

### Jul 7, 2024 – 12:17 AM JST

| PDB ID       | : | 8Y1G                                                          |
|--------------|---|---------------------------------------------------------------|
| EMDB ID      | : | EMD-38835                                                     |
| Title        | : | The 1up conformation of the HKU1-B S protein in the apo state |
| Authors      | : | Xia, L.Y.; Zhang, Y.Y.; Zhou, Q.                              |
| Deposited on | : | 2024-01-24                                                    |
| Resolution   | : | 2.99 Å(reported)                                              |
|              |   |                                                               |

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | FAILED                                                             |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| MolProbity                     | : | 4.02b-467                                                          |
| buster-report                  | : | 1.1.7(2018)                                                        |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| MapQ                           | : | FAILED                                                             |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.37.1                                                             |

## 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $ELECTRON\ MICROSCOPY$ 

The reported resolution of this entry is 2.99 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

| Mol | Chain | Length | Quality of chain |          |  |  |  |  |  |
|-----|-------|--------|------------------|----------|--|--|--|--|--|
| 1   | А     | 1290   | 73%              | 18% • 6% |  |  |  |  |  |
| 1   | В     | 1290   | 74%              | 18% • 6% |  |  |  |  |  |
| 1   | С     | 1290   | 75%              | 17% · 6% |  |  |  |  |  |
| 2   | D     | 6      | 33% 67           | %        |  |  |  |  |  |
| 2   | Ι     | 6      | 33% 67           | %        |  |  |  |  |  |
| 2   | Ν     | 6      | 33% 67           | %        |  |  |  |  |  |
| 3   | Е     | 2      | 100%             |          |  |  |  |  |  |
| 3   | F     | 2      | 100%             |          |  |  |  |  |  |
| 3   | G     | 2      | 50%              | 50%      |  |  |  |  |  |



| Mol | Chain | Length | Quality of chain |
|-----|-------|--------|------------------|
| 3   | Н     | 2      | 100%             |
| 3   | J     | 2      | 100%             |
| 3   | K     | 2      | 100%             |
| 3   | L     | 2      | 100%             |
| 3   | М     | 2      | 100%             |
| 3   | Ο     | 2      | 50% 50%          |
| 3   | Р     | 2      | 100%             |
| 3   | Q     | 2      | 100%             |
| 3   | R     | 2      | 50% 50%          |



## 2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 29541 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues | Atoms         |           |           |           | AltConf      | Trace |   |
|-----|-------|----------|---------------|-----------|-----------|-----------|--------------|-------|---|
| 1   | А     | 1208     | Total<br>9425 | C<br>6003 | N<br>1551 | 0<br>1814 | ${ m S}\ 57$ | 0     | 0 |
| 1   | В     | 1208     | Total<br>9425 | C<br>6003 | N<br>1551 | 0<br>1814 | S<br>57      | 0     | 0 |
| 1   | С     | 1208     | Total<br>9425 | C<br>6003 | N<br>1551 | 0<br>1814 | S<br>57      | 0     | 0 |

• Molecule 1 is a protein called Spike glycoprotein.

| There are 18 | discrepancies | between | the modelled | and | reference | sequences: |
|--------------|---------------|---------|--------------|-----|-----------|------------|
|              |               |         |              |     |           |            |

| Chain | Residue | Modelled | Actual | Comment  | Reference  |
|-------|---------|----------|--------|----------|------------|
| А     | 752     | GLY      | ARG    | conflict | UNP Q14EB0 |
| А     | 753     | SER      | ARG    | conflict | UNP Q14EB0 |
| А     | 754     | ALA      | LYS    | conflict | UNP Q14EB0 |
| А     | 755     | SER      | ARG    | conflict | UNP Q14EB0 |
| А     | 1067    | PRO      | ASN    | conflict | UNP Q14EB0 |
| А     | 1068    | PRO      | LEU    | conflict | UNP Q14EB0 |
| В     | 752     | GLY      | ARG    | conflict | UNP Q14EB0 |
| В     | 753     | SER      | ARG    | conflict | UNP Q14EB0 |
| В     | 754     | ALA      | LYS    | conflict | UNP Q14EB0 |
| В     | 755     | SER      | ARG    | conflict | UNP Q14EB0 |
| В     | 1067    | PRO      | ASN    | conflict | UNP Q14EB0 |
| В     | 1068    | PRO      | LEU    | conflict | UNP Q14EB0 |
| С     | 752     | GLY      | ARG    | conflict | UNP Q14EB0 |
| С     | 753     | SER      | ARG    | conflict | UNP Q14EB0 |
| С     | 754     | ALA      | LYS    | conflict | UNP Q14EB0 |
| С     | 755     | SER      | ARG    | conflict | UNP Q14EB0 |
| С     | 1067    | PRO      | ASN    | conflict | UNP Q14EB0 |
| С     | 1068    | PRO      | LEU    | conflict | UNP Q14EB0 |

• Molecule 2 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.





| Mol | Chain | Residues | Atoms                                                                            | AltConf | Trace |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|-------|
| 2   | D     | 6        | Total         C         N         O           72         40         2         30 | 0       | 0     |
| 2   | Ι     | 6        | Total         C         N         O           72         40         2         30 | 0       | 0     |
| 2   | Ν     | 6        | Total         C         N         O           72         40         2         30 | 0       | 0     |

• Molecule 3 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.



| Mol | Chain | Residues | Atoms |              |   |    | AltConf | Trace |
|-----|-------|----------|-------|--------------|---|----|---------|-------|
| 9   | Б     | 0        | Total | С            | Ν | 0  | 0       | 0     |
| 0   | E     | 2        | 28    | 16           | 2 | 10 | 0       | 0     |
| 2   | Б     | 0        | Total | С            | Ν | 0  | 0       | 0     |
| 0   | Г     | Δ        | 28    | 16           | 2 | 10 | 0       | 0     |
| 2   | С     | 2        | Total | С            | Ν | 0  | 0       | 0     |
| 5   | G     | 2        | 28    | 16           | 2 | 10 | 0       | 0     |
| 3   | Ц     | 9        | Total | С            | Ν | 0  | 0       | 0     |
| 5   | 11    | 2        | 28    | 16           | 2 | 10 | 0       | 0     |
| 3   | Т     | 9        | Total | С            | Ν | 0  | 0       | 0     |
| 5   | 0     | 2        | 28    | 16           | 2 | 10 | 0       | 0     |
| 3   | K     | 9        | Total | С            | Ν | 0  | 0       | 0     |
| 5   | IX    | 2        | 28    | 16           | 2 | 10 | 0       | 0     |
| 3   | T.    | 9        | Total | С            | Ν | 0  | 0       | 0     |
| 5   | Ľ     |          | 28    | 16           | 2 | 10 | 0       | 0     |
| 3   | М     | 2        | Total | С            | Ν | Ο  | 0       | 0     |
| 5   | 111   |          | 28    | 16           | 2 | 10 | 0       | 0     |
| 3   | 0     | 2        | Total | С            | Ν | Ο  | 0       | 0     |
| 5   | U     |          | 28    | 16           | 2 | 10 | 0       | 0     |
| 3   | Р     | 2        | Total | С            | Ν | Ο  | 0       | 0     |
| 5   | T     |          | 28    | 16           | 2 | 10 | 0       | 0     |
| 3   | 0     | 2        | Total | $\mathbf{C}$ | Ν | Ο  | 0       | 0     |
|     | Ŷ     | 2        | 28    | 16           | 2 | 10 | U       | U     |
| 3   | B     | 2        | Total | $\mathbf{C}$ | Ν | 0  | 0       | 0     |
| J   | 10    | <u> </u> | 28    | 16           | 2 | 10 |         | U     |



• Molecule 4 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula:  $C_8H_{15}NO_6$ ) (labeled as "Ligand of Interest" by depositor).



| Mol | Chain | Residues | A     | ton | ns |        | AltConf |
|-----|-------|----------|-------|-----|----|--------|---------|
| 4   | ٨     | 1        | Total | С   | Ν  | 0      | 0       |
| 4   | A     | 1        | 14    | 8   | 1  | 5      | 0       |
| 4   | Λ     | 1        | Total | С   | Ν  | 0      | 0       |
| 4   | A     | 1        | 14    | 8   | 1  | 5      | 0       |
| 4   | Δ     | 1        | Total | С   | Ν  | 0      | 0       |
| 4   | Π     | 1        | 14    | 8   | 1  | 5      | 0       |
| 1   | Δ     | 1        | Total | С   | Ν  | Ο      | 0       |
| т   | 11    | I        | 14    | 8   | 1  | 5      | 0       |
| 4   | А     | 1        | Total | С   | Ν  | Ο      | 0       |
|     |       | Ĩ        | 14    | 8   | 1  | 5      | 0       |
| 4   | А     | 1        | Total | С   | Ν  | Ο      | 0       |
| -   |       | 1        | 14    | 8   | 1  | 5      | U       |
| 4   | А     | 1        | Total | С   | Ν  | 0      | 0       |
|     |       | 1        | 14    | 8   | 1  | 5      | Ŭ       |
| 4   | А     | 1        | Total | С   | Ν  | Ο      | 0       |
|     |       | -        | 14    | 8   | 1  | 5      | Ŭ       |
| 4   | А     | 1        | Total | С   | Ν  | Ο      | 0       |
|     |       | -        | 14    | 8   | 1  | 5      | Ŭ       |
| 4   | А     | 1        | Total | С   | Ν  | 0      | 0       |
|     |       | _        | 14    | 8   | 1  | 5      |         |
| 4   | А     | 1        | Total | C   | N  | 0<br>Ž | 0       |
|     |       | _        | 14    | 8   | 1  | 5      |         |
| 4   | A     | 1        | Total | С   | Ν  | 0      | 0       |
|     |       | _        | 14    | 8   | 1  | 5      | , v     |



Continued from previous page...

| Mol | Chain | Residues | A     | AltConf |   |   |   |
|-----|-------|----------|-------|---------|---|---|---|
| 4   | ٨     | 1        | Total | С       | Ν | Ο | 0 |
| 4   | А     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | ٨     | 1        | Total | С       | Ν | 0 | 0 |
| 4   | А     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | ٨     | 1        | Total | С       | Ν | 0 | 0 |
| 4   | А     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | ٨     | 1        | Total | С       | Ν | 0 | 0 |
| 4   | А     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | ٨     | 1        | Total | С       | Ν | Ο | 0 |
| 4   | А     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | D     | 1        | Total | С       | Ν | 0 | 0 |
| 4   | D     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | D     | 1        | Total | С       | Ν | Ο | 0 |
| 4   | D     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | В     | 1        | Total | С       | Ν | Ο | 0 |
| 4   | D     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | В     | 1        | Total | С       | Ν | Ο | 0 |
| 4   | D     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | D     | 1        | Total | С       | Ν | Ο | 0 |
| 4   | D     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | В     | 1        | Total | С       | Ν | 0 | 0 |
| 4   | D     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | В     | 1        | Total | С       | Ν | Ο | 0 |
| 4   | D     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | В     | 1        | Total | С       | Ν | 0 | 0 |
| -1  | D     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | В     | 1        | Total | С       | Ν | Ο | 0 |
| -1  | D     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | В     | 1        | Total | С       | Ν | Ο | 0 |
| т   | D     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | В     | 1        | Total | С       | Ν | Ο | 0 |
|     | D     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | В     | 1        | Total | С       | Ν | Ο | 0 |
|     | D     | 1        | 14    | 8       | 1 | 5 | 0 |
| 4   | В     | 1        | Total | С       | Ν | Ο | 0 |
|     |       | 1        | 14    | 8       | 1 | 5 |   |
| 4   | В     | 1        | Total | С       | Ν | Ο | 0 |
|     |       | *        | 14    | 8       | 1 | 5 |   |
| 4   | В     | 1        | Total | С       | Ν | Ο | 0 |
|     |       | *        | 14    | 8       | 1 | 5 |   |
| 4   | B     | 1        | Total | С       | Ν | Ο | 0 |
| T   |       | 1 I      | 14    | 8       | 1 | 5 |   |



Continued from previous page...

| Mol | Chain | Residues | Atoms |   |   |   | AltConf |
|-----|-------|----------|-------|---|---|---|---------|
| 4   | В     | 1        | Total | С | Ν | Ο | 0       |
| 4   | D     | T        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
| 4   | U     | L        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
| 4   | U     | T        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
|     | 0     | I        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
| т   | U     | I        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
|     | 0     | Ĩ        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
|     | 0     | L        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
|     | 0     | Ĩ        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
|     | 0     | 1        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
| т   | U     | I        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
|     | 0     | Ĩ        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
|     | 0     | Ĩ        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
|     | 0     | 1        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
|     | 0     | 1        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
|     | 0     | 1        | 14    | 8 | 1 | 5 | 0       |
| 4   | С     | 1        | Total | С | Ν | Ο | 0       |
|     | ~     | *        | 14    | 8 | 1 | 5 |         |
| 4   | C     | 1        | Total | С | Ν | Ο | 0       |
|     |       | *        | 14    | 8 | 1 | 5 |         |
| 4   | C     | 1        | Total | С | Ν | Ο | 0       |
| , I |       |          | 14    | 8 | 1 | 5 |         |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Spike glycoprotein

• Molecule 1: Spike glycoprotein







• Molecule 1: Spike glycoprotein



# Milba Milba 110 110 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111 111</t

### 

 $\label{eq:mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)] alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranoy-2-deoxy-beta-D-glucopyranoy-2-deoxy-beta-D-glucopyranoy$ 

| Chain D: | 33% | 67% |
|----------|-----|-----|
|          |     |     |

NAG1 NAG2 MAN3 MAN4 MAN5 MAN6

 $\label{eq:mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)] alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy$ 

| Chain I:                                                           | 33% | 67% |  |
|--------------------------------------------------------------------|-----|-----|--|
| <mark>NAG1<br/>NAG2</mark><br>MAN3<br>MAN4<br>MAN5<br>MAN6<br>MAN6 |     |     |  |

