1ap6 Citations

Crystal structure of Y34F mutant human mitochondrial manganese superoxide dismutase and the functional role of tyrosine 34.

Abstract

Tyrosine 34 is a prominent and conserved residue in the active site of the manganese superoxide dismutases in organisms from bacteria to man. We have prepared the mutant containing the replacement Tyr 34 --> Phe (Y34F) in human manganese superoxide dismutase (hMnSOD) and crystallized it in two different crystal forms, orthorhombic and hexagonal. Crystal structures of hMnSOD Y34F have been solved to 1.9 A resolution in a hexagonal crystal form, denoted as Y34Fhex, and to 2.2 A resolution in an orthorhombic crystal form, denoted as Y34Fortho. Both crystal forms give structures that are closely superimposable with that of wild-type hMnSOD, with the phenyl rings of Tyr 34 in the wild type and Phe 34 in the mutant very similar in orientation. Therefore, in Y34F, a hydrogen-bonded relay that links the metal-bound hydroxyl to ordered solvent (Mn-OH to Gln 143 to Tyr 34 to H2O to His 30) is broken. Surprisingly, the loss of the Tyr 34 hydrogen bonds resulted in large increases in stability (measured by Tm), suggesting that the Tyr 34 hydroxyl does not play a role in stabilizing active-site architecture. The functional role of the side chain hydroxyl of Tyr 34 can be evaluated by comparison of the Y34F mutant with the wild-type hMnSOD. Both wild-type and Y34F had kcat/Km near 10(9) M-1 s-1, close to diffusion-controlled; however, Y34F showed kcat for maximal catalysis smaller by 10-fold than the wild type. In addition, the mutant Y34F was more susceptible to product inhibition by peroxide than the wild-type enzyme. This activity profile and the breaking of the hydrogen-bonding chain at the active site caused by the replacement Tyr 34 --> Phe suggest that Tyr 34 is a proton donor for O2* - reduction to H2O2 or is involved indirectly by orienting solvent or other residues for proton transfer. Up to 100 mM buffers in solution failed to enhance catalysis by either Y34F or the wild-type hMnSOD, suggesting that protonation from solution cannot enhance the release of the inhibiting bound peroxide ion, likely reflecting the enclosure of the active site by conserved residues as shown by the X-ray structures. The increased thermostability of the mutant Y34F and equal diffusion-controlled activity of Y34F and wild-type enzymes with normal superoxide levels suggest that evolutionary conservation of active-site residues in metalloenzymes reflects constraints from extreme rather than average cellular conditions. This new hypothesis that extreme rather than normal substrate concentrations are a powerful constraint on residue conservation may apply most strongly to enzyme defenses where the ability to meet extreme conditions directly affects cell survival.

Articles - 1ap6 mentioned but not cited (4)

  1. Prediction of water and metal binding sites and their affinities by using the Fold-X force field. Schymkowitz JW, Rousseau F, Martins IC, Ferkinghoff-Borg J, Stricher F, Serrano L. Proc Natl Acad Sci U S A 102 10147-10152 (2005)
  2. Amino acid size, charge, hydropathy indices and matrices for protein structure analysis. Biro JC. Theor Biol Med Model 3 15 (2006)
  3. The Proteomic Code: a molecular recognition code for proteins. Biro JC. Theor Biol Med Model 4 45 (2007)
  4. Bioinformatics-based investigation on the genetic influence between SARS-CoV-2 infections and idiopathic pulmonary fibrosis (IPF) diseases, and drug repurposing. Islam MA, Kibria MK, Hossen MB, Reza MS, Tasmia SA, Tuly KF, Mosharof MP, Kabir SR, Kabir MH, Mollah MNH. Sci Rep 13 4685 (2023)


Reviews citing this publication (11)

