė f 1337493% • 6% i 75144g 98% • 76h 16873% 24% i 77i 10581% 18% • ... 78j 83 96% 79k 83 82% 5% 13% 80 1 5194% • • 12881 m 38% 60% • 82 34 6% • n 91%

α \cdots 1	c		
Continued	trom	previous	page

Mol	Chain	Length	Quality of chain
83	О	92	91% • •
84	р	106	• 91% • 8%
85	2	1526	47% 21% • 28%

2 Entry composition (i)

There are 90 unique types of molecules in this entry. The entry contains 200822 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called LSUa_rRNA_chain_1.

Mol	Chain	Residues		1	AltConf	Trace			
1	1	1611	Total 34587	C 15461	N 6344	0 11171	Р 1611	1	0

There are 7 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	164	G	U	conflict	GB 321438308
1	165	U	С	conflict	GB 321438308
1	198	А	С	conflict	GB 321438308
1	523	А	G	conflict	GB 321438308
1	588	U	А	conflict	GB 321438308
1	593	С	U	conflict	GB 321438308
1	1428	А	С	conflict	GB 321438308

• Molecule 2 is a RNA chain called SR1_chain_3.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	3	156	Total 3312	C 1481	N 577	O 1098	Р 156	0	0

• Molecule 3 is a RNA chain called SR2_chain_4.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	4	183	Total 3917	C 1747	N 710	O 1277	Р 183	0	0

• Molecule 4 is a RNA chain called SR4_chain_5.

Mol	Chain	Residues		A	toms			AltConf	Trace
4	5	115	Total 2456	C 1095	N 445	0 801	Р 115	0	0

• Molecule 5 is a RNA chain called SR6_chain_6.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
5	6	71	Total 1506	$\begin{array}{c} \mathrm{C} \\ 675 \end{array}$	N 271	O 489	Р 71	0	0

• Molecule 6 is a RNA chain called 5.8S_rRNA_chain_7.

Mol	Chain	Residues		А	AltConf	Trace			
6	7	164	Total 3485	C 1561	N 618	0 1143	Р 163	0	0

• Molecule 7 is a RNA chain called 5S_rRNA_chain_8.

Mol	Chain	Residues		\mathbf{A}		AltConf	Trace		
7	8	119	Total 2531	C 1132	N 452	0 828	Р 119	0	0

• Molecule 8 is a protein called Putative 60S ribosomal protein L2.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	А	255	Total 1893	C 1179	N 387	0 317	S 10	1	0

• Molecule 9 is a protein called Putative ribosomal protein L3.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	В	401	Total 3035	C 1923	N 595	0 504	S 13	3	0

• Molecule 10 is a protein called Putative ribosomal protein L1a.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	С	366	Total 2664	C 1671	N 527	0 451	S 15	0	0

• Molecule 11 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	D	160	Total 1025	C 641	N 205	0 173	S 6	0	0

• Molecule 12 is a protein called Putative 60S ribosomal protein L9.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	Е	186	Total 1337	C 851	N 254	O 228	$\frac{S}{4}$	0	0

• Molecule 13 is a protein called Putative 60S ribosomal protein L6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
13	F	148	Total 1049	C 671	N 200	0 176	${S \over 2}$	0	0

• Molecule 14 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues		At	AltConf	Trace			
14	G	226	Total 1672	C 1061	N 328	0 276	S 7	0	0

• Molecule 15 is a protein called Putative 60S ribosomal protein L13a.

Mol	Chain	Residues		At	oms			AltConf	Trace
15	Н	220	Total 1652	C 1048	N 332	O 265	${f S}7$	0	0

• Molecule 16 is a protein called Putative 60S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	Ι	208	Total 1539	C 959	N 315	O 258	S 7	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	203	ARG	ASN	conflict	UNP E9AEA8

• Molecule 17 is a protein called Putative 60S ribosomal protein L23.

Mol	Chain	Residues		At	AltConf	Trace			
17	J	137	Total 979	C 616	N 185	0 172	S 6	0	0

• Molecule 18 is a protein called Putative 40S ribosomal protein L14.

Mol	Chain	Residues		At	AltConf	Trace			
18	K	170	Total 1229	С 771	N 244	O 207	${ m S} 7$	0	0

• Molecule 19 is a protein called Putative 60S ribosomal protein L27A/L29.

Mol	Chain	Residues		At	AltConf	Trace			
19	L	144	Total 1102	C 696	N 225	0 175	S 6	0	0

• Molecule 20 is a protein called Ribosomal protein L15.

Mol	Chain	Residues		At	AltConf	Trace			
20	М	203	Total 1688	C 1065	N 359	O 256	S 8	0	0

• Molecule 21 is a protein called Putative 60S ribosomal protein L10.

Mol	Chain	Residues		At	AltConf	Trace			
21	Ν	199	Total 1615	C 1019	N 322	O 260	S 14	0	0

• Molecule 22 is a protein called Putative 60S ribosomal protein L5.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
22	О	276	Total 1926	C 1226	N 370	O 327	${ m S} { m 3}$	0	0

• Molecule 23 is a protein called 60S ribosomal protein L18.

Mol	Chain	Residues		At	AltConf	Trace			
23	Р	197	Total 1500	C 943	N 300	0 251	S 6	0	0

• Molecule 24 is a protein called Putative 60S ribosomal protein L19.

Mol	Chain	Residues		At	AltConf	Trace			
24	Q	190	Total 1427	C 884	N 313	0 224	S 6	0	0

• Molecule 25 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	R	178	Total 1405	C 898	N 271	0 231	${f S}{5}$	0	0

• Molecule 26 is a RNA chain called SSU_rRNA_chain_S1.

Mol	Chain	Residues		1	AltConf	Trace			
26	S1	1755	Total 37536	C 16792	N 6770	O 12219	Р 1755	0	0

• Molecule 27 is a RNA chain called E-site_tRNA_chain_S4.

Mol	Chain	Residues		At	\mathbf{oms}		AltConf	Trace	
27	S4	20	Total 427	C 191	N 81	O 136	Р 19	0	0

• Molecule 28 is a protein called 40S ribosomal protein S3a.

Mol	Chain	Residues		At		AltConf	Trace		
28	SA	225	Total 1828	C 1146	N 349	0 321	S 12	2	0

• Molecule 29 is a protein called 40S ribosomal protein SA.

Mol	Chain	Residues		At		AltConf	Trace		
29	SB	208	Total 1590	C 1011	N 285	0 282	S 12	0	0

• Molecule 30 is a protein called Putative 40S ribosomal protein S3.

Mol	Chain	Residues		At	AltConf	Trace			
30	\mathbf{SC}	212	Total 1609	C 1018	N 295	0 283	S 13	1	0

• Molecule 31 is a protein called Putative 40S ribosomal protein S9.

Mol	Chain	Residues		At	oms		AltConf	Trace	
31	SD	175	Total 1422	C 897	N 283	0 234	S 8	0	0

• Molecule 32 is a protein called 40S ribosomal protein S4.

Mol	Chain	Residues		At		AltConf	Trace		
32	SE	260	Total 2050	C 1299	N 393	O 349	S 9	0	0

• Molecule 33 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues		Ate	AltConf	Trace			
33	SF	218	Total 1662	C 1063	N 297	O 293	S 9	0	0

• Molecule 34 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		Ate		AltConf	Trace		
34	SG	233	Total 1826	C 1139	N 371	0 313	$\frac{S}{3}$	0	0

• Molecule 35 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues		At	oms		AltConf	Trace	
35	SН	189	Total	С	Ν	Ο	\mathbf{S}	0	0
00	511	162	1430	889	275	259	7	0	0

• Molecule 36 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		Ate	AltConf	Trace			
36	SI	199	Total 1609	C 1024	N 311	O 267	${ m S} 7$	0	0

• Molecule 37 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		At	oms		AltConf	Trace	
37	SK	180	Total 1430	C 898	N 303	O 227	${ m S} { m 2}$	0	0

• Molecule 38 is a protein called Putative 40S ribosomal protein S16.

Mol	Chain	Residues		At	oms		AltConf	Trace	
38	SL	143	Total 1118	C 721	N 203	0 191	${ m S} { m 3}$	0	0

• Molecule 39 is a protein called Putative ribosomal protein S20.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	SM	102	Total 788	C 493	N 144	O 149	${ m S} { m 2}$	0	0

• Molecule 40 is a protein called Putative 40S ribosomal protein S10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	SN	100	Total 807	C 518	N 142	0 140	${f S}{7}$	0	0

• Molecule 41 is a protein called 40S ribosomal protein S14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	SO	136	Total 995	C 615	N 195	0 178	S 7	0	0

• Molecule 42 is a protein called Putative 40S ribosomal protein S23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
42	SP	142	Total 1117	C 704	N 223	O 187	${ m S} { m 3}$	2	0

• Molecule 43 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	SQ	100	Total 672	C 413	N 122	0 132	${ m S}{ m 5}$	0	0

• Molecule 44 is a protein called Putative 40S ribosomal protein S18.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	SR	135	Total 1081	C 684	N 213	0 180	$\frac{S}{4}$	1	0

• Molecule 45 is a protein called Putative ribosomal protein S29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
45	SS	54	Total 434	C 268	N 89	0 71	S 6	0	0

• Molecule 46 is a protein called Putative 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
46	ST	143	Total 1163	C 733	N 230	O 191	S 9	0	0

• Molecule 47 is a protein called Putative 40S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	SU	158	Total 1260	C 799	N 248	O 208	${ m S}{ m 5}$	0	0

• Molecule 48 is a protein called Putative 40S ribosomal protein S17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
48	SV	77	Total 636	C 403	N 121	0 110	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 49 is a protein called Putative 40S ribosomal protein S15.

Mol	Chain	Residues	Atoms					AltConf	Trace
49	SW	115	Total 909	C 578	N 172	0 155	${S \atop 4}$	0	0

• Molecule 50 is a protein called 40S ribosomal protein S19-like protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
50	SX	152	Total 1202	С 764	N 237	0 197	S 4	0	0

• Molecule 51 is a protein called Putative 40S ribosomal protein S21.

Mol	Chain	Residues		At	oms			AltConf	Trace
51	SY	85	Total 621	C 383	N 116	0 118	${f S}$ 4	0	0

• Molecule 52 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
52	SZ	127	Total 1021	C 656	N 196	0 166	${ m S} { m 3}$	0	0

• Molecule 53 is a protein called Putative 60S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
53	S	157	Total 1194	C 760	N 232	0 199	${ m S} { m 3}$	0	0

• Molecule 54 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
54	Sa	71	Total 558	C 356	N 99	O 100	${ m S} { m 3}$	0	0

• Molecule 55 is a protein called Putative 40S ribosomal protein S27-1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
55	Sc	76	Total 586	C 366	N 110	0 106	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 56 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	oms			AltConf	Trace
56	Sb	103	Total 820	C 508	N 176	0 129	S 7	0	0

• Molecule 57 is a protein called Putative 40S ribosomal protein S33.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
57	Sd	65	Total 466	C 286	N 94	O 82	S 4	0	0

• Molecule 58 is a protein called 40S ribosomal protein S30.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
58	Se	54	Total	С	Ν	Ο	\mathbf{S}	0	0
00	50	04	430	270	91	68	1	0	0

• Molecule 59 is a protein called Guanine nucleotide-binding protein subunit beta-like protein.

Mol	Chain	Residues		At	AltConf	Trace			
59	Sg	306	Total 2313	C 1453	N 411	0 437	S 12	0	0

• Molecule 60 is a protein called Putative RNA binding protein.

Mol	Chain	Residues		At	oms	AltConf	Trace		
60	Sh	157	Total 1094	C 698	N 200	0 194	${ m S} { m 2}$	0	0

• Molecule 61 is a protein called Putative 40S ribosomal protein S15A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
61	SJ	129	Total 1021	C 646	N 188	0 179	S 8	0	0

• Molecule 62 is a protein called Putative 60S ribosomal protein L17.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
62	Т	152	Total 1209	C 756	N 240	O 202	S 11	0	0

• Molecule 63 is a protein called Putative 60S ribosomal protein L22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
63	U	107	Total 688	C 440	N 126	O 120	${ m S} { m 2}$	0	0

• Molecule 64 is a protein called Putative 60S ribosomal protein L23a.