 $\label{eq:mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)] alpha-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose \\ \end{tabular}$ 

| $\alpha_1 \cdot \mathbf{N}$ |     |     |
|-----------------------------|-----|-----|
| Chain N:                    | 33% | 67% |
|                             |     |     |

#### <mark>NAG1 NAG2</mark> MAN3 MAN4 MAN5 MAN5 MAN6

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

100%

#### NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain F:

100%

#### NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose



50%

| $\alpha$ · | $\alpha$ |  |
|------------|----------|--|
| Chain      | G:       |  |

50%

NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| $\alpha_1 \cdot \pi$ |        |
|----------------------|--------|
| $C nain H^{*}$       | 100%   |
| Onom II.             | 100 /8 |
|                      |        |

#### NAG 1 NAG 2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain J:                   | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| NAG1<br>NAG2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| • Molecule 3:<br>opyranose | eq:2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetami | o-2-deoxy-beta-D-gluc |
| Chain K:                   | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I.                    |
| NAG1<br>NAG2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| • Molecule 3:<br>opyranose | eq:2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamid | o-2-deoxy-beta-D-gluc |
| Chain L:                   | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |
| NAG1<br>NAG2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| • Molecule 3:<br>opyranose | eq:2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido-2-acetamido | o-2-deoxy-beta-D-gluc |
| Chain M:                   | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                     |
| _                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |

#### NAG 1 NAG 2

NAG 1 NAG 2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| $\alpha_1 \cdot \alpha_2 = 0$ |     |     |
|-------------------------------|-----|-----|
| Chain O:                      | 50% | 50% |
|                               |     |     |



• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain P:

100%

#### NAG1 NAG2

• Molecule 3: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

| Chain Q:                   | 100%                                                       |                       |
|----------------------------|------------------------------------------------------------|-----------------------|
| NAG1<br>NAG2               |                                                            |                       |
| • Molecule 3:<br>opyranose | 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido | )-2-deoxy-beta-D-gluc |

| Chain R:     | 50% | 50% |
|--------------|-----|-----|
| NAG1<br>NAG2 |     |     |



## 4 Experimental information (i)

| Property                           | Value                         | Source    |
|------------------------------------|-------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE               | Depositor |
| Imposed symmetry                   | POINT, Not provided           |           |
| Number of particles used           | 148802                        | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF             | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE  | Depositor |
|                                    | CORRECTION                    |           |
| Microscope                         | FEI TITAN KRIOS               | Depositor |
| Voltage (kV)                       | 300                           | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 50                            | Depositor |
| Minimum defocus (nm)               | 1200                          | Depositor |
| Maximum defocus (nm)               | 2200                          | Depositor |
| Magnification                      | Not provided                  |           |
| Image detector                     | GATAN K3 BIOQUANTUM (6k x 4k) | Depositor |



## 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG, MAN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bond lengths |          | Bond angles |          |
|-----|-------|--------------|----------|-------------|----------|
|     | Unam  | RMSZ         | # Z  > 5 | RMSZ        | # Z  > 5 |
| 1   | А     | 0.47         | 0/9653   | 0.56        | 0/13146  |
| 1   | В     | 0.44         | 0/9653   | 0.56        | 0/13146  |
| 1   | С     | 0.48         | 0/9653   | 0.56        | 0/13146  |
| All | All   | 0.47         | 0/28959  | 0.56        | 0/39438  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | А     | 0                   | 4                   |
| 1   | В     | 0                   | 2                   |
| 1   | С     | 0                   | 3                   |
| All | All   | 0                   | 9                   |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (9) planarity outliers are listed below:

| Mol | Chain | Res  | Type | Group   |
|-----|-------|------|------|---------|
| 1   | А     | 1218 | ILE  | Peptide |
| 1   | А     | 929  | SER  | Peptide |
| 1   | А     | 968  | PHE  | Peptide |
| 1   | А     | 969  | PRO  | Peptide |
| 1   | В     | 968  | PHE  | Peptide |
| 1   | В     | 969  | PRO  | Peptide |
| 1   | С     | 1219 | TYR  | Peptide |



Continued from previous page...

| Mol | Chain | $\operatorname{Res}$ | Type | Group   |
|-----|-------|----------------------|------|---------|
| 1   | С     | 92                   | PRO  | Peptide |
| 1   | С     | 969                  | PRO  | Peptide |

## 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 9425  | 0        | 9076     | 104     | 0            |
| 1   | В     | 9425  | 0        | 9076     | 102     | 0            |
| 1   | С     | 9425  | 0        | 9076     | 92      | 0            |
| 2   | D     | 72    | 0        | 61       | 0       | 0            |
| 2   | Ι     | 72    | 0        | 61       | 0       | 0            |
| 2   | Ν     | 72    | 0        | 61       | 0       | 0            |
| 3   | Е     | 28    | 0        | 25       | 0       | 0            |
| 3   | F     | 28    | 0        | 25       | 0       | 0            |
| 3   | G     | 28    | 0        | 25       | 0       | 0            |
| 3   | Н     | 28    | 0        | 25       | 0       | 0            |
| 3   | J     | 28    | 0        | 25       | 0       | 0            |
| 3   | К     | 28    | 0        | 25       | 0       | 0            |
| 3   | L     | 28    | 0        | 25       | 0       | 0            |
| 3   | М     | 28    | 0        | 25       | 0       | 0            |
| 3   | 0     | 28    | 0        | 25       | 0       | 0            |
| 3   | Р     | 28    | 0        | 25       | 0       | 0            |
| 3   | Q     | 28    | 0        | 25       | 0       | 0            |
| 3   | R     | 28    | 0        | 25       | 0       | 0            |
| 4   | А     | 238   | 0        | 221      | 0       | 0            |
| 4   | В     | 238   | 0        | 221      | 0       | 0            |
| 4   | С     | 238   | 0        | 221      | 1       | 0            |
| All | All   | 29541 | 0        | 28374    | 285     | 0            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (285) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.



| Atom-1           | Atom-2            | Interatomic  | Clash       |  |
|------------------|-------------------|--------------|-------------|--|
| Atom-1           | Atom-2            | distance (Å) | overlap (Å) |  |
| 1:B:651:SER:HG   | 1:C:59:THR:HG1    | 1.38         | 0.72        |  |
| 1:B:201:HIS:HB2  | 1:B:212:TYR:HB2   | 1.75         | 0.68        |  |
| 1:A:560:LEU:H    | 1:A:560:LEU:HD23  | 1.59         | 0.67        |  |
| 1:A:392:ALA:HA   | 1:A:588:ILE:HA    | 1.79         | 0.65        |  |
| 1:C:214:ALA:HB2  | 1:C:220:THR:HA    | 1.80         | 0.63        |  |
| 1:A:463:SER:HA   | 1:A:575:TRP:HA    | 1.80         | 0.62        |  |
| 1:A:1128:ASN:HB3 | 1:A:1148:TYR:HB3  | 1.82         | 0.62        |  |
| 1:C:332:TRP:O    | 1:C:390:LYS:NZ    | 2.33         | 0.61        |  |
| 1:B:249:THR:OG1  | 1:B:250:ASP:N     | 2.33         | 0.61        |  |
| 1:A:611:ASN:HB2  | 1:A:613:GLU:HG2   | 1.82         | 0.61        |  |
| 1:C:262:SER:OG   | 1:C:264:ARG:NH1   | 2.35         | 0.59        |  |
| 1:B:563:SER:OG   | 1:B:564:SER:N     | 2.34         | 0.59        |  |
| 1:C:952:GLU:HG3  | 1:C:1136:ASN:HD21 | 1.67         | 0.59        |  |
| 1:B:1132:SER:OG  | 1:B:1145:HIS:ND1  | 2.36         | 0.58        |  |
| 1:C:688:PRO:O    | 1:C:722:ASN:ND2   | 2.36         | 0.58        |  |
| 1:C:201:HIS:HB2  | 1:C:212:TYR:HB2   | 1.85         | 0.58        |  |
| 1:A:201:HIS:HB2  | 1:A:212:TYR:HB2   | 1.85         | 0.58        |  |
| 1:B:79:LEU:HB2   | 1:B:239:PRO:HB3   | 1.84         | 0.58        |  |
| 1:A:242:CYS:SG   | 1:A:243:LYS:N     | 2.77         | 0.58        |  |
| 1:A:387:THR:HB   | 1:A:593:ILE:HB    | 1.86         | 0.58        |  |
| 1:C:479:PRO:O    | 1:C:483:ASN:ND2   | 2.37         | 0.57        |  |
| 1:A:1122:ASN:O   | 1:B:1111:ASN:ND2  | 2.36         | 0.57        |  |
| 1:C:938:GLN:NE2  | 1:C:1041:ASN:OD1  | 2.37         | 0.57        |  |
| 1:B:470:ASN:N    | 1:B:470:ASN:OD1   | 2.37         | 0.57        |  |
| 1:B:400:ASP:OD1  | 1:B:400:ASP:N     | 2.34         | 0.57        |  |
| 1:C:394:PRO:HB3  | 1:C:578:ASP:HB3   | 1.87         | 0.56        |  |
| 1:C:1108:GLU:OE2 | 1:C:1120:ARG:NH2  | 2.32         | 0.56        |  |
| 1:B:482:VAL:O    | 1:B:489:LYS:NZ    | 2.37         | 0.56        |  |
| 1:C:745:ASP:OD2  | 1:C:763:ARG:NH2   | 2.38         | 0.56        |  |
| 1:A:160:HIS:NE2  | 1:A:171:ASN:O     | 2.37         | 0.56        |  |
| 1:A:246:SER:OG   | 1:A:247:SER:N     | 2.38         | 0.56        |  |
| 1:A:400:ASP:OD1  | 1:A:400:ASP:N     | 2.36         | 0.56        |  |
| 1:A:464:ASP:N    | 1:A:464:ASP:OD1   | 2.37         | 0.56        |  |
| 1:C:301:THR:HG23 | 1:C:682:TYR:HA    | 1.86         | 0.56        |  |
| 1:B:354:PHE:O    | 1:B:605:ASN:ND2   | 2.38         | 0.56        |  |
| 1:B:456:SER:OG   | 1:B:457:SER:N     | 2.39         | 0.56        |  |
| 1:C:1126:ASN:ND2 | 1:C:1127:GLY:O    | 2.39         | 0.56        |  |
| 1:A:301:THR:HG23 | 1:A:682:TYR:HA    | 1.87         | 0.56        |  |
| 1:B:150:ALA:HB3  | 1:B:185:PHE:HB3   | 1.88         | 0.56        |  |
| 1:B:900:ARG:NH1  | 1:B:905:ASP:OD1   | 2.38         | 0.56        |  |
| 1:B:425:LEU:HB3  | 1:B:590:SER:HB3   | 1.86         | 0.56        |  |
| 1:C:951:SER:OG   | 1:C:952:GLU:N     | 2.39         | 0.56        |  |



|                  | the official states of the sta | Interatomic  | Clash       |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--|
| Atom-1           | Atom-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | distance (Å) | overlap (Å) |  |
| 1:A:384:ASN:HD22 | 1:A:596:GLY:HA3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.70         | 0.55        |  |
| 1:A:348:ILE:HG12 | 1:A:387:THR:HG23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.87         | 0.55        |  |
| 1:C:139:VAL:HG22 | 1:C:148:ILE:HG12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.89         | 0.55        |  |
| 1:B:872:ASN:OD1  | 1:B:894:GLN:NE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.39         | 0.55        |  |
| 1:C:395:ASN:ND2  | 1:C:579:SER:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.39         | 0.55        |  |
| 1:C:431:LEU:O    | 1:C:458:TYR:OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.24         | 0.55        |  |
| 1:B:996:VAL:O    | 1:B:1000:ASN:ND2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.39         | 0.55        |  |
| 1:A:487:LYS:NZ   | 1:A:488:SER:OG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.40         | 0.55        |  |
| 1:A:221:THR:OG1  | 1:A:222:PHE:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.40         | 0.55        |  |
| 1:C:456:SER:OG   | 1:C:457:SER:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.40         | 0.54        |  |
| 1:C:496:PRO:O    | 1:C:499:THR:OG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.24         | 0.54        |  |
| 1:A:400:ASP:O    | 1:A:410:GLN:NE2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.39         | 0.54        |  |
| 1:C:863:GLN:O    | 1:C:1115:LYS:NZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.34         | 0.54        |  |
| 1:B:160:HIS:NE2  | 1:B:171:ASN:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.36         | 0.54        |  |
| 1:B:994:MET:HA   | 1:B:997:LEU:HD12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.89         | 0.54        |  |
| 1:B:15:ILE:HD11  | 1:B:90:TYR:HB3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.88         | 0.54        |  |
| 1:A:409:LEU:O    | 1:A:414:TYR:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.39         | 0.54        |  |
| 1:A:395:ASN:N    | 1:A:578:ASP:OD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.41         | 0.54        |  |
| 1:A:396:ARG:NH1  | 1:A:578:ASP:OD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.42         | 0.53        |  |
| 1:B:118:TYR:HA   | 1:B:143:ASN:HD21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.72         | 0.53        |  |
| 1:B:262:SER:OG   | 1:B:264:ARG:NH1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.42         | 0.53        |  |
| 1:A:777:ASP:O    | 1:B:870:ASN:ND2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.41         | 0.53        |  |
| 1:C:215:ASP:OD1  | 1:C:215:ASP:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.41         | 0.53        |  |
| 1:A:112:TYR:O    | 1:A:166:LYS:NZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.42         | 0.53        |  |
| 1:B:319:ARG:NH1  | 1:B:612:THR:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.38         | 0.53        |  |
| 1:A:341:PRO:HD3  | 1:A:460:VAL:HG12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.91         | 0.53        |  |
| 1:A:372:ASN:ND2  | 1:A:419:SER:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.43         | 0.52        |  |
| 1:A:409:LEU:HA   | 1:A:413:ASN:HB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.91         | 0.52        |  |
| 1:B:886:SER:O    | 1:B:901:SER:OG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.27         | 0.52        |  |
| 1:A:344:TRP:HZ3  | 1:A:346:ARG:HB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.74         | 0.52        |  |
| 1:C:409:LEU:HA   | 1:C:413:ASN:HD22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.73         | 0.52        |  |
| 1:C:604:SER:OG   | 1:C:606:ASP:OD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.28         | 0.52        |  |
| 1:C:828:LEU:HD11 | 1:C:1071:GLN:HG2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.90         | 0.52        |  |
| 1:C:735:ASP:N    | 1:C:735:ASP:OD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.37         | 0.52        |  |
| 1:C:1154:LYS:NZ  | 1:C:1155:THR:O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.42         | 0.52        |  |
| 1:B:1066:ASP:OD1 | 1:B:1066:ASP:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.38         | 0.52        |  |
| 1:B:246:SER:OG   | 1:B:247:SER:N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.42         | 0.52        |  |
| 1:B:995:ASP:N    | 1:B:995:ASP:OD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.40         | 0.52        |  |
| 1:C:625:TYR:OH   | 1:C:660:ASP:OD1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.27         | 0.52        |  |
| 1:B:214:ALA:HB2  | 1:B:220:THR:HA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.90         | 0.52        |  |
| 1:A:393:ILE:HD12 | 1:A:587:ASN:HB2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.92         | 0.52        |  |