  1. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Matés JM. Toxicology 153 83-104 (2000)
  2. Peroxynitrite reactions and formation in mitochondria. Radi R, Cassina A, Hodara R, Quijano C, Castro L. Free Radic Biol Med 33 1451-1464 (2002)
  3. Superoxide dismutases and superoxide reductases. Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Chem Rev 114 3854-3918 (2014)
  4. The structural biochemistry of the superoxide dismutases. Perry JJ, Shin DS, Getzoff ED, Tainer JA. Biochim Biophys Acta 1804 245-262 (2010)
  5. Neuroprotective Effect of Antioxidants in the Brain. Lee KH, Cha M, Lee BH. Int J Mol Sci 21 E7152 (2020)
  6. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. Fuss JO, Tainer JA. DNA Repair (Amst) 10 697-713 (2011)
  7. Enzymatic antioxidant system in vascular inflammation and coronary artery disease. Lubrano V, Balzan S. World J Exp Med 5 218-224 (2015)
  8. A Review of the Catalytic Mechanism of Human Manganese Superoxide Dismutase. Azadmanesh J, Borgstahl GEO. Antioxidants (Basel) 7 E25 (2018)
  9. Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair. Perry JJ, Fan L, Tainer JA. Neuroscience 145 1280-1299 (2007)
  10. Human Mn-superoxide dismutase inactivation by peroxynitrite: a paradigm of metal-catalyzed tyrosine nitration in vitro and in vivo. Demicheli V, Moreno DM, Radi R. Metallomics 10 679-695 (2018)
  11. Metalloprotein catalysis: structural and mechanistic insights into oxidoreductases from neutron protein crystallography. Schröder GC, Meilleur F. Acta Crystallogr D Struct Biol 77 1251-1269 (2021)

Articles citing this publication (44)