Mol	Chain	Residues		At	oms			AltConf	Trace
64	V	118	Total 915	C 581	N 177	0 155	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 65 is a protein called Putative 60S ribosomal protein L26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
65	W	118	Total 925	C 579	N 194	0 148	${f S}$ 4	0	0

• Molecule 66 is a protein called Putative ribosomal protein L24.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
66	Х	64	Total 539	C 354	N 102	O 80	${ m S} { m 3}$	0	0

• Molecule 67 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	oms	AltConf	Trace		
67	Y	132	Total 997	C 641	N 197	O 157	${ m S} { m 2}$	0	0

• Molecule 68 is a protein called Putative 60S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
68	Z	145	Total 1068	C 653	N 225	0 185	${ m S}{ m 5}$	0	0

• Molecule 69 is a protein called Putative 60S ribosomal protein L35.

Mol	Chain	Residues		At	oms	AltConf	Trace		
69	a	123	Total 995	C 623	N 210	0 159	${ m S} { m 3}$	0	0

• Molecule 70 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
70	b	68	Total 546	C 335	N 125	O 86	0	0

• Molecule 71 is a protein called Putative 60S ribosomal protein L7.

Mol	Chain	Residues		At	AltConf	Trace			
71	с	229	Total 1866	C 1188	N 359	O 308	S 11	0	0

• Molecule 72 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms	AltConf	Trace		
72	d	93	Total 713	С 444	N 130	0 134	${ m S}{ m 5}$	0	0

• Molecule 73 is a protein called Putative 60S ribosomal subunit protein L31.

Mol	Chain	Residues		At	oms	AltConf	Trace		
73	е	180	Total 1414	C 889	N 287	0 234	${S \atop 4}$	0	0

• Molecule 74 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms			AltConf	Trace
74	f	125	Total 1011	C 636	N 201	O 170	$\frac{S}{4}$	0	0

• Molecule 75 is a protein called Putative ribosomal protein l35a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
75	g	142	Total 1142	C 710	N 239	O 188	${ m S}{ m 5}$	0	0

• Molecule 76 is a protein called Putative 60S ribosomal protein L34.

Mol	Chain	Residues		At	AltConf	Trace			
76	h	127	Total 1038	C 639	N 226	0 167	S 6	0	0

• Molecule 77 is a protein called Putative 60S Ribosomal protein L36.

Mol	Chain	Residues	Atoms					AltConf	Trace
77	i	86	Total 660	C 421	N 133	0 104	${ m S} { m 2}$	0	0

• Molecule 78 is a protein called Ribosomal protein L37.

Mol	Chain	Residues	Atoms					AltConf	Trace
78	j	81	Total 668	C 407	N 154	0 101	S 6	0	0

• Molecule 79 is a protein called Putative ribosomal protein L38.

Mol	Chain	Residues	Atoms					AltConf	Trace
70	ŀ	79	Total	С	Ν	0	S	0	0
19	K	12	534	338	105	88	3	U	U

• Molecule 80 is a protein called Putative 60S ribosomal protein L39.

Mol	Chain	Residues	Atoms					AltConf	Trace
80	1	50	Total 450	C 291	N 95	O 63	${ m S}$ 1	0	0

• Molecule 81 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues	Atoms					AltConf	Trace
81	m	51	Total 375	C 236	N 74	O 59	S 6	0	0

• Molecule 82 is a protein called 60S ribosomal protein L41.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
82	n	33	Total 292	C 178	N 75	O 37	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 83 is a protein called 60S ribosomal protein L37a.

Mol	Chain	Residues		At	AltConf	Trace			
83	О	88	Total 686	C 427	N 142	0 111	S 6	0	0

• Molecule 84 is a protein called Putative 60S ribosomal protein L44.

Mol	Chain	Residues	Atoms					AltConf	Trace
84	р	97	Total	C 404	N 159	0	S	0	0
			780	494	199	123	Э		

• Molecule 85 is a RNA chain called LSUb_rRNA_chain_2.

Mol	Chain	Residues		A	AltConf	Trace			
85	2	1105	Total 23639	C 10583	N 4263	O 7688	Р 1105	0	0

• Molecule 86 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
86	1	106	Total Mg 106 106	0
86	3	1	Total Mg 1 1	0
86	4	8	Total Mg 8 8	0
86	5	1	Total Mg 1 1	0
86	6	2	Total Mg 2 2	0
86	7	2	Total Mg 2 2	0

Mol	Chain	Residues	Atoms	AltConf
86	8	2	Total Mg 2 2	0
86	Ι	1	Total Mg 1 1	0
86	J	1	Total Mg 1 1	0
86	М	1	Total Mg 1 1	0
86	S1	107	Total Mg 107 107	0
86	SH	1	Total Mg 1 1	0
86	SS	1	Total Mg 1 1	0
86	SX	1	Total Mg 1 1	0
86	Т	1	Total Mg 1 1	0
86	2	66	Total Mg 66 66	0

Continued from previous page...

• Molecule 87 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf		
87	1	3	Total K	0		
	1	0	3 3	0		
87	5	9	Total K	0		
	0		2 2	0		
87	7	9	Total K	0		
01	1		2 2	0		
87	Δ	9	Total K	0		
01	11		2 2	0		
87	В	1	Total K	0		
01	D	1	1 1	0		
87	н	1	Total K	0		
01	11	1	1 1	0		
87	М	1	Total K	0		
01	111	1	1 1	0		
87	S 1	25	Total K	0		
01	51	51	51	20	25 25	0
87	SC	1	Total K	0		
01	5 G	1	1 1	0		

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
87	2	5	Total K 5 5	0

• Molecule 88 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	AltConf
88	1	5	Total Na 5 5	0
88	4	1	Total Na 1 1	0
88	А	1	Total Na 1 1	0
88	М	1	Total Na 1 1	0
88	S1	4	Total Na 4 4	0
88	Sb	1	Total Na 1 1	0
88	2	4	Total Na 4 4	0

• Molecule 89 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
89	\mathbf{SS}	1	Total Zn 1 1	0
89	Sb	1	Total Zn 1 1	0
89	j	1	Total Zn 1 1	0
89	О	1	Total Zn 1 1	0
89	р	1	Total Zn 1 1	0

• Molecule 90 is water.

Mol	Chain	Residues	Atoms	AltConf
90	1	9	Total O 9 9	0
90	5	1	Total O 1 1	0

Mol	Chain	Residues	Atoms	AltConf
90	7	1	Total O 1 1	0
90	А	1	Total O 1 1	0
90	В	1	Total O 1 1	0
90	Н	1	Total O 1 1	0
90	Ι	1	Total O 1 1	0
90	М	4	Total O 4 4	0
90	Р	2	Total O 2 2	0
90	S1	7	Total O 7 7	0
90	SA	1	Total O 1 1	0
90	S	1	Total O 1 1	0
90	Т	2	Total O 2 2	0
90	2	17	Total O 17 17	0

Continued from previous page...

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: LSUa_rRNA_chain_1

• Molecule 10: Putative ribosomal protein L1a

Chain C:	97%	
MET SER ALA K113 F121	L305 R349 R369 CLN CLN	
• Molecule	11: 60S ribosomal protein L11	
Chain D:	81% .	15%
MET VAL ALA GLU SER LYS ALA ALA	R51 R51 R52 R53 R53 R53 R53 R53 R53 R63 R16 R16 R17 C126 C126 C126 C126 C126 C126 C126 C128 C128 C128 C128 C128 C128 C128 C128	
• Molecule	12: Putative 60S ribosomal protein L9	
Chain E:	89%	9% •
MET V2 C8 T17 V20	V25 128 128 141 146 146 146 146 146 1135 1135 1135 1135 1135 1135 1135 113	
• Molecule	13: Putative 60S ribosomal protein L6	
Chain F:	68% 8% 24	%
MET ALA ALA ALA LYS SER VAL VAL	SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ASP PHE MET GLY GLY ASP CLYS CLN CLYS CLN ALA ALA
GLU LYS ALA ALA LYS LYS LYS THR SER	L15 L15 L15 L16 L16 L16 L16 L16 L16 L16 L16 L16 L16	
• Molecule	14: 60S ribosomal protein L7a	
Chain G:	83% •	14%
MET PRO GLY LYS GLU VAL LYS LYS	VAL TAL TALA ALA ALA ALA ALA ALA ALA ALA	1163 D183 D208 Q264
• Molecule	15: Putative 60S ribosomal protein L13a	
Chain H:	94%	5%•
MET ALA F3 K7 Q74 Q74	N131 N132 N132 N141 N144 N164 N165 N166 N165 N213 N213 N222	
• Molecule	16: Putative 60S ribosomal protein L13	
Chain I:	93%	• 5%
MET P2 N71 N72 K73 V116 V116	R175 LYS LYS LYS ALA ALA ALA ALA ALA CLU CLU CLU CLU CLY	

• Molecule 17: Putative 60S ribosomal protein L23

- - Chain Q: 71% 25% • 25%

- \bullet Molecule 25: 60S ribosomal protein L18a
- Chain R: 94% 5% •
- \bullet Molecule 26: SSU_rRNA_chain_S1

Chain	S1:			51%	ó			23%	5%	20%	
G1 U3 C4	U8 U12	616 C17 C18	A26 U29	U33 G34 C38	642 145	U46 A47 U52 G53	A65 U66 C67	C72 A73 U U G77	G81 G87 G93	A98 A98 A102 A103 A103 C105	A106 G107 A112 A113
U114 C115 U116 G117	C128 G133	מממני	С С 6140	A145 U146 U147 G148 G149	A150 U151 A152	G158 A161 A162 A162	C164 G165 C171 U172	A173 A174 U175 A176 A181	C184 A185 A186 C103	u 1195 0196 0197 0197 0198 0198 199 100 199	しいいょう
4 U U U I	0000	3 4 4 0	U A D U	מטמט	G228 A229 G230 A231	C232 C234 C234 C234	A249 G252 U253 A254	A255 A256 A257 C258 C259 A260	<mark>С263</mark> С264 U U	с А А С С С С 74 А 275 А 275 А 275 С С С С С С С С С С С С С С С С С С С	6276 U277 A278 A281
C282 C283 C284 A285	G286 C287 A288	0306 C307 G	U G311 C312 G313	A314 A315 A316 A316 G320	<mark>ป323</mark> ป G	U U327 C328 C329	G351 G351 C354	U355 A356 U357 C358 A359 G360	G363 G364 A367	G381 A382 G400 C404 A413	G433 C436 C436 C437
A443 A444 U445	A446 G447 A450	C451 U455	G462 C467 A468	G469 G473 G477	<mark>C478</mark> A479 A480 A481	U482 U483 C487 A488	G491 494 A494 A495	A496 A497 C498 A499 A500 A501	A502 C503 A508 G509	A512 A516 A516 A519 A523	6528 U529 G G U
U K Q D	SSAD;	טטכר	A U D S	u c U552 U553	U554 C555 A556 A557	U558 G559 A580 A581	U582 A583 U584 C585 G586	A587 G588 U589 A590 A591 C592	G600 G606 U607	000 000 0014 0030 0031	C636 C639 A640
A641 A642 A643	G656 G659 U660	0661 6662 A668	A669 A670 G671 G672	6673 6688 U689 6690	6691 6692 C693 U694	5 7 7 7 7 4 F	מממט	פטטפפט	00000E	> ∪ ∪ ∪ ∪ ∪ ∪ ⊲ :	00000