|                   |                   | Interatomic  | Clash       |  |
|-------------------|-------------------|--------------|-------------|--|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |  |
| 1:A:17:ASP:N      | 1:A:17:ASP:OD1    | 2.43         | 0.52        |  |
| 1:B:400:ASP:O     | 1:B:410:GLN:NE2   | 2.42         | 0.51        |  |
| 1:C:1180:GLN:HB3  | 1:C:1185:MET:HG3  | 1.91         | 0.51        |  |
| 1:A:162:VAL:HB    | 1:A:172:GLU:HB2   | 1.91         | 0.51        |  |
| 1:B:401:LEU:HA    | 1:B:410:GLN:HE21  | 1.76         | 0.51        |  |
| 1:B:146:LEU:HB3   | 1:B:189:PHE:HB2   | 1.93         | 0.51        |  |
| 1:B:789:GLN:NE2   | 1:B:1155:THR:OG1  | 2.39         | 0.51        |  |
| 1:A:324:LEU:HD23  | 1:A:325:PRO:HD2   | 1.92         | 0.51        |  |
| 1:A:396:ARG:NH2   | 1:A:577:PHE:O     | 2.41         | 0.51        |  |
| 1:B:358:THR:HA    | 1:B:361:ARG:HG2   | 1.92         | 0.51        |  |
| 1:A:480:SER:O     | 1:A:483:ASN:ND2   | 2.42         | 0.51        |  |
| 1:A:1147:SER:OG   | 1:A:1148:TYR:N    | 2.43         | 0.51        |  |
| 1:B:142:HIS:HB2   | 1:B:145:ILE:HB    | 1.92         | 0.51        |  |
| 1:B:739:GLY:HA2   | 1:C:949:ILE:HA    | 1.92         | 0.51        |  |
| 1:C:617:GLY:O     | 4:C:2011:NAG:O3   | 2.28         | 0.51        |  |
| 1:C:97:ASP:OD1    | 1:C:97:ASP:N      | 2.41         | 0.51        |  |
| 1:C:124:ILE:HG13  | 1:C:237:VAL:HG22  | 1.93         | 0.51        |  |
| 1:A:200:PHE:HD1   | 1:A:213:TYR:HB2   | 1.75         | 0.50        |  |
| 1:A:680:ALA:HB1   | 1:A:736:LEU:HD13  | 1.94         | 0.50        |  |
| 1:A:1207:SER:OG   | 1:B:998:ASN:ND2   | 2.42         | 0.50        |  |
| 1:C:846:VAL:HG13  | 1:C:1096:ILE:HG13 | 1.93         | 0.50        |  |
| 1:A:1159:SER:N    | 1:A:1177:PHE:O    | 2.40         | 0.50        |  |
| 1:C:879:VAL:HG21  | 1:C:967:MET:HB3   | 1.93         | 0.50        |  |
| 1:A:440:ASN:HD21  | 1:A:442:SER:HB3   | 1.77         | 0.50        |  |
| 1:C:125:VAL:HG23  | 1:C:138:VAL:HG22  | 1.93         | 0.50        |  |
| 1:C:1130:ILE:HG22 | 1:C:1131:LEU:HG   | 1.94         | 0.50        |  |
| 1:C:986:ARG:HH11  | 1:C:1117:GLN:HG2  | 1.77         | 0.49        |  |
| 1:A:373:LEU:HG    | 1:A:421:SER:HB3   | 1.93         | 0.49        |  |
| 1:B:1196:PRO:O    | 1:B:1201:ASN:ND2  | 2.46         | 0.49        |  |
| 1:A:937:VAL:O     | 1:A:941:ASN:ND2   | 2.44         | 0.49        |  |
| 1:B:382:CYS:HA    | 1:B:603:CYS:HA    | 1.94         | 0.49        |  |
| 1:A:743:CYS:SG    | 1:A:744:ILE:N     | 2.86         | 0.49        |  |
| 1:B:1158:VAL:HG12 | 1:B:1178:ILE:HG22 | 1.93         | 0.49        |  |
| 1:B:446:ARG:NH2   | 1:C:133:THR:O     | 2.46         | 0.49        |  |
| 1:A:986:ARG:NH2   | 1:A:1118:SER:O    | 2.45         | 0.49        |  |
| 1:B:119:SER:OG    | 1:B:193:VAL:O     | 2.29         | 0.49        |  |
| 1:A:392:ALA:HB3   | 1:A:460:VAL:HG11  | 1.95         | 0.48        |  |
| 1:A:560:LEU:H     | 1:A:560:LEU:CD2   | 2.26         | 0.48        |  |
| 1:B:735:ASP:OD1   | 1:B:735:ASP:N     | 2.44         | 0.48        |  |
| 1:C:509:THR:HG1   | 1:C:515:TRP:HE1   | 1.60         | 0.48        |  |
| 1:B:130:PHE:HB3   | 1:B:155:MET:HB2   | 1.95         | 0.48        |  |



|                   | l as pagem        | Interatomic  | Clash       |
|-------------------|-------------------|--------------|-------------|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |
| 1:B:336:VAL:HG13  | 1:B:433:ASN:HB3   | 1.94         | 0.48        |
| 1:B:795:THR:OG1   | 1:B:796:ILE:N     | 2.46         | 0.48        |
| 1:C:340:SER:OG    | 1:C:461:VAL:O     | 2.31         | 0.48        |
| 1:C:590:SER:OG    | 1:C:591:ASN:N     | 2.47         | 0.48        |
| 1:B:1163:CYS:N    | 1:B:1213:THR:O    | 2.46         | 0.48        |
| 1:C:334:ASN:HA    | 1:C:429:LEU:HD11  | 1.95         | 0.47        |
| 1:C:448:TYR:OH    | 1:C:473:PHE:O     | 2.29         | 0.47        |
| 1:C:503:HIS:NE2   | 1:C:505:ASP:OD1   | 2.47         | 0.47        |
| 1:A:334:ASN:OD1   | 1:A:334:ASN:N     | 2.46         | 0.47        |
| 1:B:369:SER:OG    | 1:B:370:CYS:N     | 2.46         | 0.47        |
| 1:A:650:ASP:OD1   | 1:A:650:ASP:N     | 2.48         | 0.47        |
| 1:A:46:LEU:HD12   | 1:A:218:MET:HG2   | 1.97         | 0.47        |
| 1:C:75:ARG:NH2    | 1:C:96:SER:OG     | 2.48         | 0.47        |
| 1:B:269:ASN:ND2   | 1:B:277:THR:OG1   | 2.44         | 0.47        |
| 1:B:791:PRO:HB3   | 1:B:1150:PRO:HB3  | 1.97         | 0.47        |
| 1:C:552:ASN:HB2   | 1:C:573:LEU:HD11  | 1.97         | 0.47        |
| 1:A:1158:VAL:HG12 | 1:A:1178:ILE:HG22 | 1.95         | 0.47        |
| 1:B:83:LYS:HE3    | 1:B:84:TYR:CZ     | 2.50         | 0.47        |
| 1:A:775:VAL:O     | 1:B:869:SER:OG    | 2.27         | 0.46        |
| 1:B:1187:THR:OG1  | 1:B:1188:GLY:N    | 2.47         | 0.46        |
| 1:B:335:ASN:OD1   | 1:B:336:VAL:N     | 2.44         | 0.46        |
| 1:B:837:ASP:OD1   | 1:B:837:ASP:N     | 2.49         | 0.46        |
| 1:A:801:GLU:OE2   | 1:A:1109:LYS:NZ   | 2.49         | 0.46        |
| 1:C:246:SER:OG    | 1:C:247:SER:N     | 2.48         | 0.46        |
| 1:A:482:VAL:O     | 1:A:489:LYS:NZ    | 2.48         | 0.46        |
| 1:B:215:ASP:OD1   | 1:B:215:ASP:N     | 2.49         | 0.46        |
| 1:B:926:THR:O     | 1:B:926:THR:OG1   | 2.34         | 0.46        |
| 1:A:125:VAL:HG22  | 1:A:130:PHE:HE2   | 1.79         | 0.46        |
| 1:A:269:ASN:ND2   | 1:A:278:ASN:OD1   | 2.47         | 0.46        |
| 1:A:654:ASN:OD1   | 1:A:654:ASN:N     | 2.46         | 0.46        |
| 1:B:692:TYR:HB3   | 1:B:695:LEU:HD12  | 1.98         | 0.46        |
| 1:B:1207:SER:O    | 1:C:998:ASN:ND2   | 2.48         | 0.46        |
| 1:B:165:SER:OG    | 1:B:166:LYS:N     | 2.46         | 0.46        |
| 1:B:478:ASP:HB3   | 1:B:481:VAL:HG23  | 1.98         | 0.46        |
| 1:A:502:ARG:NH1   | 1:A:553:GLU:O     | 2.49         | 0.46        |
| 1:A:636:VAL:O     | 1:A:666:THR:OG1   | 2.33         | 0.46        |
| 1:B:15:ILE:HD12   | 1:B:95:LEU:HD13   | 1.98         | 0.46        |
| 1:B:1184:TRP:HB2  | 1:B:1218:ILE:HD11 | 1.97         | 0.46        |
| 1:A:240:LEU:HB3   | 1:A:254:LEU:HD11  | 1.97         | 0.45        |
| 1:C:196:ASP:OD1   | 1:C:196:ASP:N     | 2.49         | 0.45        |
| 1:A:872:ASN:HD22  | 1:A:875:LEU:HD23  | 1.82         | 0.45        |



|                   | the c             | Interatomic  | Clash<br>overlap (Å) |  |
|-------------------|-------------------|--------------|----------------------|--|
| Atom-1            | Atom-2            | distance (Å) |                      |  |
| 1:B:409:LEU:HA    | 1:B:413:ASN:HD22  | 1.81         | 0.45                 |  |
| 1:C:162:VAL:HG22  | 1:C:241:THR:HB    | 1.98         | 0.45                 |  |
| 1:A:560:LEU:HG    | 1:A:561:ASN:N     | 2.31         | 0.45                 |  |
| 1:A:373:LEU:HD13  | 1:A:378:ILE:HG12  | 1.99         | 0.45                 |  |
| 1:A:477:ALA:HA    | 1:A:502:ARG:HB3   | 1.99         | 0.45                 |  |
| 1:B:1086:ASN:O    | 1:B:1090:SER:OG   | 2.34         | 0.45                 |  |
| 1:A:131:VAL:HG23  | 1:A:133:THR:H     | 1.81         | 0.45                 |  |
| 1:A:415:LYS:HD3   | 1:A:541:GLY:HA2   | 1.98         | 0.45                 |  |
| 1:A:463:SER:OG    | 1:A:465:HIS:O     | 2.35         | 0.45                 |  |
| 1:A:969:PRO:HA    | 1:A:971:TRP:CE2   | 2.51         | 0.45                 |  |
| 1:B:162:VAL:HB    | 1:B:172:GLU:HB2   | 1.98         | 0.45                 |  |
| 1:A:78:ALA:HB1    | 1:A:254:LEU:HB3   | 1.98         | 0.45                 |  |
| 1:A:944:LYS:NZ    | 1:C:694:ASN:OD1   | 2.48         | 0.45                 |  |
| 1:C:330:ASP:HA    | 1:C:333:LEU:HB2   | 1.99         | 0.45                 |  |
| 1:B:405:SER:OG    | 1:B:406:SER:N     | 2.49         | 0.44                 |  |
| 1:C:693:ARG:HH12  | 1:C:717:LEU:HD22  | 1.82         | 0.44                 |  |
| 1:C:1085:LEU:HD23 | 1:C:1085:LEU:HA   | 1.83         | 0.44                 |  |
| 1:C:756:ARG:HD3   | 1:C:756:ARG:HA    | 1.72         | 0.44                 |  |
| 1:C:1158:VAL:HB   | 1:C:1176:TYR:HB3  | 1.99         | 0.44                 |  |
| 1:B:935:LEU:O     | 1:B:939:SER:OG    | 2.22         | 0.44                 |  |
| 1:A:1201:ASN:OD1  | 1:A:1201:ASN:N    | 2.48         | 0.44                 |  |
| 1:A:809:LYS:HG2   | 1:A:850:LEU:HD23  | 1.99         | 0.44                 |  |
| 1:B:103:PHE:HB2   | 1:B:261:LEU:HD21  | 2.00         | 0.44                 |  |
| 1:B:1100:LYS:HE3  | 1:B:1100:LYS:HB3  | 1.80         | 0.44                 |  |
| 1:A:215:ASP:N     | 1:A:215:ASP:OD1   | 2.51         | 0.44                 |  |
| 1:A:872:ASN:ND2   | 1:A:894:GLN:OE1   | 2.45         | 0.44                 |  |
| 1:B:1098:LEU:HD13 | 1:C:1097:THR:HG23 | 1.99         | 0.44                 |  |
| 1:C:1219:TYR:H    | 1:C:1220:LEU:HD22 | 1.82         | 0.44                 |  |
| 1:A:53:ASN:OD1    | 1:A:53:ASN:N      | 2.50         | 0.44                 |  |
| 1:A:880:ASP:OD1   | 1:A:880:ASP:N     | 2.50         | 0.44                 |  |
| 1:B:1013:LEU:O    | 1:B:1017:ASN:ND2  | 2.35         | 0.44                 |  |
| 1:A:355:ASN:HA    | 1:A:605:ASN:HB3   | 2.00         | 0.44                 |  |
| 1:A:645:GLN:NE2   | 1:B:54:ARG:O      | 2.51         | 0.44                 |  |
| 1:C:105:LYS:HB3   | 1:C:257:TRP:HB2   | 1.99         | 0.44                 |  |
| 1:C:496:PRO:HD2   | 1:C:499:THR:HG21  | 1.99         | 0.44                 |  |
| 1:B:552:ASN:HB2   | 1:B:573:LEU:HD21  | 1.98         | 0.43                 |  |
| 1:C:876:HIS:HB3   | 1:C:968:PHE:CZ    | 2.53         | 0.43                 |  |
| 1:B:132:ASN:OD1   | 1:B:132:ASN:N     | 2.50         | 0.43                 |  |
| 1:A:527:THR:OG1   | 1:A:528:TYR:N     | 2.50         | 0.43                 |  |
| 1:B:216:VAL:HG13  | 1:B:218:MET:HG2   | 2.00         | 0.43                 |  |
| 1:C:1066:ASP:HB3  | 1:C:1068:PRO:HD2  | 2.00         | 0.43                 |  |