  1. Tyrosine modifications and inactivation of active site manganese superoxide dismutase mutant (Y34F) by peroxynitrite. MacMillan-Crow LA, Thompson JA. Arch Biochem Biophys 366 82-88 (1999)
  2. Detecting coevolution in and among protein domains. Yeang CH, Haussler D. PLoS Comput Biol 3 e211 (2007)
  3. Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. Shin DS, Didonato M, Barondeau DP, Hura GL, Hitomi C, Berglund JA, Getzoff ED, Cary SC, Tainer JA. J Mol Biol 385 1534-1555 (2009)
  4. Crystal structure of nitrated human manganese superoxide dismutase: mechanism of inactivation. Quint P, Reutzel R, Mikulski R, McKenna R, Silverman DN. Free Radic Biol Med 40 453-458 (2006)
  5. Amyotrophic lateral sclerosis: update and new developments. Pratt AJ, Getzoff ED, Perry JJ. Degener Neurol Neuromuscul Dis 2012 1-14 (2012)
  6. A manganese-rich environment supports superoxide dismutase activity in a Lyme disease pathogen, Borrelia burgdorferi. Aguirre JD, Clark HM, McIlvin M, Vazquez C, Palmere SL, Grab DJ, Seshu J, Hart PJ, Saito M, Culotta VC. J Biol Chem 288 8468-8478 (2013)
  7. Iron superoxide dismutase from the archaeon Sulfolobus solfataricus: analysis of structure and thermostability. Ursby T, Adinolfi BS, Al-Karadaghi S, De Vendittis E, Bocchini V. J Mol Biol 286 189-205 (1999)
  8. Cryo-trapping the six-coordinate, distorted-octahedral active site of manganese superoxide dismutase. Borgstahl GE, Pokross M, Chehab R, Sekher A, Snell EH. J Mol Biol 296 951-959 (2000)
  9. Direct measurement of the Mn(II) hydration state in metal complexes and metalloproteins through 17O NMR line widths. Gale EM, Zhu J, Caravan P. J Am Chem Soc 135 18600-18608 (2013)
  10. Contribution of human manganese superoxide dismutase tyrosine 34 to structure and catalysis. Perry JJ, Hearn AS, Cabelli DE, Nick HS, Tainer JA, Silverman DN. Biochemistry 48 3417-3424 (2009)
  11. Role of conserved tyrosine residues in NiSOD catalysis: a case of convergent evolution. Herbst RW, Guce A, Bryngelson PA, Higgins KA, Ryan KC, Cabelli DE, Garman SC, Maroney MJ. Biochemistry 48 3354-3369 (2009)
  12. Characterization of the product-inhibited complex in catalysis by human manganese superoxide dismutase. Hearn AS, Tu C, Nick HS, Silverman DN. J Biol Chem 274 24457-24460 (1999)
  13. Psychrophilic superoxide dismutase from Pseudoalteromonas haloplanktis: biochemical characterization and identification of a highly reactive cysteine residue. Castellano I, Di Maro A, Ruocco MR, Chambery A, Parente A, Di Martino MT, Parlato G, Masullo M, De Vendittis E. Biochimie 88 1377-1389 (2006)
  14. Exploring the molecular basis of human manganese superoxide dismutase inactivation mediated by tyrosine 34 nitration. Moreno DM, Martí MA, De Biase PM, Estrin DA, Demicheli V, Radi R, Boechi L. Arch Biochem Biophys 507 304-309 (2011)
  15. Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (Fe-SODs) A and B: disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in Fe-SODB through intramolecular electron transfer. Martinez A, Peluffo G, Petruk AA, Hugo M, Piñeyro D, Demicheli V, Moreno DM, Lima A, Batthyány C, Durán R, Robello C, Martí MA, Larrieux N, Buschiazzo A, Trujillo M, Radi R, Piacenza L. J Biol Chem 289 12760-12778 (2014)
  16. The impact of cold acclimation and hibernation on antioxidant defenses in the ground squirrel (Spermophilus citellus): an update. Vucetic M, Stancic A, Otasevic V, Jankovic A, Korac A, Markelic M, Velickovic K, Golic I, Buzadzic B, Storey KB, Korac B. Free Radic Biol Med 65 916-924 (2013)
  17. Systematic structural studies of iron superoxide dismutases from human parasites and a statistical coupling analysis of metal binding specificity. Bachega JF, Navarro MV, Bleicher L, Bortoleto-Bugs RK, Dive D, Hoffmann P, Viscogliosi E, Garratt RC. Proteins 77 26-37 (2009)
  18. Outer sphere mutagenesis of Lactobacillus plantarum manganese catalase disrupts the cluster core. Mechanistic implications. Whittaker MM, Barynin VV, Igarashi T, Whittaker JW. Eur J Biochem 270 1102-1116 (2003)
  19. Rat mitochondrial manganese superoxide dismutase: amino acid positions involved in covalent modifications, activity, and heat stability. Castellano I, Cecere F, De Vendittis A, Cotugno R, Chambery A, Di Maro A, Michniewicz A, Parlato G, Masullo M, Avvedimento EV, De Vendittis E, Ruocco MR. Biopolymers 91 1215-1226 (2009)
  20. The 2.0A resolution structure of the catalytic portion of a cyanobacterial membrane-bound manganese superoxide dismutase. Atzenhofer W, Regelsberger G, Jacob U, Peschek G, Furtmüller P, Huber R, Obinger C. J Mol Biol 321 479-489 (2002)
  21. Comparison of two yeast MnSODs: mitochondrial Saccharomyces cerevisiae versus cytosolic Candida albicans. Sheng Y, Stich TA, Barnese K, Gralla EB, Cascio D, Britt RD, Cabelli DE, Valentine JS. J Am Chem Soc 133 20878-20889 (2011)