U2037 C2038 C2039 C2040 U2046 U2047 U2048	C2054 A2055 A2056 C2060 C2061 C2064 C2064 C2064 C2064 C2064 C2064 C2064 C2097 C2097 C2097 C2097 C2097 C2097 C2097 C2097 C2097 C2097 C2097 C2097 C2097 C2097 C2097 C2097 C2097 C2057 C2057 C2055	A2102 62103 62104 62104 6 6 6 7 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	C C C C C C C C C C C C C C C C C C C	U2135 A2136 U2137 C2140	G2151 A2159
C2160 C2163 U2164 A2165 A2166 A2166	64.170 64.170 12172 12182 62183 62185 62195 62195 62195 62195 62199 12203 17203 17203 17203				
• Molecule	27: E-site_tRNA_chain_S	4			
Chain S4:	5%	35%		15%	
G1 C4 G5 G63 G63 G65 G65	669 669 770 A76 A76				
• Molecule	28: 40S ribosomal protein S	3a			
Chain SA:	73%		11% •	15%	
MET ALA LEU GLY LYS ASN LYS ARG	SIRK SIRK CUTY CUTY CUTY CUTY CUTY CUTY CUTY CUTY	E79 F88 789 7100 0110 1121 1121 1121	T131 131 6134 V142	K146 4151 4152 8153 8153 R154	R167 R176
R177 182 1183 1183 1184 1185 D197	V200 N204 N204 N204 N210 N211 N2112 N213 N213 N213 GLU GLU GLU ALA ALA ALA ALA	PRO ALA ALA GLU GLU ALA ALA ALA ALA CLU			
• Molecule	29: 40S ribosomal protein S	А			
Chain SB:	73%		11% •	15%	
M1 D17 R25 T30	Q33 A36 E47 B50 B549 B50 B549 B549 B549 B549 B56 V71 V71 V71	C80 199 1199 1102 1121 1123 1123 1123 1153	W179 W179 R183 T191 T191	W198 V202 D203	r 2007 R 208 ASP PR0
ASN GLU GLU GLU GLU CLU CLU CLU	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA	ASP ASP ASN ALA TRP GLU ALA			
• Molecule	30: Putative 40S ribosomal	protein S3			
Chain SC:	85	%		11% ••	
MET G2 K7 I11 E30	H44 V48 K54 E56 E56 E56 R75 K79 K79 K79 K79 K79 K79 K79 R93 R93 R93	L112 R115 R116 R116 R116 S128 S128 S128 H173 H176 H176	1181 K184 G195	R196 N197 P204 D205	GLN GLN THR ALA
SER GLU					
• Molecule	31: Putative 40S ribosomal	protein S9			
Chain SD:	81%		109	% • 8%	

 \bullet Molecule 49: Putative 40S ribosomal protein S15

Chain SW.	5%	100/	2.40/	
Chan Sw.	66%	10%	24%	
MET ALA SER ASN ILE THR ALA GLU	ARG TYR GLN GLN CLN CLN CLN CLN CLN CLN CLN CLN CLN C	R66 E69 H73 V74 K75 C77 E78 A102	H107 F109 R131	V133 L134 H135 GLY ARG
PRO GLY VAL GLY GLY ALA HIR HIS SER	SER ARG TILE TILE TILE LYS			
• Molecule	50: 40S ribosomal protein S19-like pr	otein		
Chain SX:	86%		9% 6%	
MET THR ALA PRO ARG K7 18	L15 K29 K29 K29 K44 C46 C46 C46 C46 C46 C46 C46 C46 C46 C	SER LVS ALA		
• Molecule	51: Putative 40S ribosomal protein S	21		
Chain SY:	48% •	48%		
MET ALA T3 N47 V49 V49	155 163 163 176 163 178 163 178 178 178 178 178 178 178 178 178 178	GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	PRO PRO ALA GLN LYS GLY ALA	ARG PRO ALA
GLN LYS GLY ALA ARG PRO PRO ALA	CLA CLA CLA ALA ALA ALA PRO CLA ALA ALA ALA ALA ALA ALA ALA ALA ALA			
• Molecule	52: 40S ribosomal protein S24			
Chain SZ:	77%	159	% • 7%	
MET VAL F3 Q4 K5 A8	K17 K18 K18 K26 K26 K33 H33 H33 H33 K48 K48 K48 K48 K48 K48 K48 K48 K48 K48	182 182 182 193 193 193 193 193 193 193 193 193 193		
• Molecule	53: Putative 60S ribosomal protein L	21		
Chain S:	97%		•••	
MET VAL H3 V24 P25 R70				
• Molecule	54: 40S ribosomal protein S25			
Chain Sa:	59%	41%		
MET PRO PRO LYS ALA GLY GLN THR	LYS LYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	V <mark>105</mark> GLN ALA ALA ALA ALA ALA ALA ALA ALA ALA A	ALA ALA GLU	
	PROTEIN			

K184

• Molecule 55:	Putative 40S ribosomal protein S27-1	
Chain Sc:	86% • 12%	
MET G2 F3 F3 S3 7 S3 7 CYS ARG ARG CYS	ARG V443 V443 LYS C57 C57 C12 Y C012 Y C012 Y B05 HITS HITS	
• Molecule 56:	40S ribosomal protein S26	
Chain Sb:	90% . 8%	
MET T2 T32 V42 V104 PHC ARG	PRO GLY LYS LYS	
• Molecule 57:	Putative 40S ribosomal protein S33	
Chain Sd:	71% · 25%	
MET ALA ASP ASP SER LYS LYS ASP ASN LYS LYS LYS THR	ALU VAL THR GLN GLN GLN GLN ASP ASP ASP ARG	
• Molecule 58:	40S ribosomal protein S30	
Chain Se:	79% • 18%	
MET GLY LYS LYS ILE HIE GLY S46 K47 K47 K47		
• Molecule 59:	Guanine nucleotide-binding protein subunit beta-like protein	
Chain Sg:	96% •••	
M1 N2 A23 A23 G24 H48 S49 V50 V50	T77 T77 T77 177 R87 115 F115 115 F158 1145 R146 145 R146 145 R146 145 R145 145 R146 145 R146 145 R145 145 R146 145 R145 145 R145 145 R145 1223 R145 1223 A249 424 A274 A274 A274 A28 A28 A28 A1A A28 A1A A28 A1A A28 A1A A28 A1A A28 A1A A1A A1A A1A <t< td=""><td></td></t<>	
• Molecule 60:	Putative RNA binding protein	
Chain Sh:	21% 64% · 33%	
MET PRO ALA LYS ALA ALA ALA ALA LYS PRO VAL VAL	PRIO ALLA ALLA ALLA ALLA ALLA ALLA PRIO PRIO PRIO ALLA ALLA ALLA ALLA ALLA ALLA ALLA AL	Vev Keo
66 69 69 7 2 7 3 7 3 7 3	7 7 7 7 7 7 7 7 7 8 8 8 9 4 9 4 9 4 10 0 10 0 10 0 10 0 10 0 10 0 10 0 10	125 1126 1159

Chain e:

• Molecule 67: 60S ribosomal protein L27 Chain Y: 91% 7% • • Molecule 68: Putative 60S ribosomal protein L28 Chain Z: 93% 5% •• • Molecule 69: Putative 60S ribosomal protein L35 Chain a: 95% . . MET SER HIS • Molecule 70: 60S ribosomal protein L29 Chain b: 96% . . • Molecule 71: Putative 60S ribosomal protein L7 Chain c: 90% 9% • • Molecule 72: 60S ribosomal protein L30 Chain d: 82% 8% 11% MET ALA LYS LYS LYS LYS LYS SER VAL • Molecule 73: Putative 60S ribosomal subunit protein L31

94%

• •

Chain l:	94%	
MEIT G2 K5 V51		
• Molecule 81: Ubiquitin-60S riboso	mal protein L40	
Chain m: 38% ·	60%	
MET CLM CLM CLM CLM CLM CLM CLM CLM CLM CLM	ALA LYS LYS GLN GLN GLN GLN FPRO GLN ARG GLN ARG GLN ARG GLN ARG GLN ARG GLN CLVS GLN CLVS GLN CLVS CLVS CLVS CLVS CLVS CLVS CLVS CLVS	GLU GLU GLY ARG THR LEU SER ASP TYR ASN
ILE LVS CLN CLN CLN CLN CLN LEU LEU CLN CLN CLN CLN CLN CNN CNN CNN CNN CNN		
• Molecule 82: 60S ribosomal protei	n L41	
Chain n:	91%	6% •
82 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2 2 7 2		
• Molecule 83: 60S ribosomal protei	n L37a	
Chain o:	91%	• •
MET A2 B30 F41 C42 C42 C42 L89 L189 L125 L125 TLE		
• Molecule 84: Putative 60S ribosom	nal protein L44	
Chain p:	91%	• 8%
MET V2 THR GLY ASP PRO THR TRP		
• Molecule 85: LSUb_rRNA_chain	_2	
Chain 2: 47%	21% • 28%	
U C C A A A A A A A C A A A C A A C C A A C C A A C C A A C C A A C C C C A A C C A A C C A A C C A A C C A A C C A A C C A A C C A A C C C A A C C C A A C C C A A C C A A C C C A A C C A A C C A A C C A A C C C A A C C A C C C A C C C A C C A C C C A C C A C C C A C C C A C C C A C C C C A C C C C C C C C A C	UT3 474 474 474 483 480 480 483 484 484 484 484 484 484 484 484 485 484 487 487 487 487 487 487 487 487 487	৩ এ র র র র র র র র র র র র র র র র র র
0000440000405050000004500	,	
0000040040000004040004000040		000400000000
0 D < < 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0000000000

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	212912	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	0.83	Depositor
Minimum defocus (nm)	700	Depositor
Maximum defocus (nm)	1300	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.162	Depositor
Minimum map value	-0.037	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.01	Depositor
Map size (Å)	408.0, 408.0, 408.0	wwPDB
Map dimensions	480, 480, 480	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.85, 0.85, 0.85	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, NA, PSU, K, C4J, 5MC, MA6, OMC, OMG, 1MA, MG, 7MG, A2M, OMU

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.41	0/37759	0.83	29/58867~(0.0%)	
2	3	0.36	0/3671	0.86	12/5704~(0.2%)	
3	4	0.37	0/4354	0.80	0/6788	
4	5	0.38	0/2742	0.84	2/4266~(0.0%)	
5	6	0.36	0/1683	0.86	0/2618	
6	7	0.38	0/3748	0.80	0/5834	
7	8	0.34	0/2829	0.82	1/4405~(0.0%)	
8	А	0.28	0/1935	0.56	0/2606	
9	В	0.27	0/3109	0.54	0/4214	
10	С	0.26	0/2714	0.53	0/3679	
11	D	0.25	0/1045	0.48	0/1423	
12	E	0.25	0/1357	0.52	0/1850	
13	F	0.27	0/1071	0.51	0/1466	
14	G	0.26	0/1696	0.52	0/2303	
15	Н	0.28	0/1687	0.53	0/2291	
16	Ι	0.26	0/1572	0.52	0/2129	
17	J	0.28	0/996	0.53	0/1355	
18	K	0.25	0/1248	0.49	0/1695	
19	L	0.28	0/1129	0.53	0/1511	
20	М	0.27	0/1728	0.58	0/2312	
21	N	0.26	0/1647	0.55	0/2202	
22	0	0.27	0/1963	0.49	0/2665	
23	Р	0.28	0/1524	0.55	0/2045	
24	Q	0.27	0/1446	0.55	0/1940	
25	R	0.27	0/1439	0.51	0/1949	
26	S1	0.58	0/40844	0.85	37/63606~(0.1%)	
27	S4	0.29	0/476	0.86	1/739~(0.1%)	
28	SA	0.30	0/1859	0.55	0/2501	
29	SB	0.29	0/1623	0.49	0/2204	
30	SC	0.27	0/1636	0.50	0/2192	
31	SD	0.30	0/1447	0.54	0/1942	
32	SE	0.31	0/2088	0.53	0/2814	