|                   |                   | Interatomic  | Clash       |  |
|-------------------|-------------------|--------------|-------------|--|
| Atom-1            | Atom-2            | distance (Å) | overlap (Å) |  |
| 1:A:1076:ARG:NH2  | 1:B:1075:ASP:OD2  | 2.52         | 0.43        |  |
| 1:C:358:THR:HA    | 1:C:361:ARG:HG2   | 2.01         | 0.43        |  |
| 1:A:512:VAL:HG11  | 1:A:515:TRP:HB3   | 2.00         | 0.43        |  |
| 1:B:88:LEU:HD12   | 1:B:91:LYS:HZ1    | 1.83         | 0.43        |  |
| 1:B:1206:ASN:OD1  | 1:B:1206:ASN:N    | 2.52         | 0.43        |  |
| 1:A:91:LYS:HD3    | 1:A:91:LYS:HA     | 1.68         | 0.43        |  |
| 1:B:130:PHE:HD2   | 1:B:155:MET:HG3   | 1.84         | 0.43        |  |
| 1:A:333:LEU:HD12  | 1:A:359:LEU:HD11  | 2.00         | 0.43        |  |
| 1:B:853:THR:HG21  | 1:B:1100:LYS:HG2  | 2.00         | 0.43        |  |
| 1:A:328:ASP:HB2   | 1:A:331:ASN:HB2   | 1.99         | 0.43        |  |
| 1:A:366:ASP:OD1   | 1:A:428:SER:OG    | 2.32         | 0.43        |  |
| 1:B:1164:LEU:HD21 | 1:B:1170:ILE:HD11 | 2.00         | 0.43        |  |
| 1:A:123:THR:HG21  | 1:A:140:GLN:HG3   | 2.01         | 0.42        |  |
| 1:C:392:ALA:HB3   | 1:C:460:VAL:HG11  | 2.01         | 0.42        |  |
| 1:A:440:ASN:O     | 1:A:446:ARG:NE    | 2.51         | 0.42        |  |
| 1:C:791:PRO:HB3   | 1:C:1150:PRO:HB3  | 2.01         | 0.42        |  |
| 1:A:401:LEU:O     | 1:A:426:TYR:OH    | 2.36         | 0.42        |  |
| 1:B:1075:ASP:O    | 1:B:1079:ASN:ND2  | 2.37         | 0.42        |  |
| 1:C:17:ASP:N      | 1:C:17:ASP:OD1    | 2.52         | 0.42        |  |
| 1:C:34:ARG:HE     | 1:C:34:ARG:HB3    | 1.61         | 0.42        |  |
| 1:A:52:LEU:H      | 1:A:52:LEU:HG     | 1.47         | 0.42        |  |
| 1:B:397:ARG:NE    | 1:B:400:ASP:OD2   | 2.45         | 0.42        |  |
| 1:A:552:ASN:HD21  | 1:A:554:GLU:HB2   | 1.84         | 0.42        |  |
| 1:A:993:THR:OG1   | 1:A:994:MET:N     | 2.52         | 0.42        |  |
| 1:B:104:SER:HB2   | 1:B:200:PHE:HB2   | 2.02         | 0.42        |  |
| 1:B:264:ARG:HD3   | 1:B:266:TYR:HE1   | 1.84         | 0.42        |  |
| 1:B:487:LYS:HB2   | 1:B:515:TRP:HB2   | 2.00         | 0.42        |  |
| 1:A:694:ASN:ND2   | 1:B:923:ASN:OD1   | 2.37         | 0.42        |  |
| 1:B:835:PHE:HD2   | 1:B:1082:LEU:HD22 | 1.84         | 0.42        |  |
| 1:C:103:PHE:HB2   | 1:C:261:LEU:HD21  | 2.01         | 0.42        |  |
| 1:C:636:VAL:O     | 1:C:666:THR:OG1   | 2.34         | 0.42        |  |
| 1:C:689:ALA:HA    | 1:C:722:ASN:HB3   | 2.01         | 0.42        |  |
| 1:A:330:ASP:N     | 1:A:330:ASP:OD1   | 2.52         | 0.42        |  |
| 1:B:88:LEU:HA     | 1:B:91:LYS:HZ3    | 1.84         | 0.42        |  |
| 1:A:32:ILE:HD13   | 1:A:88:LEU:HD13   | 2.02         | 0.42        |  |
| 1:A:616:THR:HA    | 1:A:633:PHE:HB2   | 2.02         | 0.42        |  |
| 1:B:506:LEU:H     | 1:B:506:LEU:HG    | 1.69         | 0.42        |  |
| 1:C:485:CYS:SG    | 1:C:516:CYS:N     | 2.93         | 0.42        |  |
| 1:B:462:TYR:CZ    | 1:B:576:SER:HB2   | 2.54         | 0.41        |  |
| 1:B:879:VAL:HG21  | 1:B:967:MET:HB3   | 2.01         | 0.41        |  |
| 1:A:740:SER:O     | 1:A:740:SER:OG    | 2.34         | 0.41        |  |



|                             | bas page          | Interatomic  | Clash       |  |
|-----------------------------|-------------------|--------------|-------------|--|
| Atom-1                      | Atom-2            | distance (Å) | overlap (Å) |  |
| 1:A:912:LYS:HE2             | 1:A:912:LYS:HB3   | 1.87         | 0.41        |  |
| 1:B:140:GLN:HE21            | 1:B:142:HIS:HE1   | 1.67         | 0.41        |  |
| 1:C:389:ASP:OD2             | 1:C:414:TYR:OH    | 2.31         | 0.41        |  |
| 1:B:969:PRO:HA              | 1:B:971:TRP:CE2   | 2.55         | 0.41        |  |
| 1:C:447:ARG:HH12            | 1:C:496:PRO:HG2   | 1.85         | 0.41        |  |
| 1:A:145:ILE:HG12            | 1:A:190:THR:HG22  | 2.03         | 0.41        |  |
| 1:C:1062:LEU:HD23           | 1:C:1062:LEU:HA   | 1.91         | 0.41        |  |
| 1:A:428:SER:HB2             | 1:A:585:ARG:HD2   | 2.02         | 0.41        |  |
| 1:C:319:ARG:HH21            | 1:C:611:ASN:HB3   | 1.85         | 0.41        |  |
| 1:C:508:THR:HG23            | 1:C:513:ASN:HA    | 2.03         | 0.41        |  |
| 1:C:561:ASN:HD22            | 1:C:562:HIS:H     | 1.67         | 0.41        |  |
| 1:C:1184:TRP:HB2            | 1:C:1218:ILE:HD11 | 2.03         | 0.41        |  |
| 1:B:823:ALA:HA              | 1:B:826:HIS:HB2   | 2.02         | 0.41        |  |
| 1:A:697:CYS:N               | 1:A:714:ASP:OD2   | 2.44         | 0.41        |  |
| 1:B:101:GLY:HA3             | 1:B:261:LEU:HD12  | 2.03         | 0.41        |  |
| 1:C:267:LEU:HB3             | 1:C:280:VAL:HG12  | 2.01         | 0.41        |  |
| 1:A:472:ASP:OD1             | 1:A:472:ASP:N     | 2.54         | 0.41        |  |
| 1:C:185:PHE:HB2             | 1:C:226:LEU:HD13  | 2.03         | 0.41        |  |
| 1:C:264:ARG:HH11            | 1:C:264:ARG:HD2   | 1.77         | 0.41        |  |
| 1:C:570:ASP:OD1             | 1:C:570:ASP:N     | 2.41         | 0.41        |  |
| 1:C:659:LYS:HB2             | 1:C:666:THR:HG22  | 2.03         | 0.41        |  |
| 1:C:1023:ASN:HB3            | 1:C:1026:LEU:HB2  | 2.01         | 0.41        |  |
| 1:C:1091:GLN:HE21           | 1:C:1091:GLN:HB2  | 1.50         | 0.41        |  |
| 1:C:632:ILE:N               | 1:C:670:LEU:O     | 2.54         | 0.41        |  |
| 1:C:1015:ILE:HD13           | 1:C:1015:ILE:HA   | 1.92         | 0.41        |  |
| 1:B:87:THR:O                | 1:B:91:LYS:NZ     | 2.51         | 0.40        |  |
| 1:B:269:ASN:HB2             | 1:B:297:PHE:CE1   | 2.57         | 0.40        |  |
| 1:A:952:GLU:HG3             | 1:A:1136:ASN:HD21 | 1.86         | 0.40        |  |
| 1:B:78:ALA:HB1              | 1:B:254:LEU:HD12  | 2.03         | 0.40        |  |
| 1:C:1100:LYS:HE2            | 1:C:1100:LYS:HB3  | 1.94         | 0.40        |  |
| 1:A:479:PRO:HG3             | 1:A:494:ILE:HA    | 2.02         | 0.40        |  |
| 1:A:849:LEU:O               | 1:A:853:THR:HG23  | 2.22         | 0.40        |  |
| 1:B:405:SER:OG              | 1:B:406:SER:O     | 2.36         | 0.40        |  |
| 1:B:1114:VAL:HG11           | 1:B:1134:VAL:HG12 | 2.03         | 0.40        |  |
| 1:C:566:SER:OG              | 1:C:567:CYS:N     | 2.54         | 0.40        |  |
| 1:A:570:ASP:OD1             | 1:A:570:ASP:N     | 2.50         | 0.40        |  |
| 1:C:329:ILE:HB              | 1:C:359:LEU:HD11  | 2.03         | 0.40        |  |
| $1:C:346:ARG:H\overline{E}$ | 1:C:346:ARG:HB2   | 1.67         | 0.40        |  |

There are no symmetry-related clashes.



## 5.3 Torsion angles (i)

### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 1   | А     | 1206/1290~(94%) | 1105 (92%) | 101 (8%) | 0        | 100   | 100    |
| 1   | В     | 1206/1290~(94%) | 1100 (91%) | 106 (9%) | 0        | 100   | 100    |
| 1   | С     | 1206/1290~(94%) | 1123 (93%) | 82 (7%)  | 1 (0%)   | 51    | 85     |
| All | All   | 3618/3870~(94%) | 3328 (92%) | 289 (8%) | 1 (0%)   | 100   | 100    |

All (1) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 970 | PRO  |

### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Rotameric  | Outliers      | Pe | erc | entiles |
|-----|-------|-----------------|------------|---------------|----|-----|---------|
| 1   | А     | 1082/1159~(93%) | 952~(88%)  | $130\ (12\%)$ |    | 5   | 22      |
| 1   | В     | 1082/1159~(93%) | 963~(89%)  | 119 (11%)     |    | 6   | 25      |
| 1   | С     | 1082/1159~(93%) | 969~(90%)  | 113 (10%)     |    | 7   | 27      |
| All | All   | 3246/3477~(93%) | 2884 (89%) | 362 (11%)     |    | 9   | 24      |