  22. Structural analysis of peroxide-soaked MnSOD crystals reveals side-on binding of peroxide to active-site manganese. Porta J, Vahedi-Faridi A, Borgstahl GE. J Mol Biol 399 377-384 (2010)
  23. Amino acid substitution at the dimeric interface of human manganese superoxide dismutase. Hearn AS, Fan L, Lepock JR, Luba JP, Greenleaf WB, Cabelli DE, Tainer JA, Nick HS, Silverman DN. J Biol Chem 279 5861-5866 (2004)
  24. Geometric and electronic structures of peroxomanganese(III) complexes supported by pentadentate amino-pyridine and -imidazole ligands. Geiger RA, Leto DF, Chattopadhyay S, Dorlet P, Anxolabéhère-Mallart E, Jackson TA. Inorg Chem 50 10190-10203 (2011)
  25. The iron-containing superoxide dismutase of Ralstonia metallidurans CH34. Roux M, Covés J. FEMS Microbiol Lett 210 129-133 (2002)
  26. Hydrogen bonding in human manganese superoxide dismutase containing 3-fluorotyrosine. Ayala I, Perry JJ, Szczepanski J, Tainer JA, Vala MT, Nick HS, Silverman DN. Biophys J 89 4171-4179 (2005)
  27. Manipulating the coordination mumber of the ferric iron within the cambialistic superoxide dismutase of Propionibacterium shermanii by changing the pH-value A crystallographic analysis. Schmidt M. Eur J Biochem 262 117-127 (1999)
  28. Peroxynitrite-induced nitration of tyrosine-34 does not inhibit Escherichia coli iron superoxide dismutase. Soulère L, Claparols C, Périé J, Hoffmann P. Biochem J 360 563-567 (2001)
  29. Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase. Sheng Y, Butler Gralla E, Schumacher M, Cascio D, Cabelli DE, Valentine JS. Proc Natl Acad Sci U S A 109 14314-14319 (2012)
  30. Active site geometry of oxalate decarboxylase from Flammulina velutipes: Role of histidine-coordinated manganese in substrate recognition. Chakraborty S, Chakraborty N, Jain D, Salunke DM, Datta A. Protein Sci 11 2138-2147 (2002)
  31. Engineering an effective Mn-binding MRI reporter protein by subcellular targeting. Bartelle BB, Mana MD, Suero-Abreu GA, Rodriguez JJ, Turnbull DH. Magn Reson Med 74 1750-1757 (2015)
  32. The structure of the Caenorhabditis elegans manganese superoxide dismutase MnSOD-3-azide complex. Hunter GJ, Trinh CH, Bonetta R, Stewart EE, Cabelli DE, Hunter T. Protein Sci 24 1777-1788 (2015)
  33. Inactivation of primary antioxidant enzymes in mouse keratinocytes by photodynamically generated singlet oxygen. Luo J, Li L, Zhang Y, Spitz DR, Buettner GR, Oberley LW, Domann FE. Antioxid Redox Signal 8 1307-1314 (2006)
  34. Direct detection of coupled proton and electron transfers in human manganese superoxide dismutase. Azadmanesh J, Lutz WE, Coates L, Weiss KL, Borgstahl GEO. Nat Commun 12 2079 (2021)
  35. Proton uptake by bacterial reaction centers: the protein complex responds in a similar manner to the reduction of either quinone acceptor. Miksovska J, Schiffer M, Hanson DK, Sebban P. Proc Natl Acad Sci U S A 96 14348-14353 (1999)
  36. Deletions encompassing the manganese superoxide dismutase gene in the Drosophila melanogaster genome. Belton A, Paul A, Duttaroy A. Genome 49 746-751 (2006)
  37. ENDOR and ESEEM investigation of the Ni-containing superoxide dismutase. Lee HI, Lee JW, Yang TC, Kang SO, Hoffman BM. J Biol Inorg Chem 15 175-182 (2010)
  38. Structural characterization of a pathogenicity-related superoxide dismutase codified by a probably essential gene in Xanthomonas citri subsp. citri. Cabrejos DAL, Alexandrino AV, Pereira CM, Mendonça DC, Pereira HD, Novo-Mansur MTM, Garratt RC, Goto LS. PLoS One 14 e0209988 (2019)
  39. Searching for convergent evolution in manganese superoxidase dismutase using hydrophobic cluster analysis. Xiang H, Zhang R, Li N, Vossbrinck CR. Genet Mol Biol 37 460-474 (2014)
  40. Structural, spectroscopic and functional investigation into Fe-substituted MnSOD from human pathogen Clostridium difficile. Li W, Wang H, Wang Q, Tan X. Metallomics 6 1540-1548 (2014)
  41. Manganese Enhances the Osteogenic Effect of Silicon-Hydroxyapatite Nanowires by Targeting T Lymphocyte Polarization. Li R, Zhu Z, Zhang B, Jiang T, Zhu C, Mei P, Jin Y, Wang R, Li Y, Guo W, Liu C, Xia L, Fang B. Adv Sci (Weinh) 11 e2305890 (2024)
  42. High-Resolution Structural Proteomics of Mitochondria Using the 'Build and Retrieve' Methodology. Zhang Z, Tringides ML, Morgan CE, Miyagi M, Mears JA, Hoppel CL, Yu EW. Mol Cell Proteomics 22 100666 (2023)
  43. Identification of residues essential for the activity and substrate affinity of L-carnitine dehydrogenase. Eltayeb MM, Mohamed Ahmed IA, Arima J, Mori N. Mol Biotechnol 55 268-276 (2013)
  44. Marine Bioprospecting: Enzymes and Stress Proteins from the Sea Anemones Anthopleura dowii and Lebrunia neglecta. Ramírez-Carreto S, Miranda-Zaragoza B, Simões N, González-Muñoz R, Rodríguez-Almazán C. Mar Drugs 22 12 (2023)