Mol Chain		Bond	lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	SF	0.32	0/1698	0.50	0/2301	
34	SG	0.30	0/1849	0.56	0/2477	
35	SH	0.27	0/1452	0.50	0/1948	
36	SI	0.31	0/1639	0.53	0/2209	
37	SK	0.30	0/1451	0.59	0/1944	
38	SL	0.27	0/1139	0.47	0/1533	
39	SM	0.25	0/798	0.51	0/1084	
40	SN	0.26	0/830	0.47	0/1126	
41	SO	0.33	0/1010	0.56	0/1362	
42	SP	0.32	0/1143	0.53	0/1531	
43	SQ	0.22	0/674	0.47	0/916	
44	SR	0.27	0/1103	0.53	0/1481	
45	SS	0.27	0/439	0.53	0/583	
46	ST	0.34	0/1186	0.54	0/1590	
47	SU	0.35	0/1290	0.52	0/1740	
48	SV	0.28	0/643	0.50	0/854	
49	SW	0.26	0/929	0.49	0/1255	
50	SX	0.27	0/1233	0.49	0/1656	
51	SY	0.27	0/630	0.51	0/858	
52	SZ	0.30	0/1041	0.51	0/1388	
53	S	0.27	0/1222	0.51	0/1656	
54	Sa	0.27	0/563	0.50	0/757	
55	Sc	0.32	0/596	0.55	0/801	
56	Sb	0.36	0/837	0.58	0/1120	
57	Sd	0.26	0/468	0.57	0/630	
58	Se	0.29	0/436	0.53	0/577	
59	Sg	0.25	0/2371	0.50	0/3233	
60	Sh	0.24	0/1113	0.48	0/1514	
61	SJ	0.34	0/1038	0.52	0/1391	
62	Т	0.26	0/1233	0.52	0/1656	
63	U	0.26	0/695	0.45	0/939	
64	V	0.26	0/930	0.51	0/1256	
65	W	0.25	0/938	0.55	0/1254	
66	Х	0.28	0/560	0.52	0/757	
67	Y	0.27	0/1018	0.52	0/1376	
68	Z	0.25	0/1083	0.53	0/1461	
69	a	0.25	0/1005	0.54	0/1339	
70	b	0.25	0/557	0.50	0/743	
71	с	$0.2\overline{7}$	$0/19\overline{00}$	0.51	$0/254\overline{4}$	
72	d	0.28	0/723	0.47	0/979	
73	e	$0.2\overline{5}$	$0/14\overline{32}$	$0.5\overline{4}$	$0/190\overline{4}$	
74	f	0.27	0/1031	0.55	0/1380	
75	g	0.28	0/1165	0.57	$0/1\overline{563}$	

Mol Chain		Bond	lengths	Bond angles		
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
76	h	0.25	0/1054	0.55	0/1399	
77	i	0.25	0/668	0.51	0/889	
78	j	0.27	0/682	0.62	0/910	
79	k	0.25	0/542	0.51	0/733	
80	1	0.27	0/463	0.54	0/617	
81	m	0.24	0/381	0.53	0/515	
82	n	0.28	0/296	0.66	0/386	
83	0	0.29	0/698	0.57	0/930	
84	р	0.27	0/793	0.50	0/1048	
85	2	0.42	0/25035	0.84	27/39014~(0.1%)	
All	All	0.40	0/211768	0.73	109/311222~(0.0%)	

There are no bond length outliers.

The worst 5 of 109 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
26	S1	2059	С	O4'-C1'-N1	8.29	114.83	108.20
1	1	1238	C	C2-N1-C1'	7.66	127.22	118.80
26	S1	2203	U	N1-C2-O2	7.66	128.16	122.80
85	2	1063	С	C2-N1-C1'	7.55	127.11	118.80
2	3	179	U	C2-N1-C1'	7.45	126.63	117.70

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	1	34587	0	17450	200	0
2	3	3312	0	1681	24	0
3	4	3917	0	1979	18	0
4	5	2456	0	1247	13	0
5	6	1506	0	768	12	0
6	7	3485	0	1770	13	0
7	8	2531	0	1283	11	0

Conti	nuea fron	n previous	page			
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
8	A	1893	0	1905	6	0
9	В	3035	0	3004	15	0
10	С	2664	0	2626	4	0
11	D	1025	0	787	4	0
12	E	1337	0	1269	8	0
13	F	1049	0	1025	10	0
14	G	1672	0	1696	4	0
15	Н	1652	0	1644	7	0
16	Ι	1539	0	1491	2	0
17	J	979	0	968	2	0
18	K	1229	0	1194	6	0
19	L	1102	0	1124	4	0
20	М	1688	0	1748	5	0
21	N	1615	0	1685	22	0
22	0	1926	0	1761	8	0
23	Р	1500	0	1568	4	0
24	Q	1427	0	1383	4	0
25	R	1405	0	1411	6	0
26	S1	37536	0	18968	352	0
27	S4	427	0	222	7	0
28	SA	1828	0	1917	13	0
29	SB	1590	0	1570	16	0
30	SC	1609	0	1655	13	0
31	SD	1422	0	1467	15	0
32	SE	2050	0	2144	20	0
33	SF	1662	0	1708	12	0
34	SG	1826	0	1914	23	0
35	SH	1430	0	1456	5	0
36	SI	1609	0	1668	21	0
37	SK	1430	0	1512	7	0
38	SL	1118	0	1168	1	0
39	SM	788	0	823	9	0
40	SN	807	0	782	6	0
41	SO	995	0	997	4	0
42	SP	1117	0	1166	8	0
43	SQ	672	0	602	10	0
44	SR	1081	0	1126	8	0
45	SS	434	0	438	5	0
46	ST	1163	0	1232	10	0
47	SU	1260	0	1202	5	0
48	SU	636	0	687	8	0
40	SW	000	0	001	10	0
49	D VV	303	U	909	10	U

 α ntia 1 [

Continued from previous page							
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes	
50	SX	1202	0	1227	16	0	
51	SY	621	0	601	5	0	
52	SZ	1021	0	1083	12	0	
53	S	1194	0	1184	2	0	
54	Sa	558	0	606	0	0	
55	Sc	586	0	570	0	0	
56	Sb	820	0	854	0	0	
57	Sd	466	0	476	0	0	
58	Se	430	0	473	0	0	
59	Sg	2313	0	2189	0	0	
60	Sh	1094	0	1005	0	0	
61	SJ	1021	0	1050	1	0	
62	Т	1209	0	1236	6	0	
63	U	688	0	536	3	0	
64	V	915	0	956	4	0	
65	W	925	0	991	8	0	
66	Х	539	0	535	2	0	
67	Y	997	0	988	5	0	
68	Ζ	1068	0	1057	4	0	
69	a	995	0	1076	0	0	
70	b	546	0	575	0	0	
71	с	1866	0	1970	0	0	
72	d	713	0	730	0	0	
73	е	1414	0	1532	0	0	
74	f	1011	0	1054	0	0	
75	g	1142	0	1196	0	0	
76	h	1038	0	1109	0	0	
77	i	660	0	714	0	0	
78	j	668	0	680	0	0	
79	k	534	0	534	0	0	
80	1	450	0	483	0	0	
81	m	375	0	370	0	0	
82	n	292	0	331	0	0	
83	0	686	0	702	0	0	
84	р	780	0	838	0	0	
85	2	23639	0	11982	148	0	
86	1	106	0	0	0	0	
86	2	66	0	0	0	0	
86	3	1	0	0	0	0	
86	4	8	0	0	0	0	
86	5	1	0	0	0	0	
86	6	2	0	0	0	0	

 α ntia 1 [

	Choin	Non H	$\underline{\mathbf{H}}(\mathbf{model})$	H(addad)	Clashog	Symm Clashes
					Clashes	Symm-Clasnes
80	(2	0	0	0	0
80	8	2	0	0	0	0
80	l T	1	0	0	0	0
80	J	1	0	0	0	0
86	M	107	0	0	0	0
86	SI	107	0	0	0	0
86	SH	1	0	0	0	0
86	SS	1	0	0	0	0
86	SX	1	0	0	0	0
86	Т	1	0	0	0	0
87	1	3	0	0	0	0
87	2	5	0	0	0	0
87	5	2	0	0	0	0
87	7	2	0	0	0	0
87	A	2	0	0	0	0
87	В	1	0	0	0	0
87	Н	1	0	0	0	0
87	М	1	0	0	0	0
87	S1	25	0	0	0	0
87	SG	1	0	0	0	0
88	1	5	0	0	0	0
88	2	4	0	0	0	0
88	4	1	0	0	0	0
88	А	1	0	0	0	0
88	М	1	0	0	0	0
88	S1	4	0	0	0	0
88	Sb	1	0	0	0	0
89	SS	1	0	0	0	0
89	Sb	1	0	0	0	0
89	j	1	0	0	0	0
89	0	1	0	0	0	0
89	р	1	0	0	0	0
90	1	9	0	0	0	0
90	2	17	0	0	0	0
90	5	1	0	0	0	0
90	7	1	0	0	0	0
90	А	1	0	0	0	0
90	В	1	0	0	0	0
90	Н	1	0	0	0	0
90	Ι	1	0	0	0	0
90	М	4	0	0	0	0
90	Р	2	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes			
90	S	1	0	0	0	0			
90	S1	7	0	0	0	0			
90	SA	1	0	0	0	0			
90	Т	2	0	0	0	0			
All	All	200822	0	145368	1052	0			

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

The worst 5 of 1052 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
26:S1:955:A:N6	26:S1:980:G:H1	1.53	1.06
26:S1:1366:A:N1	26:S1:1416:G:N2	2.05	1.04
26:S1:781:A:H2	26:S1:839:G:H1	1.03	0.97
85:2:984:G:H1	85:2:1000:U:H3	0.92	0.92
1:1:520:G:HO2'	1:1:521:G:H8	0.95	0.92

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
8	А	254/260~(98%)	248 (98%)	6 (2%)	0	100	100
9	В	402/419~(96%)	397 (99%)	5 (1%)	0	100	100
10	С	364/373~(98%)	353~(97%)	11 (3%)	0	100	100
11	D	156/188~(83%)	145 (93%)	11 (7%)	0	100	100
12	Ε	184/190~(97%)	176 (96%)	8 (4%)	0	100	100
13	F	144/195~(74%)	135 (94%)	9 (6%)	0	100	100

α \cdots 1	C		
Continued	trom	previous	page
• • • • • • • • • • • • •		P	1

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
14	G	222/264~(84%)	218 (98%)	3 (1%)	1 (0%)	29	41
15	Н	218/222~(98%)	218 (100%)	0	0	100	100
16	Ι	206/220~(94%)	202~(98%)	4 (2%)	0	100	100
17	J	135/139~(97%)	135 (100%)	0	0	100	100
18	K	168/175~(96%)	165 (98%)	3 (2%)	0	100	100
19	L	142/145~(98%)	135 (95%)	7 (5%)	0	100	100
20	М	201/204~(98%)	195 (97%)	6 (3%)	0	100	100
21	N	195/213~(92%)	193 (99%)	2 (1%)	0	100	100
22	Ο	268/305~(88%)	260 (97%)	8 (3%)	0	100	100
23	Р	195/198~(98%)	188 (96%)	7 (4%)	0	100	100
24	Q	188/254~(74%)	185 (98%)	3 (2%)	0	100	100
25	R	176/179~(98%)	175 (99%)	1 (1%)	0	100	100
28	SA	225/264~(85%)	215 (96%)	10 (4%)	0	100	100
29	SB	206/246~(84%)	199 (97%)	7 (3%)	0	100	100
30	SC	211/219~(96%)	208 (99%)	3 (1%)	0	100	100
31	SD	169/190~(89%)	167 (99%)	2 (1%)	0	100	100
32	SE	258/273~(94%)	254 (98%)	4 (2%)	0	100	100
33	SF	216/265~(82%)	214 (99%)	2 (1%)	0	100	100
34	SG	231/249~(93%)	228 (99%)	3 (1%)	0	100	100
35	SH	178/190~(94%)	175 (98%)	3 (2%)	0	100	100
36	SI	197/200~(98%)	195 (99%)	2 (1%)	0	100	100
37	SK	176/220~(80%)	174 (99%)	2 (1%)	0	100	100
38	SL	141/149~(95%)	137 (97%)	4 (3%)	0	100	100
39	SM	100/116~(86%)	96 (96%)	4 (4%)	0	100	100
40	SN	98/168~(58%)	98 (100%)	0	0	100	100
41	SO	134/144~(93%)	131 (98%)	3 (2%)	0	100	100
42	SP	142/143~(99%)	139 (98%)	3 (2%)	0	100	100
43	SQ	96/141~(68%)	85 (88%)	11 (12%)	0	100	100
44	SR	134/153~(88%)	131 (98%)	3 (2%)	0	100	100
45	SS	52/57~(91%)	51 (98%)	1 (2%)	0	100	100
46	ST	141/151 (93%)	139 (99%)	2 (1%)	0	100	100