All (362) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 14  | VAL  |
| 1   | А     | 17  | ASP  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 40  | VAL  |
| 1   | А     | 51  | VAL  |
| 1   | А     | 52  | LEU  |
| 1   | А     | 57  | LEU  |
| 1   | А     | 59  | THR  |
| 1   | А     | 64  | THR  |
| 1   | А     | 74  | PHE  |
| 1   | А     | 75  | ARG  |
| 1   | А     | 79  | LEU  |
| 1   | А     | 91  | LYS  |
| 1   | А     | 96  | SER  |
| 1   | А     | 109 | THR  |
| 1   | А     | 111 | LEU  |
| 1   | А     | 112 | TYR  |
| 1   | А     | 116 | THR  |
| 1   | А     | 120 | GLU  |
| 1   | А     | 124 | ILE  |
| 1   | А     | 125 | VAL  |
| 1   | А     | 133 | THR  |
| 1   | А     | 136 | THR  |
| 1   | А     | 148 | ILE  |
| 1   | А     | 149 | THR  |
| 1   | А     | 161 | THR  |
| 1   | А     | 162 | VAL  |
| 1   | А     | 166 | LYS  |
| 1   | А     | 168 | SER  |
| 1   | А     | 175 | HIS  |
| 1   | А     | 177 | ASP  |
| 1   | А     | 187 | LYS  |
| 1   | А     | 206 | ARG  |
| 1   | А     | 213 | TYR  |
| 1   | А     | 231 | ILE  |
| 1   | A     | 243 | LYS  |
| 1   | А     | 245 | ILE  |
| 1   | A     | 250 | ASP  |
| 1   | A     | 253 | THR  |
| 1   | A     | 254 | LEU  |
| 1   | A     | 280 | VAL  |
| 1   | A     | 306 | LEU  |
| 1   | A     | 310 | THR  |
| 1   | A     | 311 | VAL  |
| 1   | А     | 317 | VAL  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 320 | ARG  |
| 1   | А     | 327 | CYS  |
| 1   | А     | 329 | ILE  |
| 1   | А     | 330 | ASP  |
| 1   | А     | 334 | ASN  |
| 1   | А     | 364 | HIS  |
| 1   | А     | 371 | ASN  |
| 1   | А     | 373 | LEU  |
| 1   | А     | 400 | ASP  |
| 1   | А     | 418 | ILE  |
| 1   | А     | 428 | SER  |
| 1   | А     | 431 | LEU  |
| 1   | А     | 450 | PHE  |
| 1   | А     | 455 | VAL  |
| 1   | А     | 460 | VAL  |
| 1   | А     | 464 | ASP  |
| 1   | А     | 481 | VAL  |
| 1   | А     | 494 | ILE  |
| 1   | А     | 505 | ASP  |
| 1   | А     | 509 | THR  |
| 1   | А     | 511 | TYR  |
| 1   | А     | 527 | THR  |
| 1   | А     | 539 | VAL  |
| 1   | А     | 540 | VAL  |
| 1   | А     | 587 | ASN  |
| 1   | А     | 590 | SER  |
| 1   | А     | 597 | ILE  |
| 1   | А     | 601 | THR  |
| 1   | А     | 605 | ASN  |
| 1   | А     | 606 | ASP  |
| 1   | A     | 612 | THR  |
| 1   | А     | 616 | THR  |
| 1   | А     | 621 | ASN  |
| 1   | A     | 640 | TYR  |
| 1   | А     | 644 | TRP  |
| 1   | A     | 652 | ASN  |
| 1   | А     | 654 | ASN  |
| 1   | A     | 658 | PHE  |
| 1   | А     | 660 | ASP  |
| 1   | A     | 661 | PHE  |
| 1   | A     | 670 | LEU  |
| 1   | А     | 674 | SER  |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | А     | 677  | VAL  |
| 1   | А     | 706  | PHE  |
| 1   | А     | 711  | PHE  |
| 1   | А     | 714  | ASP  |
| 1   | А     | 737  | ARG  |
| 1   | А     | 748  | LEU  |
| 1   | А     | 750  | SER  |
| 1   | А     | 772  | VAL  |
| 1   | А     | 788  | ILE  |
| 1   | А     | 800  | GLU  |
| 1   | А     | 849  | LEU  |
| 1   | А     | 850  | LEU  |
| 1   | А     | 865  | VAL  |
| 1   | A     | 879  | VAL  |
| 1   | A     | 880  | ASP  |
| 1   | А     | 886  | SER  |
| 1   | А     | 890  | CYS  |
| 1   | А     | 891  | LEU  |
| 1   | А     | 934  | LEU  |
| 1   | А     | 950  | LEU  |
| 1   | А     | 952  | GLU  |
| 1   | А     | 953  | THR  |
| 1   | А     | 972  | SER  |
| 1   | А     | 988  | ASN  |
| 1   | А     | 993  | THR  |
| 1   | А     | 1010 | LYS  |
| 1   | А     | 1013 | LEU  |
| 1   | А     | 1023 | ASN  |
| 1   | А     | 1057 | SER  |
| 1   | А     | 1066 | ASP  |
| 1   | А     | 1075 | ASP  |
| 1   | А     | 1086 | ASN  |
| 1   | А     | 1096 | ILE  |
| 1   | A     | 1098 | LEU  |
| 1   | A     | 1105 | ARG  |
| 1   | A     | 1118 | SER  |
| 1   | А     | 1124 | CYS  |
| 1   | A     | 1131 | LEU  |
| 1   | A     | 1132 | SER  |
| 1   | A     | 1152 | SER  |
| 1   | A     | 1201 | ASN  |
| 1   | А     | 1203 | VAL  |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | А     | 1208 | CYS  |
| 1   | А     | 1219 | TYR  |
| 1   | В     | 17   | ASP  |
| 1   | В     | 22   | ASN  |
| 1   | В     | 29   | ASN  |
| 1   | В     | 30   | LYS  |
| 1   | В     | 32   | ILE  |
| 1   | В     | 34   | ARG  |
| 1   | В     | 38   | ASP  |
| 1   | В     | 39   | VAL  |
| 1   | В     | 51   | VAL  |
| 1   | В     | 57   | LEU  |
| 1   | В     | 58   | ASN  |
| 1   | В     | 73   | ASN  |
| 1   | В     | 87   | THR  |
| 1   | В     | 107  | LYS  |
| 1   | В     | 116  | THR  |
| 1   | В     | 125  | VAL  |
| 1   | В     | 132  | ASN  |
| 1   | В     | 133  | THR  |
| 1   | В     | 136  | THR  |
| 1   | В     | 143  | ASN  |
| 1   | В     | 154  | THR  |
| 1   | В     | 175  | HIS  |
| 1   | В     | 184  | LEU  |
| 1   | В     | 190  | THR  |
| 1   | В     | 213  | TYR  |
| 1   | В     | 241  | THR  |
| 1   | В     | 249  | THR  |
| 1   | В     | 254  | LEU  |
| 1   | В     | 259  | THR  |
| 1   | В     | 307  | SER  |
| 1   | В     | 310  | THR  |
| 1   | В     | 311  | VAL  |
| 1   | В     | 346  | ARG  |
| 1   | В     | 350  | SER  |
| 1   | В     | 351  | ASN  |
| 1   | В     | 369  | SER  |
| 1   | В     | 373  | LEU  |
| 1   | В     | 374  | ASP  |
| 1   | В     | 375  | LYS  |
| 1   | В     | 378  | ILE  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 381 | SER  |
| 1   | В     | 400 | ASP  |
| 1   | В     | 412 | SER  |
| 1   | В     | 418 | ILE  |
| 1   | В     | 447 | ARG  |
| 1   | В     | 470 | ASN  |
| 1   | В     | 481 | VAL  |
| 1   | В     | 482 | VAL  |
| 1   | В     | 506 | LEU  |
| 1   | В     | 507 | ASP  |
| 1   | В     | 511 | TYR  |
| 1   | В     | 527 | THR  |
| 1   | В     | 531 | ASN  |
| 1   | В     | 540 | VAL  |
| 1   | В     | 560 | LEU  |
| 1   | В     | 563 | SER  |
| 1   | В     | 573 | LEU  |
| 1   | В     | 583 | ASN  |
| 1   | В     | 601 | THR  |
| 1   | В     | 606 | ASP  |
| 1   | В     | 624 | LEU  |
| 1   | В     | 636 | VAL  |
| 1   | В     | 644 | TRP  |
| 1   | В     | 655 | ILE  |
| 1   | В     | 668 | THR  |
| 1   | В     | 670 | LEU  |
| 1   | В     | 676 | ARG  |
| 1   | В     | 677 | VAL  |
| 1   | В     | 683 | GLN  |
| 1   | В     | 690 | LEU  |
| 1   | В     | 711 | PHE  |
| 1   | В     | 731 | VAL  |
| 1   | В     | 735 | ASP  |
| 1   | В     | 743 | CYS  |
| 1   | В     | 763 | ARG  |
| 1   | В     | 766 | THR  |
| 1   | В     | 781 | THR  |
| 1   | В     | 788 | ILE  |
| 1   | В     | 828 | LEU  |
| 1   | В     | 837 | ASP  |
| 1   | В     | 838 | ASN  |
| 1   | В     | 849 | LEU  |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | В     | 850  | LEU  |
| 1   | В     | 865  | VAL  |
| 1   | В     | 879  | VAL  |
| 1   | В     | 881  | ASN  |
| 1   | В     | 886  | SER  |
| 1   | В     | 895  | CYS  |
| 1   | В     | 915  | ASP  |
| 1   | В     | 930  | GLU  |
| 1   | В     | 931  | ILE  |
| 1   | В     | 950  | LEU  |
| 1   | В     | 964  | VAL  |
| 1   | В     | 977  | VAL  |
| 1   | В     | 986  | ARG  |
| 1   | В     | 995  | ASP  |
| 1   | В     | 1000 | ASN  |
| 1   | В     | 1012 | LEU  |
| 1   | В     | 1023 | ASN  |
| 1   | В     | 1028 | LYS  |
| 1   | В     | 1058 | LEU  |
| 1   | В     | 1066 | ASP  |
| 1   | В     | 1086 | ASN  |
| 1   | В     | 1089 | VAL  |
| 1   | В     | 1090 | SER  |
| 1   | В     | 1091 | GLN  |
| 1   | В     | 1096 | ILE  |
| 1   | В     | 1098 | LEU  |
| 1   | В     | 1108 | GLU  |
| 1   | В     | 1117 | GLN  |
| 1   | В     | 1135 | GLN  |
| 1   | В     | 1142 | LEU  |
| 1   | В     | 1147 | SER  |
| 1   | В     | 1159 | SER  |
| 1   | В     | 1180 | GLN  |
| 1   | В     | 1190 | SER  |
| 1   | В     | 1195 | GLU  |
| 1   | В     | 1203 | VAL  |
| 1   | В     | 1213 | THR  |
| 1   | С     | 14   | VAL  |
| 1   | C     | 21   | THR  |
| 1   | С     | 28   | TYR  |
| 1   | C     | 29   | ASN  |
| 1   | С     | 31   | THR  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 32  | ILE  |
| 1   | С     | 40  | VAL  |
| 1   | С     | 52  | LEU  |
| 1   | С     | 97  | ASP  |
| 1   | С     | 99  | ASN  |
| 1   | С     | 123 | THR  |
| 1   | С     | 128 | SER  |
| 1   | С     | 129 | VAL  |
| 1   | С     | 136 | THR  |
| 1   | С     | 161 | THR  |
| 1   | С     | 178 | SER  |
| 1   | С     | 182 | LEU  |
| 1   | С     | 187 | LYS  |
| 1   | С     | 190 | THR  |
| 1   | С     | 193 | VAL  |
| 1   | С     | 196 | ASP  |
| 1   | С     | 204 | GLN  |
| 1   | С     | 213 | TYR  |
| 1   | С     | 221 | THR  |
| 1   | С     | 241 | THR  |
| 1   | С     | 243 | LYS  |
| 1   | С     | 250 | ASP  |
| 1   | С     | 253 | THR  |
| 1   | С     | 258 | VAL  |
| 1   | С     | 277 | THR  |
| 1   | С     | 289 | GLU  |
| 1   | С     | 305 | ASP  |
| 1   | С     | 330 | ASP  |
| 1   | С     | 337 | SER  |
| 1   | С     | 350 | SER  |
| 1   | С     | 351 | ASN  |
| 1   | C     | 356 | LEU  |
| 1   | С     | 358 | THR  |
| 1   | С     | 359 | LEU  |
| 1   | С     | 373 | LEU  |
| 1   | C     | 375 | LYS  |
| 1   | С     | 376 | SER  |
| 1   | С     | 384 | ASN  |
| 1   | С     | 399 | ASP  |
| 1   | C     | 418 | ILE  |
| 1   | С     | 456 | SER  |
| 1   | С     | 457 | SER  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | С     | 460 | VAL  |
| 1   | С     | 472 | ASP  |
| 1   | С     | 481 | VAL  |
| 1   | С     | 484 | SER  |
| 1   | С     | 509 | THR  |
| 1   | С     | 560 | LEU  |
| 1   | С     | 561 | ASN  |
| 1   | С     | 590 | SER  |
| 1   | С     | 597 | ILE  |
| 1   | С     | 608 | LEU  |
| 1   | С     | 612 | THR  |
| 1   | С     | 615 | SER  |
| 1   | С     | 636 | VAL  |
| 1   | С     | 644 | TRP  |
| 1   | С     | 646 | ASN  |
| 1   | С     | 651 | SER  |
| 1   | С     | 659 | LYS  |
| 1   | С     | 676 | ARG  |
| 1   | С     | 717 | LEU  |
| 1   | С     | 731 | VAL  |
| 1   | С     | 743 | CYS  |
| 1   | С     | 748 | LEU  |
| 1   | С     | 767 | PHE  |
| 1   | С     | 780 | GLU  |
| 1   | С     | 807 | SER  |
| 1   | С     | 811 | THR  |
| 1   | С     | 820 | SER  |
| 1   | С     | 850 | LEU  |
| 1   | С     | 863 | GLN  |
| 1   | С     | 865 | VAL  |
| 1   | С     | 871 | LEU  |
| 1   | С     | 872 | ASN  |
| 1   | С     | 879 | VAL  |
| 1   | С     | 885 | LYS  |
| 1   | С     | 894 | GLN  |
| 1   | С     | 897 | SER  |
| 1   | С     | 926 | THR  |
| 1   | С     | 939 | SER  |
| 1   | С     | 950 | LEU  |
| 1   | С     | 952 | GLU  |
| 1   | С     | 953 | THR  |
| 1   | С     | 964 | VAL  |



|     | 0     | -              | 10   |
|-----|-------|----------------|------|
| Mol | Chain | $\mathbf{Res}$ | Type |
| 1   | С     | 972            | SER  |
| 1   | С     | 981            | LEU  |
| 1   | С     | 986            | ARG  |
| 1   | С     | 1008           | PHE  |
| 1   | С     | 1042           | SER  |
| 1   | С     | 1058           | LEU  |
| 1   | С     | 1066           | ASP  |
| 1   | С     | 1069           | GLU  |
| 1   | С     | 1091           | GLN  |
| 1   | С     | 1096           | ILE  |
| 1   | С     | 1104           | SER  |
| 1   | С     | 1118           | SER  |
| 1   | С     | 1124           | CYS  |
| 1   | С     | 1131           | LEU  |
| 1   | С     | 1147           | SER  |
| 1   | С     | 1154           | LYS  |
| 1   | С     | 1155           | THR  |
| 1   | С     | 1156           | VAL  |
| 1   | С     | 1187           | THR  |
| 1   | С     | 1208           | CYS  |
| 1   | С     | 1213           | THR  |
| 1   | С     | 1217           | PHE  |
| 1   | С     | 1219           | TYR  |
| 1   | С     | 1221           | ASN  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (58) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 175 | HIS  |
| 1   | А     | 204 | GLN  |
| 1   | А     | 291 | GLN  |
| 1   | А     | 351 | ASN  |
| 1   | А     | 384 | ASN  |
| 1   | А     | 402 | GLN  |
| 1   | А     | 440 | ASN  |
| 1   | А     | 552 | ASN  |
| 1   | А     | 595 | ASN  |
| 1   | А     | 611 | ASN  |
| 1   | А     | 621 | ASN  |
| 1   | А     | 630 | GLN  |
| 1   | А     | 838 | ASN  |
| 1   | А     | 859 | ASN  |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | А     | 876  | HIS  |
| 1   | А     | 984  | GLN  |
| 1   | А     | 1001 | GLN  |
| 1   | А     | 1023 | ASN  |
| 1   | А     | 1049 | ASN  |
| 1   | А     | 1091 | GLN  |
| 1   | А     | 1180 | GLN  |
| 1   | В     | 73   | ASN  |
| 1   | В     | 140  | GLN  |
| 1   | В     | 143  | ASN  |
| 1   | В     | 152  | GLN  |
| 1   | В     | 204  | GLN  |
| 1   | В     | 248  | ASN  |
| 1   | В     | 269  | ASN  |
| 1   | В     | 437  | ASN  |
| 1   | В     | 598  | ASN  |
| 1   | В     | 605  | ASN  |
| 1   | В     | 630  | GLN  |
| 1   | В     | 789  | GLN  |
| 1   | В     | 876  | HIS  |
| 1   | В     | 998  | ASN  |
| 1   | В     | 1000 | ASN  |
| 1   | В     | 1001 | GLN  |
| 1   | В     | 1038 | GLN  |
| 1   | В     | 1086 | ASN  |
| 1   | В     | 1136 | ASN  |
| 1   | В     | 1180 | GLN  |
| 1   | В     | 1201 | ASN  |
| 1   | С     | 204  | GLN  |
| 1   | С     | 351  | ASN  |
| 1   | С     | 395  | ASN  |
| 1   | С     | 483  | ASN  |
| 1   | С     | 561  | ASN  |
| 1   | С     | 587  | ASN  |
| 1   | С     | 630  | GLN  |
| 1   | С     | 646  | ASN  |
| 1   | С     | 863  | GLN  |
| 1   | C     | 894  | GLN  |
| 1   | С     | 984  | GLN  |
| 1   | С     | 1001 | GLN  |
| 1   | С     | 1038 | GLN  |
| 1   | С     | 1091 | GLN  |



Continued from previous page...

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | С     | 1126           | ASN  |
| 1   | С     | 1136           | ASN  |

### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

## 5.5 Carbohydrates (i)

42 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol Turo |      | Chain | Dec | Tink | Bo       | ond leng | ths      | Bond angles    |      |          |
|----------|------|-------|-----|------|----------|----------|----------|----------------|------|----------|
|          | Type | Chain | nes |      | Counts   | RMSZ     | # Z  > 2 | Counts         | RMSZ | # Z  > 2 |
| 2        | NAG  | D     | 1   | 1,2  | 14,14,15 | 0.44     | 0        | 17,19,21       | 0.51 | 0        |
| 2        | NAG  | D     | 2   | 2    | 14,14,15 | 0.31     | 0        | 17,19,21       | 0.56 | 0        |
| 2        | MAN  | D     | 3   | 2    | 11,11,12 | 1.92     | 5(45%)   | $15,\!15,\!17$ | 1.29 | 1(6%)    |
| 2        | MAN  | D     | 4   | 2    | 11,11,12 | 0.73     | 0        | 15,15,17       | 1.25 | 2 (13%)  |
| 2        | MAN  | D     | 5   | 2    | 11,11,12 | 1.14     | 1 (9%)   | $15,\!15,\!17$ | 1.15 | 1 (6%)   |
| 2        | MAN  | D     | 6   | 2    | 11,11,12 | 0.70     | 0        | 15,15,17       | 1.17 | 2 (13%)  |
| 3        | NAG  | Е     | 1   | 3,1  | 14,14,15 | 0.40     | 0        | 17,19,21       | 0.63 | 0        |
| 3        | NAG  | E     | 2   | 3    | 14,14,15 | 0.38     | 0        | 17,19,21       | 0.51 | 0        |
| 3        | NAG  | F     | 1   | 3,1  | 14,14,15 | 0.28     | 0        | 17,19,21       | 0.53 | 0        |
| 3        | NAG  | F     | 2   | 3    | 14,14,15 | 0.23     | 0        | 17,19,21       | 0.50 | 0        |
| 3        | NAG  | G     | 1   | 3,1  | 14,14,15 | 0.38     | 0        | 17,19,21       | 0.99 | 1 (5%)   |
| 3        | NAG  | G     | 2   | 3    | 14,14,15 | 0.46     | 0        | 17,19,21       | 0.58 | 0        |
| 3        | NAG  | Н     | 1   | 3,1  | 14,14,15 | 0.33     | 0        | 17,19,21       | 0.62 | 0        |
| 3        | NAG  | Н     | 2   | 3    | 14,14,15 | 0.40     | 0        | 17,19,21       | 0.58 | 0        |
| 2        | NAG  | I     | 1   | 1,2  | 14,14,15 | 0.38     | 0        | 17,19,21       | 0.47 | 0        |



| Mal | True | Chain | Dec | Timle | Bond lengths |      | $_{\rm sths}$ | Bond angles    |      |          |  |
|-----|------|-------|-----|-------|--------------|------|---------------|----------------|------|----------|--|
|     | Type | Chain | nes |       | Counts       | RMSZ | # Z  > 2      | Counts         | RMSZ | # Z  > 2 |  |
| 2   | NAG  | Ι     | 2   | 2     | 14,14,15     | 0.25 | 0             | 17,19,21       | 0.63 | 0        |  |
| 2   | MAN  | Ι     | 3   | 2     | 11,11,12     | 1.71 | 3 (27%)       | $15,\!15,\!17$ | 1.80 | 1 (6%)   |  |
| 2   | MAN  | Ι     | 4   | 2     | 11,11,12     | 0.72 | 0             | 15,15,17       | 1.32 | 2 (13%)  |  |
| 2   | MAN  | Ι     | 5   | 2     | 11,11,12     | 0.86 | 0             | 15,15,17       | 1.14 | 2 (13%)  |  |
| 2   | MAN  | Ι     | 6   | 2     | 11,11,12     | 1.10 | 1 (9%)        | 15,15,17       | 1.31 | 1 (6%)   |  |
| 3   | NAG  | J     | 1   | 3,1   | 14,14,15     | 0.34 | 0             | 17,19,21       | 0.59 | 0        |  |
| 3   | NAG  | J     | 2   | 3     | 14,14,15     | 0.38 | 0             | 17,19,21       | 0.49 | 0        |  |
| 3   | NAG  | K     | 1   | 3,1   | 14,14,15     | 0.40 | 0             | 17,19,21       | 0.44 | 0        |  |
| 3   | NAG  | K     | 2   | 3     | 14,14,15     | 0.32 | 0             | 17,19,21       | 0.52 | 0        |  |
| 3   | NAG  | L     | 1   | 3,1   | 14,14,15     | 0.57 | 0             | 17,19,21       | 0.59 | 0        |  |
| 3   | NAG  | L     | 2   | 3     | 14,14,15     | 0.55 | 0             | 17,19,21       | 0.59 | 0        |  |
| 3   | NAG  | М     | 1   | 3,1   | 14,14,15     | 0.20 | 0             | 17,19,21       | 0.51 | 0        |  |
| 3   | NAG  | М     | 2   | 3     | 14,14,15     | 0.27 | 0             | 17,19,21       | 0.49 | 0        |  |
| 2   | NAG  | N     | 1   | 1,2   | 14,14,15     | 0.26 | 0             | 17,19,21       | 0.53 | 0        |  |
| 2   | NAG  | N     | 2   | 2     | 14,14,15     | 0.25 | 0             | 17,19,21       | 0.51 | 0        |  |
| 2   | MAN  | Ν     | 3   | 2     | 11,11,12     | 1.13 | 1 (9%)        | $15,\!15,\!17$ | 1.19 | 3 (20%)  |  |
| 2   | MAN  | Ν     | 4   | 2     | 11,11,12     | 0.99 | 1 (9%)        | $15,\!15,\!17$ | 1.50 | 3 (20%)  |  |
| 2   | MAN  | Ν     | 5   | 2     | 11,11,12     | 0.94 | 0             | $15,\!15,\!17$ | 1.03 | 2 (13%)  |  |
| 2   | MAN  | Ν     | 6   | 2     | 11,11,12     | 1.23 | 1 (9%)        | $15,\!15,\!17$ | 1.73 | 3 (20%)  |  |
| 3   | NAG  | 0     | 1   | 3,1   | 14,14,15     | 0.33 | 0             | 17,19,21       | 0.45 | 0        |  |
| 3   | NAG  | Ο     | 2   | 3     | 14,14,15     | 0.26 | 0             | 17,19,21       | 0.63 | 1 (5%)   |  |
| 3   | NAG  | Р     | 1   | 3,1   | 14,14,15     | 0.22 | 0             | 17,19,21       | 0.58 | 0        |  |
| 3   | NAG  | Р     | 2   | 3     | 14,14,15     | 0.51 | 0             | 17,19,21       | 0.54 | 0        |  |
| 3   | NAG  | Q     | 1   | 3,1   | 14,14,15     | 0.52 | 0             | 17,19,21       | 0.50 | 0        |  |
| 3   | NAG  | Q     | 2   | 3     | 14,14,15     | 0.26 | 0             | 17,19,21       | 0.51 | 0        |  |
| 3   | NAG  | R     | 1   | 3,1   | 14,14,15     | 0.32 | 0             | 17,19,21       | 0.46 | 0        |  |
| 3   | NAG  | R     | 2   | 3     | 14,14,15     | 0.27 | 0             | 17,19,21       | 0.64 | 1 (5%)   |  |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 2   | NAG  | D     | 1   | 1,2  | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | NAG  | D     | 2   | 2    | -       | 2/6/23/26 | 0/1/1/1 |
| 2   | MAN  | D     | 3   | 2    | -       | 2/2/19/22 | 1/1/1/1 |
| 2   | MAN  | D     | 4   | 2    | -       | 2/2/19/22 | 0/1/1/1 |
| 2   | MAN  | D     | 5   | 2    | -       | 2/2/19/22 | 0/1/1/1 |


| Mol | Type | Chain | Res | Link | Chirals | hirals Torsions               |         |
|-----|------|-------|-----|------|---------|-------------------------------|---------|
| 2   | MAN  | D     | 6   | 2    | -       | 1/2/19/22                     | 0/1/1/1 |
| 3   | NAG  | Е     | 1   | 3,1  | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | Е     | 2   | 3    | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | F     | 1   | 3,1  | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | F     | 2   | 3    | -       | 0/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | G     | 1   | 3,1  | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | G     | 2   | 3    | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | Н     | 1   | 3,1  | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | Н     | 2   | 3    | -       | 2/6/23/26                     | 0/1/1/1 |
| 2   | NAG  | Ι     | 1   | 1,2  | _       | 2/6/23/26                     | 0/1/1/1 |
| 2   | NAG  | Ι     | 2   | 2    | _       | 2/6/23/26                     | 0/1/1/1 |
| 2   | MAN  | Ι     | 3   | 2    | -       | 2/2/19/22                     | 1/1/1/1 |
| 2   | MAN  | Ι     | 4   | 2    | _       | 2/2/19/22                     | 0/1/1/1 |
| 2   | MAN  | Ι     | 5   | 2    | -       | 1/2/19/22                     | 0/1/1/1 |
| 2   | MAN  | Ι     | 6   | 2    | -       | $\frac{2}{2}/\frac{2}{19}/22$ | 0/1/1/1 |
| 3   | NAG  | J     | 1   | 3,1  | _       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | J     | 2   | 3    | -       | 0/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | K     | 1   | 3,1  | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | K     | 2   | 3    | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | L     | 1   | 3,1  | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | L     | 2   | 3    | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | М     | 1   | 3,1  | -       | 1/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | М     | 2   | 3    | -       | 0/6/23/26                     | 0/1/1/1 |
| 2   | NAG  | Ν     | 1   | 1,2  | -       | 2/6/23/26                     | 0/1/1/1 |
| 2   | NAG  | Ν     | 2   | 2    | -       | 2/6/23/26                     | 0/1/1/1 |
| 2   | MAN  | Ν     | 3   | 2    | -       | 2/2/19/22                     | 0/1/1/1 |
| 2   | MAN  | Ν     | 4   | 2    | -       | 2/2/19/22                     | 0/1/1/1 |
| 2   | MAN  | N     | 5   | 2    | -       | 0/2/19/22                     | 0/1/1/1 |
| 2   | MAN  | Ν     | 6   | 2    | -       | 0/2/19/22                     | 0/1/1/1 |
| 3   | NAG  | 0     | 1   | 3,1  | -       | 0/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | 0     | 2   | 3    | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | Р     | 1   | 3,1  | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | Р     | 2   | 3    | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | Q     | 1   | 3,1  | -       | 1/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | Q     | 2   | 3    | -       | 2/6/23/26                     | 0/1/1/1 |
| 3   | NAG  | R     | 1   | 3,1  | -       | 2/6/23/26                     | 0/1/1/1 |



Continued from previous page...

| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|-----|------|---------|-----------|---------|
| 3   | NAG  | R     | 2   | 3    | -       | 2/6/23/26 | 0/1/1/1 |