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
• • • • • • • • • • • •	J	r · · · · · · · · · · · · · · ·	regen

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
47	SU	156/173~(90%)	151 (97%)	5 (3%)	0	100	100
48	SV	75/143~(52%)	73~(97%)	2(3%)	0	100	100
49	SW	113/152~(74%)	109 (96%)	4 (4%)	0	100	100
50	SX	150/161~(93%)	143 (95%)	7 (5%)	0	100	100
51	SY	83/164~(51%)	81 (98%)	2 (2%)	0	100	100
52	SZ	125/137~(91%)	124 (99%)	1 (1%)	0	100	100
53	S	155/159~(98%)	154 (99%)	1 (1%)	0	100	100
54	Sa	69/120~(58%)	68 (99%)	1 (1%)	0	100	100
55	Sc	70/86~(81%)	70 (100%)	0	0	100	100
56	Sb	101/112~(90%)	99~(98%)	2 (2%)	0	100	100
57	Sd	63/87~(72%)	62 (98%)	1 (2%)	0	100	100
58	Se	50/66~(76%)	48 (96%)	2 (4%)	0	100	100
59	Sg	302/312~(97%)	290 (96%)	12 (4%)	0	100	100
60	Sh	153/235~(65%)	146 (95%)	7 (5%)	0	100	100
61	SJ	127/130~(98%)	126 (99%)	1 (1%)	0	100	100
62	Т	150/166~(90%)	148 (99%)	2 (1%)	0	100	100
63	U	99/129~(77%)	98 (99%)	1 (1%)	0	100	100
64	V	116/145~(80%)	115 (99%)	1 (1%)	0	100	100
65	W	116/143~(81%)	114 (98%)	2 (2%)	0	100	100
66	Х	62/124~(50%)	61 (98%)	1 (2%)	0	100	100
67	Y	130/134~(97%)	129 (99%)	1 (1%)	0	100	100
68	Z	143/147~(97%)	140 (98%)	3 (2%)	0	100	100
69	a	121/127~(95%)	119 (98%)	2 (2%)	0	100	100
70	b	66/70~(94%)	66 (100%)	0	0	100	100
71	с	227/252~(90%)	220 (97%)	7 (3%)	0	100	100
72	d	91/104~(88%)	90 (99%)	1 (1%)	0	100	100
73	e	176/188 (94%)	172 (98%)	4 (2%)	0	100	100
74	f	123/133 (92%)	117 (95%)	6(5%)	0	100	100
75	g	140/144~(97%)	138 (99%)	2 (1%)	0	100	100
76	h	125/168~(74%)	122 (98%)	3 (2%)	0	100	100
77	i	82/105~(78%)	81 (99%)	1 (1%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
78	j	79/83~(95%)	78~(99%)	1 (1%)	0	100	100
79	k	70/83~(84%)	70 (100%)	0	0	100	100
80	1	48/51~(94%)	47 (98%)	1 (2%)	0	100	100
81	m	49/128~(38%)	47~(96%)	2(4%)	0	100	100
82	n	31/34~(91%)	30~(97%)	1 (3%)	0	100	100
83	О	86/92~(94%)	80~(93%)	6~(7%)	0	100	100
84	р	95/106~(90%)	93~(98%)	2(2%)	0	100	100
All	All	11140/12774~(87%)	10878 (98%)	261 (2%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
14	G	183	ASP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
8	А	186/204~(91%)	185 (100%)	1 (0%)	88	95
9	В	294/351~(84%)	292~(99%)	2(1%)	84	92
10	С	250/301~(83%)	248~(99%)	2(1%)	81	91
11	D	62/162~(38%)	61~(98%)	1 (2%)	62	79
12	Е	122/172~(71%)	116 (95%)	6~(5%)	25	40
13	F	94/153~(61%)	93~(99%)	1 (1%)	73	87
14	G	156/221~(71%)	154 (99%)	2(1%)	69	84
15	Н	155/188~(82%)	154 (99%)	1 (1%)	86	94
16	Ι	145/183~(79%)	143 (99%)	2(1%)	67	82
17	J	95/111~(86%)	95 (100%)	0	100	100
18	K	109/145~(75%)	109 (100%)	0	100	100

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
19	L	107/114~(94%)	106~(99%)	1 (1%)	78	90
20	М	172/180~(96%)	170~(99%)	2(1%)	71	85
21	Ν	168/179~(94%)	161 (96%)	7 (4%)	30	47
22	Ο	148/242~(61%)	145~(98%)	3(2%)	55	74
23	Р	152/164~(93%)	151 (99%)	1 (1%)	84	92
24	Q	120/198~(61%)	116~(97%)	4 (3%)	38	57
25	R	144/159~(91%)	144 (100%)	0	100	100
28	SA	198/222~(89%)	187 (94%)	11 (6%)	21	34
29	SB	165/202~(82%)	159~(96%)	6 (4%)	35	54
30	\mathbf{SC}	167/184~(91%)	159~(95%)	8 (5%)	25	41
31	SD	148/164 (90%)	143 (97%)	5(3%)	37	56
32	SE	215/225~(96%)	209~(97%)	6 (3%)	43	63
33	SF	174/208~(84%)	170 (98%)	4 (2%)	50	70
34	SG	186/208~(89%)	181 (97%)	5 (3%)	44	65
35	SH	150/159~(94%)	146 (97%)	4 (3%)	44	65
36	SI	172/186~(92%)	167 (97%)	5 (3%)	42	62
37	SK	139/176~(79%)	135~(97%)	4 (3%)	42	62
38	SL	112/120~(93%)	109~(97%)	3 (3%)	44	65
39	SM	90/104 (86%)	89~(99%)	1 (1%)	73	87
40	SN	84/128~(66%)	77 (92%)	7 (8%)	11	17
41	SO	97/113~(86%)	92~(95%)	5 (5%)	23	38
42	SP	115/117~(98%)	114 (99%)	1 (1%)	78	90
43	SQ	57/120 (48%)	55~(96%)	2(4%)	36	55
44	SR	112/130~(86%)	111 (99%)	1 (1%)	78	90
45	SS	45/49~(92%)	43 (96%)	2(4%)	28	45
46	ST	125/132~(95%)	124 (99%)	1 (1%)	81	91
47	SU	132/152~(87%)	129~(98%)	3 (2%)	50	70
48	SV	69/126~(55%)	64 (93%)	5 (7%)	14	23
49	SW	93/130~(72%)	90~(97%)	3 (3%)	39	59
50	SX	121/131~(92%)	120 (99%)	1 (1%)	81	91
51	SY	64/116~(55%)	63~(98%)	1 (2%)	62	79

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
52	SZ	107/118~(91%)	102~(95%)	5 (5%)	26	42
53	S	116/134~(87%)	116 (100%)	0	100	100
54	Sa	63/95~(66%)	63~(100%)	0	100	100
55	Sc	62/76~(82%)	60~(97%)	2(3%)	39	59
56	Sb	85/93~(91%)	83~(98%)	2(2%)	49	68
57	Sd	46/75~(61%)	43~(94%)	3~(6%)	17	27
58	Se	45/54~(83%)	43~(96%)	2~(4%)	28	45
59	Sg	246/265~(93%)	240~(98%)	6(2%)	49	68
60	Sh	91/177~(51%)	85~(93%)	6~(7%)	16	26
61	SJ	110/111~(99%)	109~(99%)	1 (1%)	78	90
62	Т	125/143~(87%)	123~(98%)	2(2%)	62	79
63	U	41/114~(36%)	40 (98%)	1 (2%)	49	68
64	V	93/124~(75%)	92~(99%)	1 (1%)	73	87
65	W	96/122~(79%)	96 (100%)	0	100	100
66	Х	56/104~(54%)	53~(95%)	3~(5%)	22	36
67	Y	93/116~(80%)	92~(99%)	1 (1%)	73	87
68	Z	102/118~(86%)	98~(96%)	4 (4%)	32	50
69	a	103/118~(87%)	101~(98%)	2(2%)	57	75
70	b	56/58~(97%)	55~(98%)	1 (2%)	59	76
71	с	192/209~(92%)	190~(99%)	2(1%)	76	88
72	d	81/89~(91%)	73~(90%)	8 (10%)	8	11
73	е	146/158~(92%)	143 (98%)	3 (2%)	53	72
74	f	106/115~(92%)	105~(99%)	1 (1%)	78	90
75	g	119/121~(98%)	118 (99%)	1 (1%)	81	91
76	h	110/146~(75%)	106 (96%)	4 (4%)	35	54
77	i	64/88~(73%)	63~(98%)	1 (2%)	62	79
78	j	67/70~(96%)	66~(98%)	1 (2%)	65	80
79	k	52/74~(70%)	48 (92%)	4 (8%)	13	20
80	l	46/47~(98%)	44 (96%)	2 (4%)	29	46
81	m	36/113~(32%)	34~(94%)	2~(6%)	21	34
82	n	30/32~(94%)	28~(93%)	2(7%)	16	26

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
83	О	68/74~(92%)	64 (94%)	4 (6%)	19 32
84	р	82/92~(89%)	81 (99%)	1 (1%)	71 85
All	All	8644/10672~(81%)	8436 (98%)	208~(2%)	51 68

5 of 208 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
45	\mathbf{SS}	57	ARG
58	Se	64	LYS
81	m	96	CYS
47	SU	82	ARG
52	SZ	32	VAL

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 11 such side chains are listed below:

Mol	Chain	Res	Type
71	с	30	GLN
74	f	50	GLN
76	h	101	GLN
76	h	7	GLN
66	Х	63	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	1598/1782~(89%)	281 (17%)	16 (1%)
2	3	151/216~(69%)	32~(21%)	4(2%)
26	S1	1726/2204~(78%)	310~(17%)	12 (0%)
27	S4	18/20~(90%)	6~(33%)	0
3	4	182/183~(99%)	31~(17%)	3(1%)
4	5	111/135~(82%)	21 (18%)	0
5	6	70/73~(95%)	22 (31%)	2(2%)
6	7	161/171~(94%)	24 (14%)	0
7	8	118/123~(95%)	8~(6%)	0
85	2	1097/1526~(71%)	207 (18%)	13 (1%)
All	All	5232/6433~(81%)	942 (18%)	50 (0%)

 $5~{\rm of}~942$ RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	1	24	А
1	1	29	С
1	1	38	А
1	1	41	А
1	1	47	С

5 of 50 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
26	S1	277	U
26	S1	995	U
85	2	1452	U
26	S1	494	А
26	S1	790	U

5.4 Non-standard residues in protein, DNA, RNA chains (i)

154 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bog	Link	B	ond leng	gths	Bond angles		
WIOI	туре	Ullalli	nes	LIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
85	PSU	2	1413	85	18,21,22	4.38	7 (38%)	22,30,33	1.79	5 (22%)
26	A2M	S1	98	86,26	18,25,26	4.26	7 (38%)	18,36,39	2.56	3 (16%)
1	PSU	1	940	1	18,21,22	4.44	7 (38%)	22,30,33	1.82	5 (22%)
85	PSU	2	626	85	18,21,22	4.40	7 (38%)	22,30,33	1.77	4 (18%)
85	PSU	2	1361	85	18,21,22	4.44	7 (38%)	22,30,33	1.80	5 (22%)
1	A2M	1	927	1	18,25,26	4.20	6 (33%)	18,36,39	2.74	3 (16%)
1	PSU	1	1181	1	18,21,22	4.43	8 (44%)	22,30,33	1.73	4 (18%)
85	PSU	2	593	85	18,21,22	4.38	7 (38%)	22,30,33	1.71	4 (18%)
26	PSU	S1	2048	26	18,21,22	4.25	8 (44%)	22,30,33	1.85	5 (22%)
1	OMU	1	1371	1	19,22,23	3.04	8 (42%)	26,31,34	1.88	5 (19%)
26	PSU	S1	1657	26	18,21,22	4.33	7 (38%)	22,30,33	1.81	5 (22%)
26	PSU	S1	1533	26	18,21,22	4.42	7 (38%)	22,30,33	1.75	5 (22%)

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	В	Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
85	PSU	2	437	85	18,21,22	4.38	7 (38%)	22,30,33	1.83	5 (22%)	
1	A2M	1	678	85,1	18,25,26	4.24	6 (33%)	18,36,39	<mark>3.59</mark>	7 (38%)	
85	PSU	2	597	85	18,21,22	4.42	7 (38%)	22,30,33	1.81	5 (22%)	
85	5MC	2	524	85,86	18,22,23	3.44	7 (38%)	26,32,35	1.04	2 (7%)	
1	OMC	1	695	1	19,22,23	2.94	8 (42%)	26,31,34	0.70	0	
1	PSU	1	422	1	18,21,22	4.47	7 (38%)	22,30,33	1.86	4 (18%)	
1	OMG	1	856	1	18,26,27	2.50	8 (44%)	19,38,41	1.55	4 (21%)	
26	OMU	S1	29	86,26	19,22,23	2.93	8 (42%)	26,31,34	1.79	5 (19%)	
26	OMC	S1	2140	26	19,22,23	2.94	8 (42%)	26,31,34	0.86	0	
6	OMU	7	7	6,1	19,22,23	2.97	8 (42%)	26,31,34	1.72	5 (19%)	
1	PSU	1	672	86,1	18,21,22	4.39	7 (38%)	22,30,33	1.85	6 (27%)	
26	OMU	S1	8	26	19,22,23	2.86	8 (42%)	26,31,34	1.82	5 (19%)	
26	PSU	S1	104	26	18,21,22	4.37	7 (38%)	22,30,33	1.75	5 (22%)	
85	OMC	2	443	85,87	19,22,23	2.94	8 (42%)	26,31,34	0.80	0	
1	OMG	1	1540	85,1	18,26,27	2.47	8 (44%)	19,38,41	1.54	5 (26%)	
85	OMU	2	73	85	19,22,23	2.96	8 (42%)	26,31,34	1.69	5 (19%)	
26	PSU	S1	1566	86,26	18,21,22	4.43	8 (44%)	22,30,33	1.72	4 (18%)	
1	OMG	1	1190	86,1	18,26,27	2.50	8 (44%)	19,38,41	1.64	4 (21%)	
1	PSU	1	1039	1	18,21,22	4.44	7 (38%)	22,30,33	1.87	5 (22%)	
85	OMG	2	1229	85	18,26,27	2.52	8 (44%)	19,38,41	1.59	5 (26%)	
26	OMU	S1	1833	86,26	19,22,23	2.99	8 (42%)	26,31,34	1.77	5 (19%)	
6	A2M	7	43	6	18,25,26	4.25	6 (33%)	18,36,39	2.62	3 (16%)	
26	OMG	S1	1550	26	18,26,27	2.53	8 (44%)	19,38,41	1.55	4 (21%)	
85	OMG	2	1046	85	18,26,27	2.52	8 (44%)	19,38,41	1.54	4 (21%)	
85	A2M	2	527	85	18,25,26	3.98	7 (38%)	18,36,39	2.69	3 (16%)	
85	PSU	2	662	85,86	18,21,22	4.40	7 (38%)	22,30,33	1.82	5 (22%)	
85	PSU	2	1058	85	18,21,22	4.45	7 (38%)	22,30,33	1.85	5 (22%)	
26	PSU	S1	2046	26	18,21,22	4.30	7 (38%)	22,30,33	1.91	5 (22%)	
1	PSU	1	1528	1	18,21,22	4.44	7 (38%)	22,30,33	1.82	5 (22%)	
85	OMU	2	560	85	19,22,23	2.98	8 (42%)	26,31,34	1.76	5 (19%)	
6	PSU	7	74	6	18,21,22	4.45	7 (38%)	22,30,33	1.81	5 (22%)	
1	PSU	1	239	1	18,21,22	4.47	7 (38%)	22,30,33	1.81	5 (22%)	
85	OMU	2	56	85,1	19,22,23	2.98	8 (42%)	26,31,34	1.76	4 (15%)	
85	OMG	2	534	85	18,26,27	2.51	8 (44%)	19,38,41	1.56	4 (21%)	
85	OMG	2	1253	85	18,26,27	2.47	8 (44%)	19,38,41	1.52	4 (21%)	

Mal	Trune	Chain	Dec	Tink	B	ond leng	gths	Bond angles		
WIOI	Type	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
85	OMU	2	667	85	$19,\!22,\!23$	2.98	8 (42%)	26,31,34	1.71	4 (15%)
1	PSU	1	1664	1	18,21,22	4.44	7 (38%)	22,30,33	1.84	6 (27%)
26	PSU	S1	1539	26	18,21,22	4.41	7 (38%)	22,30,33	1.78	5 (22%)
1	A2M	1	858	1	18,25,26	4.15	7 (38%)	18,36,39	2.78	4 (22%)
85	A2M	2	604	85,1	18,25,26	4.22	6 (33%)	18,36,39	2.66	3 (16%)
85	OMU	2	1419	85	19,22,23	2.99	8 (42%)	26,31,34	1.72	4 (15%)
26	OMG	S1	1647	26	18,26,27	2.44	8 (44%)	19,38,41	1.66	4 (21%)
85	OMG	2	71	85,86	18,26,27	2.54	8 (44%)	19,38,41	1.58	4 (21%)
26	PSU	S1	33	26	18,21,22	4.42	8 (44%)	22,30,33	1.75	4 (18%)
26	PSU	S1	1156	26	18,21,22	4.35	7 (38%)	22,30,33	1.85	5 (22%)
85	A2M	2	591	85	18,25,26	4.23	6 (33%)	18,36,39	2.71	3 (16%)
26	A2M	S1	479	26	18,25,26	4.21	7 (38%)	18,36,39	2.68	5 (27%)
85	OMC	2	359	85	19,22,23	2.98	8 (42%)	26,31,34	0.69	0
85	A2M	2	570	85,1	18,25,26	4.15	7 (38%)	18,36,39	2.85	5 (27%)
6	OMG	7	75	6	18,26,27	2.54	8 (44%)	19,38,41	1.56	4 (21%)
1	OMG	1	959[A]	1	18,26,27	2.58	8 (44%)	19,38,41	1.65	5 (26%)
26	OMG	S1	600	26	18,26,27	2.48	8 (44%)	19,38,41	1.55	4 (21%)
1	OMG	1	1524	1	18,26,27	2.53	8 (44%)	19,38,41	1.65	4 (21%)
85	OMU	2	1359	85	19,22,23	2.98	8 (42%)	26,31,34	1.70	5 (19%)
85	PSU	2	1354	85	18,21,22	4.43	7 (38%)	22,30,33	1.84	5 (22%)
26	PSU	S1	1192	26	18,21,22	4.34	7 (38%)	22,30,33	1.72	4 (18%)
26	OMG	S1	1829	86,26	18,26,27	2.50	8 (44%)	19,38,41	1.53	4 (21%)
85	A2M	2	95	85	18,25,26	4.22	<mark>6 (33%)</mark>	18,36,39	2.68	3 (16%)
1	1MA	1	677	86,1	16,25,26	3.94	4 (25%)	18,37,40	1.83	3 (16%)
1	OMG	1	1626	1	18,26,27	2.53	8 (44%)	19,38,41	1.58	5 (26%)
1	OMU	1	1107	1	19,22,23	2.99	8 (42%)	26,31,34	1.76	5 (19%)
85	PSU	2	1303	85	18,21,22	4.42	8 (44%)	22,30,33	1.86	6 (27%)
85	PSU	2	1265	85,88	18,21,22	4.45	7 (38%)	22,30,33	1.91	5 (22%)
85	PSU	2	1144	85	18,21,22	4.43	7 (38%)	22,30,33	1.85	5 (22%)
85	A2M	2	1185	85	18,25,26	4.18	7 (38%)	18,36,39	<mark>2.63</mark>	4 (22%)
1	OMU	1	845	1	19,22,23	2.96	8 (42%)	26,31,34	2.05	6 (23%)
85	A2M	2	628	85	18,25,26	4.22	6 (33%)	18,36,39	2.60	3 (16%)
26	C4J	S1	1543	26	24,29,30	2.97	9 (37%)	29,42,45	1.37	3 (10%)
3	OMG	4	74	3	18,26,27	2.50	8 (44%)	19,38,41	1.52	5 (26%)
1	A2M	1	955	1	18,25,26	4.25	6 (33%)	18,36,39	2.67	3 (16%)

Mal	Trune	Chain	Dec	Tinle	В	ond leng	gths	B	Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
26	5MC	S1	1544	26	18,22,23	3.47	7 (38%)	26,32,35	1.05	1 (3%)	
1	A2M	1	407	1	18,25,26	4.37	7 (38%)	18,36,39	2.54	4 (22%)	
85	A2M	2	572	85	18,25,26	4.22	6 (33%)	18,36,39	2.66	3 (16%)	
85	A2M	2	382	85	18,25,26	4.28	6 (33%)	18,36,39	2.78	3 (16%)	
1	PSU	1	1533	85,1	18,21,22	4.43	7 (38%)	22,30,33	1.92	6 (27%)	
1	A2M	1	1539	85,86,1	18,25,26	4.24	6 (33%)	18,36,39	2.58	3 (16%)	
85	OMC	2	1248	85	19,22,23	2.92	8 (42%)	26,31,34	0.82	0	
26	OMC	S1	18	26	19,22,23	2.81	8 (42%)	26,31,34	0.78	0	
85	A2M	2	1384	85,86	18,25,26	4.23	6 (33%)	18,36,39	2.60	3 (16%)	
1	A2M	1	305	1	18,25,26	4.18	6 (33%)	18,36,39	2.73	3 (16%)	
1	A2M	1	697	1	18,25,26	4.22	6 (33%)	18,36,39	2.65	3 (16%)	
26	PSU	S1	1841	26,87	18,21,22	4.37	7 (38%)	22,30,33	1.93	5 (22%)	
26	PSU	S1	455	26	18,21,22	4.38	7 (38%)	22,30,33	1.90	5 (22%)	
1	PSU	1	1171	86,1	18,21,22	4.43	7 (38%)	22,30,33	1.83	6 (27%)	
26	OMG	S1	2151	26	18,26,27	2.50	8 (44%)	19,38,41	1.61	4 (21%)	
85	OMC	2	1317	85	19,22,23	2.92	8 (42%)	26,31,34	0.77	0	
85	PSU	2	1318	85	18,21,22	4.40	7 (38%)	22,30,33	1.78	6 (27%)	
26	PSU	S1	1246	86,26	18,21,22	4.33	7 (38%)	22,30,33	1.92	5 (22%)	
6	PSU	7	69	6	18,21,22	4.44	9 (50%)	22,30,33	1.75	5 (22%)	
1	PSU	1	1402	1	18,21,22	4.41	7 (38%)	22,30,33	1.68	4 (18%)	
26	MA6	S1	2185	26	18,26,27	1.18	1 (5%)	19,38,41	<mark>3.00</mark>	2 (10%)	
26	OMU	S1	1621	86,26	19,22,23	2.99	8 (42%)	26,31,34	1.72	4 (15%)	
85	OMG	2	1231	85	18,26,27	2.52	8 (44%)	19,38,41	1.52	4 (21%)	
85	PSU	2	1264	85,87	18,21,22	4.44	8 (44%)	22,30,33	1.88	6 (27%)	
85	OMU	2	1077	85	19,22,23	3.00	8 (42%)	26,31,34	1.75	5 (19%)	
26	PSU	S1	607	26	18,21,22	4.54	7 (38%)	22,30,33	1.74	6 (27%)	
26	PSU	S1	12	26	18,21,22	4.26	8 (44%)	22,30,33	1.83	5 (22%)	
26	OMU	S1	1979	26	19,22,23	2.98	8 (42%)	26,31,34	1.73	4 (15%)	
85	OMC	2	1159	85	19,22,23	2.93	8 (42%)	26,31,34	0.79	0	
85	OMG	2	655	85	18,26,27	2.50	8 (44%)	19,38,41	1.59	4 (21%)	
1	PSU	1	1011	1	18,21,22	4.45	9(50%)	22,30,33	1.77	5 (22%)	
26	OMU	S1	661	26	19,22,23	2.88	8 (42%)	26,31,34	1.77	5 (19%)	
1	PSU	1	870	1	18,21,22	4.41	7 (38%)	22,30,33	1.85	5 (22%)	
1	A2M	1	235	1	18,25,26	4.33	7 (38%)	18,36,39	2.60	3 (16%)	
26	MA6	S1	2184	26	18,26,27	1.18	1 (5%)	19,38,41	2.95	2 (10%)	