All (13) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z    | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|-------|------|-------------|----------|
| 2   | D     | 3   | MAN  | O5-C5 | 3.81 | 1.51        | 1.43     |
| 2   | Ι     | 3   | MAN  | C2-C3 | 3.38 | 1.57        | 1.52     |
| 2   | Ν     | 6   | MAN  | C1-C2 | 3.10 | 1.59        | 1.52     |
| 2   | Ι     | 6   | MAN  | C1-C2 | 3.02 | 1.59        | 1.52     |
| 2   | D     | 3   | MAN  | C2-C3 | 2.77 | 1.56        | 1.52     |
| 2   | Ι     | 3   | MAN  | C1-C2 | 2.61 | 1.58        | 1.52     |
| 2   | Ι     | 3   | MAN  | O5-C5 | 2.53 | 1.48        | 1.43     |
| 2   | D     | 5   | MAN  | C2-C3 | 2.42 | 1.56        | 1.52     |
| 2   | D     | 3   | MAN  | C1-C2 | 2.24 | 1.57        | 1.52     |
| 2   | D     | 3   | MAN  | O5-C1 | 2.23 | 1.47        | 1.43     |
| 2   | D     | 3   | MAN  | C4-C3 | 2.16 | 1.57        | 1.52     |
| 2   | N     | 3   | MAN  | C1-C2 | 2.14 | 1.57        | 1.52     |
| 2   | Ν     | 4   | MAN  | O5-C5 | 2.11 | 1.47        | 1.43     |

All (26) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms    | Z     | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|-------|---------------------------|---------------|
| 2   | Ι     | 3   | MAN  | C1-O5-C5 | 5.43  | 119.55                    | 112.19        |
| 2   | Ν     | 6   | MAN  | C1-O5-C5 | 4.92  | 118.86                    | 112.19        |
| 2   | D     | 3   | MAN  | C1-O5-C5 | 3.96  | 117.55                    | 112.19        |
| 2   | Ι     | 4   | MAN  | C1-O5-C5 | 3.91  | 117.48                    | 112.19        |
| 2   | Ν     | 4   | MAN  | C1-O5-C5 | 3.89  | 117.47                    | 112.19        |
| 3   | G     | 1   | NAG  | C1-O5-C5 | 3.30  | 116.66                    | 112.19        |
| 2   | Ι     | 5   | MAN  | C1-O5-C5 | 3.28  | 116.64                    | 112.19        |
| 2   | D     | 4   | MAN  | C1-O5-C5 | 2.91  | 116.14                    | 112.19        |
| 2   | Ι     | 6   | MAN  | C1-O5-C5 | 2.83  | 116.03                    | 112.19        |
| 2   | D     | 6   | MAN  | C1-O5-C5 | 2.81  | 116.00                    | 112.19        |
| 2   | Ν     | 3   | MAN  | O2-C2-C3 | -2.72 | 104.69                    | 110.14        |
| 2   | D     | 6   | MAN  | O2-C2-C3 | -2.59 | 104.96                    | 110.14        |
| 2   | Ν     | 3   | MAN  | C1-O5-C5 | 2.39  | 115.43                    | 112.19        |
| 2   | Ν     | 6   | MAN  | O2-C2-C3 | -2.32 | 105.49                    | 110.14        |
| 2   | Ι     | 5   | MAN  | O2-C2-C3 | -2.30 | 105.52                    | 110.14        |
| 2   | D     | 4   | MAN  | O2-C2-C3 | -2.30 | 105.53                    | 110.14        |
| 2   | Ι     | 4   | MAN  | O2-C2-C3 | -2.28 | 105.57                    | 110.14        |
| 2   | Ν     | 5   | MAN  | O2-C2-C3 | -2.25 | 105.63                    | 110.14        |
| 3   | R     | 2   | NAG  | C1-O5-C5 | 2.24  | 115.23                    | 112.19        |
| 2   | D     | 5   | MAN  | C1-C2-C3 | 2.18  | 112.35                    | 109.67        |



| Mol | Chain | Res | Type | Atoms    | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|-------|------------------|---------------|
| 2   | Ν     | 4   | MAN  | C3-C4-C5 | -2.12 | 106.45           | 110.24        |
| 2   | Ν     | 6   | MAN  | O5-C1-C2 | 2.12  | 114.05           | 110.77        |
| 2   | Ν     | 4   | MAN  | O3-C3-C2 | 2.11  | 114.04           | 109.99        |
| 3   | 0     | 2   | NAG  | C1-O5-C5 | 2.10  | 115.03           | 112.19        |
| 2   | Ν     | 5   | MAN  | C1-O5-C5 | 2.08  | 115.01           | 112.19        |
| 2   | Ν     | 3   | MAN  | C1-C2-C3 | 2.04  | 112.18           | 109.67        |

There are no chirality outliers.

| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 3   | Q     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | N     | 2   | NAG  | O5-C5-C6-O6 |
| 3   | Н     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | D     | 4   | MAN  | O5-C5-C6-O6 |
| 2   | D     | 3   | MAN  | C4-C5-C6-O6 |
| 2   | Ν     | 3   | MAN  | C4-C5-C6-O6 |
| 3   | Е     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | Ι     | 2   | NAG  | O5-C5-C6-O6 |
| 3   | Е     | 1   | NAG  | O5-C5-C6-O6 |
| 3   | Κ     | 2   | NAG  | O5-C5-C6-O6 |
| 3   | L     | 2   | NAG  | O5-C5-C6-O6 |
| 3   | R     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | N     | 4   | MAN  | O5-C5-C6-O6 |
| 3   | F     | 1   | NAG  | O5-C5-C6-O6 |
| 3   | Р     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | Ι     | 4   | MAN  | O5-C5-C6-O6 |
| 3   | Н     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | D     | 4   | MAN  | C4-C5-C6-O6 |
| 3   | Q     | 2   | NAG  | C4-C5-C6-O6 |
| 3   | Р     | 1   | NAG  | O5-C5-C6-O6 |
| 3   | Κ     | 2   | NAG  | C4-C5-C6-O6 |
| 3   | L     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | D     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | Ι     | 6   | MAN  | O5-C5-C6-O6 |
| 3   | L     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | Ι     | 4   | MAN  | C4-C5-C6-O6 |
| 2   | Ν     | 2   | NAG  | C4-C5-C6-O6 |
| 3   | Е     | 2   | NAG  | O5-C5-C6-O6 |
| 3   | Н     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | Ι     | 2   | NAG  | C4-C5-C6-O6 |
| 3   | Р     | 2   | NAG  | C4-C5-C6-O6 |

All (68) torsion outliers are listed below:



| Mol | Chain | Res | Type | Atoms       |
|-----|-------|-----|------|-------------|
| 2   | N     | 3   | MAN  | O5-C5-C6-O6 |
| 2   | Ι     | 6   | MAN  | C4-C5-C6-O6 |
| 3   | Е     | 1   | NAG  | C4-C5-C6-O6 |
| 3   | F     | 1   | NAG  | C4-C5-C6-O6 |
| 2   | D     | 3   | MAN  | O5-C5-C6-O6 |
| 3   | R     | 2   | NAG  | C4-C5-C6-O6 |
| 3   | Н     | 1   | NAG  | C4-C5-C6-O6 |
| 3   | L     | 1   | NAG  | C4-C5-C6-O6 |
| 2   | D     | 5   | MAN  | C4-C5-C6-O6 |
| 2   | D     | 6   | MAN  | O5-C5-C6-O6 |
| 3   | G     | 1   | NAG  | O5-C5-C6-O6 |
| 3   | 0     | 2   | NAG  | O5-C5-C6-O6 |
| 2   | D     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | Ν     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | D     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | D     | 5   | MAN  | O5-C5-C6-O6 |
| 3   | 0     | 2   | NAG  | C4-C5-C6-O6 |
| 2   | Ν     | 4   | MAN  | C4-C5-C6-O6 |
| 3   | R     | 1   | NAG  | O5-C5-C6-O6 |
| 3   | Р     | 1   | NAG  | C4-C5-C6-O6 |
| 2   | Ι     | 1   | NAG  | C4-C5-C6-O6 |
| 3   | G     | 1   | NAG  | C4-C5-C6-O6 |
| 2   | Ν     | 1   | NAG  | C4-C5-C6-O6 |
| 2   | Ι     | 1   | NAG  | O5-C5-C6-O6 |
| 3   | М     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | D     | 1   | NAG  | C4-C5-C6-O6 |
| 3   | Κ     | 1   | NAG  | C4-C5-C6-O6 |
| 2   | Ι     | 3   | MAN  | C4-C5-C6-O6 |
| 3   | Q     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | Ι     | 3   | MAN  | 05-C5-C6-O6 |
| 3   | J     | 1   | NAG  | C4-C5-C6-O6 |
| 3   | Κ     | 1   | NAG  | O5-C5-C6-O6 |
| 2   | Ι     | 5   | MAN  | O5-C5-C6-O6 |
| 3   | G     | 2   | NAG  | C4-C5-C6-O6 |
| 3   | G     | 2   | NAG  | O5-C5-C6-O6 |
| 3   | J     | 1   | NAG  | O5-C5-C6-O6 |
| 3   | R     | 1   | NAG  | C4-C5-C6-O6 |

Continued from previous page...

All (2) ring outliers are listed below:

| Mol | Chain | Res | Type | Atoms             |
|-----|-------|-----|------|-------------------|
| 2   | Ι     | 3   | MAN  | C1-C2-C3-C4-C5-O5 |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms             |
|-----|-------|-----|------|-------------------|
| 2   | D     | 3   | MAN  | C1-C2-C3-C4-C5-O5 |

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.



























































## 5.6 Ligand geometry (i)

51 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol | Tuno             | Chain | Dec  | Tiple  | Bo       | ond leng | $_{\rm sths}$ | Bond angles |          |        |
|-----|------------------|-------|------|--------|----------|----------|---------------|-------------|----------|--------|
|     | Moi Type Chain F | nes   |      | Counts | RMSZ     | # Z  > 2 | Counts        | RMSZ        | # Z  > 2 |        |
| 4   | NAG              | В     | 2010 | 1      | 14,14,15 | 0.56     | 0             | 17,19,21    | 0.66     | 1 (5%) |
| 4   | NAG              | В     | 2003 | 1      | 14,14,15 | 0.31     | 0             | 17,19,21    | 0.44     | 0      |
| 4   | NAG              | А     | 2013 | 1      | 14,14,15 | 0.33     | 0             | 17,19,21    | 0.40     | 0      |



|      | T    | <u> </u> | Ъ    | <b>T</b> • 1 | Bo             | ond leng | ths      | Bond angles    |      |        |  |
|------|------|----------|------|--------------|----------------|----------|----------|----------------|------|--------|--|
| NIOI | Type | Chain    | Res  | Link         | Counts         | RMSZ     | # Z  > 2 | Counts         | RMSZ | # Z >2 |  |
| 4    | NAG  | А        | 2006 | 1            | 14,14,15       | 0.23     | 0        | $17,\!19,\!21$ | 0.54 | 0      |  |
| 4    | NAG  | С        | 2001 | 1            | 14,14,15       | 0.22     | 0        | 17,19,21       | 0.49 | 0      |  |
| 4    | NAG  | С        | 2005 | 1            | 14,14,15       | 0.36     | 0        | 17,19,21       | 0.52 | 0      |  |
| 4    | NAG  | C        | 2009 | 1            | 14,14,15       | 0.32     | 0        | 17,19,21       | 0.45 | 0      |  |
| 4    | NAG  | A        | 2017 | 1            | 14,14,15       | 0.26     | 0        | 17,19,21       | 0.64 | 0      |  |
| 4    | NAG  | A        | 2002 | 1            | 14,14,15       | 0.46     | 0        | 17,19,21       | 0.64 | 1 (5%) |  |
| 4    | NAG  | B        | 2017 | 1            | 14,14,15       | 0.29     | 0        | 17,19,21       | 0.53 | 0      |  |
| 4    | NAG  | C        | 2002 | 1            | 14,14,15       | 0.24     | 0        | 17,19,21       | 0.43 | 0      |  |
| 4    | NAG  | В        | 2002 | 1            | 14,14,15       | 0.33     | 0        | 17,19,21       | 0.50 | 0      |  |
| 4    | NAG  | С        | 2012 | 1            | 14,14,15       | 0.28     | 0        | 17,19,21       | 0.62 | 1 (5%) |  |
| 4    | NAG  | С        | 2013 | 1            | 14,14,15       | 0.28     | 0        | 17,19,21       | 0.49 | 0      |  |
| 4    | NAG  | C        | 2006 | 1            | 14,14,15       | 0.35     | 0        | 17,19,21       | 0.44 | 0      |  |
| 4    | NAG  | С        | 2010 | 1            | 14,14,15       | 0.31     | 0        | 17,19,21       | 0.45 | 0      |  |
| 4    | NAG  | В        | 2011 | 1            | 14,14,15       | 0.39     | 0        | 17,19,21       | 0.64 | 1 (5%) |  |
| 4    | NAG  | A        | 2008 | 1            | 14,14,15       | 0.43     | 0        | 17,19,21       | 0.58 | 0      |  |
| 4    | NAG  | В        | 2005 | 1            | $14,\!14,\!15$ | 0.42     | 0        | $17,\!19,\!21$ | 0.63 | 1 (5%) |  |
| 4    | NAG  | В        | 2008 | 1            | $14,\!14,\!15$ | 0.57     | 0        | $17,\!19,\!21$ | 0.60 | 1 (5%) |  |
| 4    | NAG  | А        | 2011 | 1            | 14,14,15       | 0.34     | 0        | $17,\!19,\!21$ | 0.53 | 0      |  |
| 4    | NAG  | А        | 2016 | 1            | 14,14,15       | 0.48     | 0        | $17,\!19,\!21$ | 0.80 | 1 (5%) |  |
| 4    | NAG  | А        | 2007 | 1            | 14,14,15       | 0.41     | 0        | 17,19,21       | 0.54 | 0      |  |
| 4    | NAG  | В        | 2004 | 1            | 14,14,15       | 0.33     | 0        | $17,\!19,\!21$ | 0.52 | 0      |  |
| 4    | NAG  | С        | 2003 | 1            | 14,14,15       | 0.31     | 0        | $17,\!19,\!21$ | 0.41 | 0      |  |
| 4    | NAG  | С        | 2017 | 1            | $14,\!14,\!15$ | 0.40     | 0        | $17,\!19,\!21$ | 0.73 | 1 (5%) |  |
| 4    | NAG  | С        | 2011 | 1            | $14,\!14,\!15$ | 0.23     | 0        | $17,\!19,\!21$ | 0.74 | 1 (5%) |  |
| 4    | NAG  | В        | 2012 | 1            | 14,14,15       | 0.33     | 0        | $17,\!19,\!21$ | 0.59 | 0      |  |
| 4    | NAG  | А        | 2004 | 1            | 14,14,15       | 0.53     | 0        | $17,\!19,\!21$ | 0.66 | 1 (5%) |  |
| 4    | NAG  | В        | 2014 | 1            | 14,14,15       | 0.54     | 0        | 17,19,21       | 0.56 | 0      |  |
| 4    | NAG  | С        | 2008 | 1            | 14,14,15       | 0.54     | 0        | $17,\!19,\!21$ | 0.57 | 0      |  |
| 4    | NAG  | С        | 2016 | 1            | 14,14,15       | 0.53     | 0        | $17,\!19,\!21$ | 0.64 | 1 (5%) |  |
| 4    | NAG  | А        | 2003 | 1            | 14,14,15       | 0.23     | 0        | 17,19,21       | 0.34 | 0      |  |
| 4    | NAG  | В        | 2015 | 1            | 14,14,15       | 0.28     | 0        | $17,\!19,\!21$ | 0.63 | 1 (5%) |  |
| 4    | NAG  | А        | 2012 | 1            | 14,14,15       | 0.29     | 0        | 17,19,21       | 0.83 | 1 (5%) |  |
| 4    | NAG  | С        | 2004 | 1            | 14,14,15       | 0.20     | 0        | 17,19,21       | 0.62 | 0      |  |
| 4    | NAG  | С        | 2007 | 1            | 14,14,15       | 0.54     | 0        | 17,19,21       | 0.60 | 0      |  |
| 4    | NAG  | A        | 2015 | 1            | 14,14,15       | 0.20     | 0        | 17,19,21       | 0.62 | 1 (5%) |  |
| 4    | NAG  | A        | 2014 | 1            | 14,14,15       | 0.52     | 0        | 17,19,21       | 0.53 | 0      |  |
| 4    | NAG  | В        | 2006 | 1            | 14,14,15       | 0.34     | 0        | $17,\!19,\!21$ | 0.44 | 0      |  |
| 4    | NAG  | В        | 2016 | 1            | 14,14,15       | 0.25     | 0        | 17,19,21       | 0.68 | 1 (5%) |  |
| 4    | NAG  | C        | 2014 | 1            | 14,14,15       | 0.48     | 0        | $17,\!19,\!21$ | 0.59 | 0      |  |
| 4    | NAG  | В        | 2001 | 1            | 14,14,15       | 0.44     | 0        | $17,\!19,\!21$ | 0.48 | 0      |  |