Mal	Trung	Chain	Dec	Tinle	В	ond leng	gths	B	Bond angles		
	туре	Chain	res		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
85	PSU	2	1194	85	18,21,22	4.45	7 (38%)	22,30,33	1.78	5 (22%)	
26	PSU	S1	609	26	18,21,22	4.42	7 (38%)	22,30,33	1.89	5 (22%)	
1	OMU	1	1659	86,1	19,22,23	2.98	8 (42%)	26,31,34	1.73	5 (19%)	
6	A2M	7	162	6,1	18,25,26	4.22	6 (33%)	18,36,39	2.80	3 (16%)	
85	PSU	2	510	85	18,21,22	4.47	7 (38%)	22,30,33	1.78	5 (22%)	
85	5MC	2	1308	85,86	18,21,23	4.64	12 (66%)	25,30,35	1.30	2 (8%)	
1	PSU	1	1017	86,1	18,21,22	4.36	7 (38%)	22,30,33	1.83	5 (22%)	
26	7MG	S1	1995	26	22,26,27	4.13	10 (45%)	29,39,42	2.05	9 (31%)	
1	A2M	1	681	1	18,25,26	4.19	6 (33%)	18,36,39	2.79	3 (16%)	
85	OMG	2	1078	85	18,26,27	2.51	8 (44%)	19,38,41	1.65	5 (26%)	
85	PSU	2	78	85	18,21,22	4.41	7 (38%)	22,30,33	1.84	5 (22%)	
26	A2M	S1	2021	26	18,25,26	4.10	7 (38%)	18,36,39	2.77	3 (16%)	
85	PSU	2	512	85	18,21,22	4.47	7 (38%)	22,30,33	1.83	5 (22%)	
26	A2M	S1	512	86,26	18,25,26	4.24	7 (38%)	18,36,39	2.55	3 (16%)	
85	PSU	2	472	85	18,21,22	4.45	7 (38%)	22,30,33	1.86	5 (22%)	
85	OMC	2	583	85	19,22,23	2.92	8 (42%)	26,31,34	0.69	0	
85	OMG	2	1360	85	18,26,27	2.52	8 (44%)	19,38,41	1.52	4 (21%)	
85	OMC	2	1397	85	19,22,23	2.91	8 (42%)	26,31,34	0.77	0	
2	OMU	3	13	2	19,22,23	2.99	8 (42%)	26,31,34	1.73	5 (19%)	
26	OMG	S1	1623	26	18,26,27	2.51	8 (44%)	19,38,41	1.54	4 (21%)	
1	OMC	1	1527	1	19,22,23	2.94	8 (42%)	26,31,34	0.99	2 (7%)	
1	OMC	1	1010	86,1,88	19,22,23	2.94	8 (42%)	26,31,34	0.83	0	
26	OMG	S1	1865	26	18,26,27	2.49	8 (44%)	19,38,41	1.57	4 (21%)	
26	PSU	S1	2202	26	18,21,22	4.29	8 (44%)	22,30,33	1.65	4 (18%)	
26	OMG	S1	1879	26	18,26,27	2.51	8 (44%)	19,38,41	1.56	4 (21%)	
26	A2M	S1	668	86,26	18,25,26	4.04	7 (38%)	18,36,39	2.85	4 (22%)	
26	5MC	S1	2061	26	18,22,23	3.35	7 (38%)	26,32,35	0.99	2 (7%)	
85	PSU	2	1060	85	18,21,22	4.40	7 (38%)	22,30,33	1.91	5 (22%)	
85	A2M	2	1372	85	18,25,26	4.15	<mark>6 (33%)</mark>	18,36,39	2.73	4 (22%)	
85	PSU	2	1403	85	18,21,22	4.43	7 (38%)	22,30,33	1.86	6 (27%)	
85	OMG	2	641	85	18,26,27	2.51	8 (44%)	19,38,41	1.59	5 (26%)	
1	OMU	1	847	1	19,22,23	2.94	8 (42%)	26,31,34	1.76	5 (19%)	
1	OMG	1	959[B]	1	18,26,27	2.56	8 (44%)	19,38,41	1.51	4 (21%)	
26	OMC	S1	38	26	19,22,23	2.88	8 (42%)	26,31,34	0.79	0	
26	OMG	S1	1478	26	18,26,27	2.43	8 (44%)	19,38,41	1.58	5 (26%)	

Mol Typ	Turne	Chain	Dec	Tinle	B	ond leng	gths	B	ond ang	les
IVIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
85	PSU	2	1382	85	18,21,22	4.42	7 (38%)	22,30,33	1.89	6 (27%)
26	OMC	S1	1866	26	19,22,23	2.90	8 (42%)	26,31,34	0.74	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
85	PSU	2	1413	85	-	0/7/25/26	0/2/2/2
26	A2M	S1	98	86,26	-	2/5/27/28	0/3/3/3
1	PSU	1	940	1	-	0/7/25/26	0/2/2/2
85	PSU	2	626	85	-	0/7/25/26	0/2/2/2
85	PSU	2	1361	85	-	1/7/25/26	0/2/2/2
1	A2M	1	927	1	_	1/5/27/28	0/3/3/3
1	PSU	1	1181	1	-	4/7/25/26	0/2/2/2
85	PSU	2	593	85	-	0/7/25/26	0/2/2/2
26	PSU	S1	2048	26	-	0/7/25/26	0/2/2/2
1	OMU	1	1371	1	-	4/9/27/28	0/2/2/2
26	PSU	S1	1657	26	-	2/7/25/26	0/2/2/2
26	PSU	S1	1533	26	-	2/7/25/26	0/2/2/2
85	PSU	2	437	85	-	0/7/25/26	0/2/2/2
1	A2M	1	678	85,1	-	3/5/27/28	0/3/3/3
85	PSU	2	597	85	-	0/7/25/26	0/2/2/2
85	5MC	2	524	85,86	-	0/7/25/26	0/2/2/2
1	OMC	1	695	1	-	0/9/27/28	0/2/2/2
1	PSU	1	422	1	-	0/7/25/26	0/2/2/2
1	OMG	1	856	1	-	0/5/27/28	0/3/3/3
26	OMU	S1	29	86,26	-	0/9/27/28	0/2/2/2
26	OMC	S1	2140	26	-	2/9/27/28	0/2/2/2
6	OMU	7	7	6,1	-	1/9/27/28	0/2/2/2
1	PSU	1	672	86,1	-	0/7/25/26	0/2/2/2
26	OMU	S1	8	26	-	6/9/27/28	0/2/2/2
26	PSU	S1	104	26	-	2/7/25/26	0/2/2/2
85	OMC	2	443	85,87	-	4/9/27/28	0/2/2/2
1	OMG	1	1540	85,1	-	2/5/27/28	0/3/3/3
85	OMU	2	73	85	-	0/9/27/28	0/2/2/2
26	PSU	S1	1566	86,26	-	2/7/25/26	0/2/2/2
1	OMG	1	1190	86,1	-	0/5/27/28	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	DSII		1030	1	Omais	$\frac{101310113}{0/7/25/26}$	0/2/2/2
85	OMG	2	1039	85	_	$\frac{0/7/23/20}{0/5/27/28}$	0/2/2/2 0/3/3/3
26	OMU	2 S1	1833	86.26		$\frac{0}{9}\frac{21}{28}$	0/3/3/3
20		7	42	60,20	-	0/5/27/28	0/2/2/2
0	AZM	(01	45	0	-	0/3/27/28	0/3/3/3
26	OMG	51	1550	26	-	3/5/27/28	0/3/3/3
85	OMG	2	1046	85	-	2/5/27/28	0/3/3/3
85	A2M	2	527	85	-	2/5/27/28	0/3/3/3
85	PSU	2	662	85,86	-	0/7/25/26	0/2/2/2
85	PSU	2	1058	85	-	0/7/25/26	0/2/2/2
26	PSU	S1	2046	26	-	0/7/25/26	0/2/2/2
1	PSU	1	1528	1	-	0/7/25/26	0/2/2/2
85	OMU	2	560	85	-	1/9/27/28	0/2/2/2
6	PSU	7	74	6	-	2/7/25/26	0/2/2/2
1	PSU	1	239	1	-	0/7/25/26	0/2/2/2
85	OMU	2	56	85,1	_	0/9/27/28	0/2/2/2
85	OMG	2	534	85	-	2/5/27/28	0/3/3/3
85	OMG	2	1253	85	-	0/5/27/28	0/3/3/3
85	OMU	2	667	85	-	1/9/27/28	0/2/2/2
1	PSU	1	1664	1	-	0/7/25/26	0/2/2/2
26	PSU	S1	1539	26	-	2/7/25/26	0/2/2/2
1	A2M	1	858	1	-	0/5/27/28	0/3/3/3
85	A2M	2	604	85,1	-	0/5/27/28	0/3/3/3
85	OMU	2	1419	85	-	0/9/27/28	0/2/2/2
26	OMG	S1	1647	26	-	0/5/27/28	0/3/3/3
85	OMG	2	71	85,86	_	0/5/27/28	0/3/3/3
26	PSU	S1	33	26	-	2/7/25/26	0/2/2/2
26	PSU	S1	1156	26	-	0/7/25/26	0/2/2/2
85	A2M	2	591	85	-	1/5/27/28	0/3/3/3
26	A2M	S1	479	26	-	2/5/27/28	0/3/3/3
85	OMC	2	359	85	-	0/9/27/28	0/2/2/2
85	A2M	2	570	85,1	-	3/5/27/28	0/3/3/3
6	OMG	7	75	6	-	2/5/27/28	0/3/3/3
1	OMG	1	959[A]	1	-	2/5/27/28	0/3/3/3
26	OMG	S1	600	26	-	2/5/27/28	0/3/3/3
1	OMG	1	1524	1	-	1/5/27/28	0/3/3/3
85	OMU	2	1359	85	-	0/9/27/28	0/2/2/2
85	PSU	2	1354	85	-	0/7/25/26	0/2/2/2
26	PSU	S1	1192	26	-	0/7/25/26	0/2/2/2
26	OMG	S1	1829	86,26	-	0/5/27/28	0/3/3/3

001000	nucu jio	110 010000	page				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
85	A2M	2	95	85	-	0/5/27/28	0/3/3/3
1	1MA	1	677	86,1	-	0/3/25/26	0/3/3/3
1	OMG	1	1626	1	-	0/5/27/28	0/3/3/3
1	OMU	1	1107	1	-	3/9/27/28	0/2/2/2
85	PSU	2	1303	85	-	0/7/25/26	0/2/2/2
85	PSU	2	1265	85,88	-	1/7/25/26	0/2/2/2
85	PSU	2	1144	85	-	0/7/25/26	0/2/2/2
85	A2M	2	1185	85	-	2/5/27/28	0/3/3/3
1	OMU	1	845	1	-	3/9/27/28	0/2/2/2
85	A2M	2	628	85	-	0/5/27/28	0/3/3/3
26	C4J	S1	1543	26	-	6/16/34/35	0/2/2/2
3	OMG	4	74	3	-	0/5/27/28	0/3/3/3
1	A2M	1	955	1	-	0/5/27/28	0/3/3/3
26	5MC	S1	1544	26	-	0/7/25/26	0/2/2/2
1	A2M	1	407	1	-	4/5/27/28	0/3/3/3
85	A2M	2	572	85	-	0/5/27/28	0/3/3/3
85	A2M	2	382	85	-	1/5/27/28	0/3/3/3
1	PSU	1	1533	85,1	-	0/7/25/26	0/2/2/2
1	A2M	1	1539	85,86,1	-	0/5/27/28	0/3/3/3
85	OMC	2	1248	85	-	1/9/27/28	0/2/2/2
26	OMC	S1	18	26	-	0/9/27/28	0/2/2/2
85	A2M	2	1384	85,86	-	0/5/27/28	0/3/3/3
1	A2M	1	305	1	-	2/5/27/28	0/3/3/3
1	A2M	1	697	1	-	0/5/27/28	0/3/3/3
26	PSU	S1	1841	26,87	-	1/7/25/26	0/2/2/2
26	PSU	S1	455	26	-	0/7/25/26	0/2/2/2
1	PSU	1	1171	86,1	-	0/7/25/26	0/2/2/2
26	OMG	S1	2151	26	-	0/5/27/28	0/3/3/3
85	OMC	2	1317	85	-	0/9/27/28	0/2/2/2
85	PSU	2	1318	85	-	0/7/25/26	0/2/2/2
26	PSU	S1	1246	86,26	-	0/7/25/26	0/2/2/2
6	PSU	7	69	6	-	4/7/25/26	0/2/2/2
1	PSU	1	1402	1	-	2/7/25/26	0/2/2/2
26	MA6	S1	2185	26	-	1/7/29/30	0/3/3/3
26	OMU	S1	1621	86,26	-	0/9/27/28	0/2/2/2
85	OMG	2	1231	85	-	0/5/27/28	0/3/3/3
85	PSU	2	1264	85,87	-	$\frac{0/7/25/26}{25/26}$	0/2/2/2
85	OMU	2	1077	85	-	0/9/27/28	0/2/2/2
26	PSU	S1	607	26	-	2/7/25/26	0/2/2/2
26	PSU	S1	12	26	-	0/7/25/26	0/2/2/2

0 0		r · · · · · · · · · · · · · · · · · · ·	r gour				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
26	OMU	S1	1979	26	-	1/9/27/28	0/2/2/2
85	OMC	2	1159	85	-	0/9/27/28	0/2/2/2
85	OMG	2	655	85	-	1/5/27/28	0/3/3/3
1	PSU	1	1011	1	-	0/7/25/26	0/2/2/2
26	OMU	S1	661	26	-	0/9/27/28	0/2/2/2
1	PSU	1	870	1	-	0/7/25/26	0/2/2/2
1	A2M	1	235	1	-	0/5/27/28	0/3/3/3
26	MA6	S1	2184	26	-	0/7/29/30	0/3/3/3
85	PSU	2	1194	85	-	0/7/25/26	0/2/2/2
26	PSU	S1	609	26	-	0/7/25/26	0/2/2/2
1	OMU	1	1659	86,1	-	0/9/27/28	0/2/2/2
6	A2M	7	162	6,1	-	1/5/27/28	0/3/3/3
85	PSU	2	510	85	-	0/7/25/26	0/2/2/2
85	$5 \mathrm{MC}$	2	1308	85,86	-	4/6/24/26	0/2/2/2
1	PSU	1	1017	86,1	-	0/7/25/26	0/2/2/2
26	7MG	S1	1995	26	-	2/7/37/38	0/3/3/3
1	A2M	1	681	1	-	3/5/27/28	0/3/3/3
85	OMG	2	1078	85	-	0/5/27/28	0/3/3/3
85	PSU	2	78	85	-	0/7/25/26	0/2/2/2
26	A2M	S1	2021	26	-	2/5/27/28	0/3/3/3
85	PSU	2	512	85	-	0/7/25/26	0/2/2/2
26	A2M	S1	512	86,26	-	2/5/27/28	0/3/3/3
85	PSU	2	472	85	-	0/7/25/26	0/2/2/2
85	OMC	2	583	85	-	0/9/27/28	0/2/2/2
85	OMG	2	1360	85	-	0/5/27/28	0/3/3/3
85	OMC	2	1397	85	-	0/9/27/28	0/2/2/2
2	OMU	3	13	2	-	0/9/27/28	0/2/2/2
26	OMG	S1	1623	26	-	2/5/27/28	0/3/3/3
1	OMC	1	1527	1	-	3/9/27/28	0/2/2/2
1	OMC	1	1010	86,1,88	-	1/9/27/28	0/2/2/2
26	OMG	S1	1865	26	-	0/5/27/28	0/3/3/3
26	PSU	S1	2202	26	-	1/7/25/26	0/2/2/2
26	OMG	S1	1879	26	-	1/5/27/28	0/3/3/3
26	A2M	S1	668	86,26	-	2/5/27/28	0/3/3/3
26	5MC	S1	2061	26	-	0/7/25/26	0/2/2/2
85	PSU	2	1060	85	-	0/7/25/26	0/2/2/2
85	A2M	2	1372	85	-	0/5/27/28	0/3/3/3
85	PSU	2	1403	85	-	0/7/25/26	0/2/2/2
85	OMG	2	641	85	-	$0/5/\overline{27/28}$	0/3/3/3
1	OMU	1	847	1	-	0/9/27/28	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	OMG	1	959[B]	1	-	0/5/27/28	0/3/3/3
26	OMC	S1	38	26	-	0/9/27/28	0/2/2/2
26	OMG	S1	1478	26	-	0/5/27/28	0/3/3/3
85	PSU	2	1382	85	-	0/7/25/26	0/2/2/2
26	OMC	S1	1866	26	-	0/9/27/28	0/2/2/2

The worst 5 of 1130 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	1	407	A2M	O4'-C1'	15.76	1.63	1.41
1	1	235	A2M	O4'-C1'	15.63	1.62	1.41
85	2	382	A2M	O4'-C1'	15.49	1.62	1.41
1	1	678	A2M	O4'-C1'	15.43	1.62	1.41
6	7	43	A2M	O4'-C1'	15.30	1.62	1.41

The worst 5 of 617 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
26	S1	2185	MA6	N1-C6-N6	-11.63	104.81	117.06
26	S1	2184	MA6	N1-C6-N6	-11.39	105.07	117.06
1	1	681	A2M	C5-C6-N6	8.44	133.18	120.35
85	2	382	A2M	C5-C6-N6	8.37	133.08	120.35
26	S1	668	A2M	C5-C6-N6	8.33	133.01	120.35

There are no chirality outliers.

5 of 129 torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	1	407	A2M	O4'-C4'-C5'-O5'
1	1	407	A2M	C3'-C4'-C5'-O5'
1	1	678	A2M	O4'-C4'-C5'-O5'
1	1	681	A2M	O4'-C4'-C5'-O5'
1	1	845	OMU	O4'-C1'-N1-C2

There are no ring outliers.

33 monomers are involved in 37 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
85	2	1413	PSU	1	0
85	2	626	PSU	1	0
1	1	1181	PSU	1	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
1	1	678	A2M	1	0
1	1	695	OMC	1	0
1	1	422	PSU	1	0
26	S1	29	OMU	1	0
26	S1	1550	OMG	1	0
85	2	527	A2M	1	0
85	2	560	OMU	1	0
85	2	1253	OMG	1	0
26	S1	1539	PSU	1	0
85	2	604	A2M	2	0
85	2	591	A2M	2	0
26	S1	479	A2M	1	0
85	2	570	A2M	1	0
1	1	959[A]	OMG	1	0
1	1	1524	OMG	1	0
85	2	95	A2M	2	0
1	1	677	1MA	1	0
1	1	845	OMU	3	0
1	1	955	A2M	2	0
85	2	382	A2M	1	0
26	S1	2185	MA6	1	0
26	S1	661	OMU	1	0
1	1	235	A2M	1	0
6	7	162	A2M	1	0
26	S1	2021	A2M	1	0
1	1	1527	OMC	1	0
1	1	1010	OMC	1	0
26	S1	1879	OMG	1	0
26	S1	668	A2M	1	0
1	1	847	OMU	1	0

Continued from previous page...

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 367 ligands modelled in this entry, 367 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
27	S4	1
31	SD	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	S4	6:G	O3'	63:G	Р	19.63
1	SD	163:PHE	С	164:GLY	Ν	4.10

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-17216. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 240

Z Index: 240

6.2.2 Raw map

X Index: 240

Y Index: 240

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 252

Z Index: 264

6.3.2 Raw map

X Index: 267

Y Index: 207

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.01. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1449 nm^3 ; this corresponds to an approximate mass of 1309 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.417 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.417 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

Bosolution ostimato $(\hat{\lambda})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.40	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	2.71	3.09	2.76

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.71 differs from the reported value 2.4 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-17216 and PDB model 80VJ. Per-residue inclusion information can be found in section 3 on page 23.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.01 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.01).

9.4 Atom inclusion (i)

At the recommended contour level, 94% of all backbone atoms, 95% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.01) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.9500	0.6300
1	0.9760	0.6460
2	0.9730	0.6410
3	0.9530	0.6210
4	0.9780	0.6420
5	0.9610	0.6280
6	0.9320	0.5920
7	0.9750	0.6410
8	0.9880	0.6130
А	0.9740	0.6870
В	0.9720	0.6620
\mathbf{C}	0.9710	0.6600
D	0.8890	0.5650
E	0.9170	0.6220
F	0.9300	0.6190
G	0.9510	0.6370
Н	0.9740	0.6590
Ι	0.9360	0.6530
J	0.9310	0.6600
K	0.9080	0.6100
L	0.9720	0.6820
М	0.9870	0.6890
Ν	0.8480	0.6160
0	0.9190	0.6020
Р	0.9680	0.6760
Q	0.9550	0.6320
R	0.9640	0.6550
S	0.9290	0.6460
S1	0.9800	0.6180
S4	0.7190	0.5120
SA	0.9690	0.6230
SB	0.9180	0.5410
SC	0.8590	0.5970
SD	0.9630	0.6070
SE	0.9530	0.6210

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
SF	0.9700	0.6120
SG	0.9400	0.5980
SH	0.9370	0.6230
SI	0.9780	0.5940
SJ	0.9780	0.6440
SK	0.9520	0.6260
SL	0.9500	0.6350
SM	0.8380	0.6040
SN	0.8430	0.6080
SO	0.9830	0.6400
SP	0.9720	0.6380
SQ	0.3390	0.4980
SR	0.8580	0.6170
SS	0.9690	0.6400
ST	0.9710	0.6440
SU	0.9630	0.6440
SV	0.8560	0.5720
SW	0.8410	0.6140
SX	0.9520	0.6330
SY	0.9430	0.5800
SZ	0.9670	0.6030
Sa	0.9190	0.6070
Sb	0.9900	0.6450
Sc	0.9450	0.6090
Sd	0.9380	0.6000
Se	0.9470	0.5860
Sg	0.8060	0.5900
Sh	0.5700	0.4520
T	0.9670	0.6780
U	0.6730	0.5720
V	0.9380	0.6530
W	0.9390	0.6420
X	0.9400	0.6510
Y	0.9190	0.6200
Z	0.9370	0.6470
a	0.9160	0.6270
b	0.9320	0.6620
С	0.9450	0.6620
d	0.8940	0.6260
e	0.8630	0.6180
f	0.9530	0.6730
g	0.9270	0.6550

Continued on next page...

e entennaea ji ente precis ae pageni				
Chain	Atom inclusion	Q-score		
h	0.8590	0.6190		
i	0.8860	0.6240		
j	0.9890	0.6850		
k	0.8240	0.6040		
1	0.9580	0.6720		
m	0.8210	0.6060		
n	0.9630	0.6610		
0	0.9470	0.6630		
р	0.9050	0.6450		

Continued from previous page...