| Mol Type Chain |      | Pog Link |      | Bo | ond leng | ths  | Bond angles |          |      |        |
|----------------|------|----------|------|----|----------|------|-------------|----------|------|--------|
| MOI            | туре | Unam     | nes  |    | Counts   | RMSZ | # Z  > 2    | Counts   | RMSZ | # Z >2 |
| 4              | NAG  | А        | 2005 | 1  | 14,14,15 | 0.24 | 0           | 17,19,21 | 0.59 | 1 (5%) |
| 4              | NAG  | В        | 2007 | 1  | 14,14,15 | 0.39 | 0           | 17,19,21 | 0.48 | 0      |
| 4              | NAG  | В        | 2013 | 1  | 14,14,15 | 0.29 | 0           | 17,19,21 | 0.42 | 0      |
| 4              | NAG  | В        | 2009 | 1  | 14,14,15 | 0.30 | 0           | 17,19,21 | 0.49 | 0      |
| 4              | NAG  | С        | 2015 | 1  | 14,14,15 | 0.48 | 0           | 17,19,21 | 0.69 | 1 (5%) |
| 4              | NAG  | А        | 2009 | 1  | 14,14,15 | 0.44 | 0           | 17,19,21 | 0.63 | 1 (5%) |
| 4              | NAG  | А        | 2001 | 1  | 14,14,15 | 0.45 | 0           | 17,19,21 | 0.69 | 1 (5%) |
| 4              | NAG  | А        | 2010 | 1  | 14,14,15 | 0.52 | 0           | 17,19,21 | 0.42 | 0      |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res  | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|------|------|---------|-----------|---------|
| 4   | NAG  | В     | 2010 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2003 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2013 | 1    | -       | 1/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2006 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2001 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2005 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2009 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2017 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2002 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2017 | 1    | -       | 1/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2002 | 1    | -       | 0/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2002 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2012 | 1    | -       | 0/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2013 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2006 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2010 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2011 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2008 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2005 | 1    | -       | 0/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2008 | 1    | -       | 1/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2011 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2016 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2007 | 1    | -       | 1/6/23/26 | 0/1/1/1 |



| Mol | Type | Chain | Res  | Link | Chirals | Torsions  | Rings   |
|-----|------|-------|------|------|---------|-----------|---------|
| 4   | NAG  | В     | 2004 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2003 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2017 | 1    | -       | 0/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2011 | 1    | -       | 1/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2012 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2004 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2014 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2008 | 1    | -       | 0/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2016 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2003 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2015 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2012 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2004 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2007 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2015 | 1    | -       | 0/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2014 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2006 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2016 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2014 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2001 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2005 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2007 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2013 | 1    | -       | 1/6/23/26 | 0/1/1/1 |
| 4   | NAG  | В     | 2009 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | С     | 2015 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2009 | 1    | -       | 0/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2001 | 1    | -       | 2/6/23/26 | 0/1/1/1 |
| 4   | NAG  | А     | 2010 | 1    | -       | 1/6/23/26 | 0/1/1/1 |

There are no bond length outliers.

All (19) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms    | Ζ    | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|----------|------|---------------------------|---------------|
| 4   | А     | 2012 | NAG  | C1-O5-C5 | 2.97 | 116.21                    | 112.19        |
| 4   | А     | 2016 | NAG  | C1-O5-C5 | 2.77 | 115.95                    | 112.19        |
| 4   | С     | 2017 | NAG  | C1-O5-C5 | 2.50 | 115.58                    | 112.19        |
| 4   | А     | 2001 | NAG  | C1-O5-C5 | 2.45 | 115.51                    | 112.19        |



| Mol | Chain | Res  | Type | Atoms    | Ζ    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|----------|------|------------------|---------------|
| 4   | С     | 2011 | NAG  | C1-O5-C5 | 2.44 | 115.50           | 112.19        |
| 4   | В     | 2010 | NAG  | C1-O5-C5 | 2.42 | 115.47           | 112.19        |
| 4   | В     | 2016 | NAG  | C1-O5-C5 | 2.40 | 115.44           | 112.19        |
| 4   | С     | 2015 | NAG  | C1-O5-C5 | 2.35 | 115.38           | 112.19        |
| 4   | А     | 2002 | NAG  | C1-O5-C5 | 2.30 | 115.30           | 112.19        |
| 4   | А     | 2004 | NAG  | C1-O5-C5 | 2.22 | 115.20           | 112.19        |
| 4   | В     | 2015 | NAG  | C1-O5-C5 | 2.21 | 115.18           | 112.19        |
| 4   | В     | 2005 | NAG  | C1-O5-C5 | 2.17 | 115.14           | 112.19        |
| 4   | В     | 2011 | NAG  | C1-O5-C5 | 2.17 | 115.13           | 112.19        |
| 4   | С     | 2012 | NAG  | C1-O5-C5 | 2.10 | 115.03           | 112.19        |
| 4   | А     | 2009 | NAG  | C1-O5-C5 | 2.07 | 115.00           | 112.19        |
| 4   | А     | 2005 | NAG  | C1-O5-C5 | 2.06 | 114.99           | 112.19        |
| 4   | С     | 2016 | NAG  | C1-O5-C5 | 2.03 | 114.94           | 112.19        |
| 4   | В     | 2008 | NAG  | C1-O5-C5 | 2.03 | 114.94           | 112.19        |
| 4   | А     | 2015 | NAG  | C1-O5-C5 | 2.01 | 114.92           | 112.19        |

There are no chirality outliers.

| Mol | Chain | Res  | Type | Atoms       |
|-----|-------|------|------|-------------|
| 4   | В     | 2002 | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2003 | NAG  | C4-C5-C6-O6 |
| 4   | С     | 2003 | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2004 | NAG  | O5-C5-C6-O6 |
| 4   | С     | 2014 | NAG  | O5-C5-C6-O6 |
| 4   | С     | 2001 | NAG  | O5-C5-C6-O6 |
| 4   | В     | 2003 | NAG  | O5-C5-C6-O6 |
| 4   | В     | 2002 | NAG  | O5-C5-C6-O6 |
| 4   | С     | 2016 | NAG  | O5-C5-C6-O6 |
| 4   | С     | 2015 | NAG  | C4-C5-C6-O6 |
| 4   | А     | 2008 | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2006 | NAG  | O5-C5-C6-O6 |
| 4   | В     | 2009 | NAG  | O5-C5-C6-O6 |
| 4   | В     | 2012 | NAG  | O5-C5-C6-O6 |
| 4   | А     | 2002 | NAG  | O5-C5-C6-O6 |
| 4   | А     | 2011 | NAG  | O5-C5-C6-O6 |
| 4   | В     | 2011 | NAG  | O5-C5-C6-O6 |
| 4   | С     | 2003 | NAG  | O5-C5-C6-O6 |
| 4   | А     | 2003 | NAG  | O5-C5-C6-O6 |
| 4   | С     | 2004 | NAG  | O5-C5-C6-O6 |
| 4   | С     | 2005 | NAG  | O5-C5-C6-O6 |
| 4   | А     | 2014 | NAG  | O5-C5-C6-O6 |

All (81) torsion outliers are listed below:



| Mol | Chain | $\mathbf{Res}$    | Type | Atoms       |
|-----|-------|-------------------|------|-------------|
| 4   | С     | 2010              | NAG  | O5-C5-C6-O6 |
| 4   | В     | 2004              | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2014              | NAG  | O5-C5-C6-O6 |
| 4   | С     | 2009              | NAG  | O5-C5-C6-O6 |
| 4   | С     | 2015              | NAG  | O5-C5-C6-O6 |
| 4   | А     | 2002              | NAG  | C4-C5-C6-O6 |
| 4   | С     | 2014              | NAG  | C4-C5-C6-O6 |
| 4   | А     | 2001              | NAG  | O5-C5-C6-O6 |
| 4   | С     | 2007              | NAG  | O5-C5-C6-O6 |
| 4   | С     | 2001              | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2016              | NAG  | O5-C5-C6-O6 |
| 4   | А     | 2005              | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2001              | NAG  | C4-C5-C6-O6 |
| 4   | С     | 2005              | NAG  | C4-C5-C6-O6 |
| 4   | А     | 2014              | NAG  | C4-C5-C6-O6 |
| 4   | С     | 2007              | NAG  | C4-C5-C6-O6 |
| 4   | С     | 2009              | NAG  | C4-C5-C6-O6 |
| 4   | А     | 2006              | NAG  | O5-C5-C6-O6 |
| 4   | В     | 2006              | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2009              | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2012              | NAG  | C4-C5-C6-O6 |
| 4   | С     | 2004              | NAG  | C4-C5-C6-O6 |
| 4   | С     | 2016              | NAG  | C4-C5-C6-O6 |
| 4   | А     | 2006              | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2014              | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2007              | NAG  | O5-C5-C6-O6 |
| 4   | В     | 2016              | NAG  | C4-C5-C6-O6 |
| 4   | А     | 2001              | NAG  | C4-C5-C6-O6 |
| 4   | А     | 2011              | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2011              | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2001              | NAG  | O5-C5-C6-O6 |
| 4   | A     | 2008              | NAG  | O5-C5-C6-O6 |
| 4   | А     | 2003              | NAG  | C4-C5-C6-O6 |
| 4   | С     | 2013              | NAG  | C4-C5-C6-O6 |
| 4   | A     | 2016              | NAG  | O5-C5-C6-O6 |
| 4   | В     | $20\overline{15}$ | NAG  | O5-C5-C6-O6 |
| 4   | В     | 2015              | NAG  | C4-C5-C6-O6 |
| 4   | С     | 2006              | NAG  | O5-C5-C6-O6 |
| 4   | A     | 2005              | NAG  | O5-C5-C6-O6 |
| 4   | В     | 2017              | NAG  | O5-C5-C6-O6 |
| 4   | С     | 2006              | NAG  | C4-C5-C6-O6 |
| 4   | C     | 2010              | NAG  | C4-C5-C6-O6 |

 Image
 Image
 Image

 Continued on next page...



| Mol | Chain | Res  | Type | Atoms       |
|-----|-------|------|------|-------------|
| 4   | С     | 2011 | NAG  | O5-C5-C6-O6 |
| 4   | С     | 2013 | NAG  | O5-C5-C6-O6 |
| 4   | А     | 2017 | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2013 | NAG  | O5-C5-C6-O6 |
| 4   | А     | 2007 | NAG  | O5-C5-C6-O6 |
| 4   | В     | 2010 | NAG  | C4-C5-C6-O6 |
| 4   | А     | 2013 | NAG  | O5-C5-C6-O6 |
| 4   | А     | 2017 | NAG  | O5-C5-C6-O6 |
| 4   | В     | 2008 | NAG  | O5-C5-C6-O6 |
| 4   | А     | 2016 | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2010 | NAG  | O5-C5-C6-O6 |
| 4   | А     | 2010 | NAG  | C4-C5-C6-O6 |
| 4   | А     | 2004 | NAG  | O5-C5-C6-O6 |
| 4   | А     | 2004 | NAG  | C4-C5-C6-O6 |
| 4   | В     | 2007 | NAG  | C4-C5-C6-O6 |
| 4   | A     | 2012 | NAG  | C4-C5-C6-O6 |
| 4   | А     | 2012 | NAG  | O5-C5-C6-O6 |

There are no ring outliers.

1 monomer is involved in 1 short contact:

| Mol | Chain | Res  | Type | Clashes | Symm-Clashes |
|-----|-------|------|------|---------|--------------|
| 4   | С     | 2011 | NAG  | 1       | 0            |

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.








































































































## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

