1aq1 Citations

Protein kinase inhibition by staurosporine revealed in details of the molecular interaction with CDK2.

Nat Struct Biol 4 796-801 (1997)
Cited: 154 times
EuropePMC logo PMID: 9334743

Abstract

Staurosporine exhibits nanomolar IC50 values against a wide range of protein kinases. The structure of a CDK2 staurosporine complex explains the tight binding of this inhibitor, and suggests features to be exploited in the design of specific inhibitors of CDKs.

Reviews - 1aq1 mentioned but not cited (3)

  1. Ligand discovery and virtual screening using the program LIDAEUS. Taylor P, Blackburn E, Sheng YG, Harding S, Hsin KY, Kan D, Shave S, Walkinshaw MD. Br J Pharmacol 153 Suppl 1 S55-67 (2008)
  2. Structure-based molecular modeling in SAR analysis and lead optimization. Temml V, Kutil Z. Comput Struct Biotechnol J 19 1431-1444 (2021)
  3. Kinase packing defects as drug targets. Crespo A, Fernández A. Drug Discov Today 12 917-923 (2007)

Articles - 1aq1 mentioned but not cited (35)

  1. Predicting new indications for approved drugs using a proteochemometric method. Dakshanamurthy S, Issa NT, Assefnia S, Seshasayee A, Peters OJ, Madhavan S, Uren A, Brown ML, Byers SW. J Med Chem 55 6832-6848 (2012)
  2. Comparative performance of several flexible docking programs and scoring functions: enrichment studies for a diverse set of pharmaceutically relevant targets. Zhou Z, Felts AK, Friesner RA, Levy RM. J Chem Inf Model 47 1599-1608 (2007)
  3. Rapid flexible docking using a stochastic rotamer library of ligands. Ding F, Yin S, Dokholyan NV. J Chem Inf Model 50 1623-1632 (2010)
  4. Between order and disorder in protein structures: analysis of "dual personality" fragments in proteins. Zhang Y, Stec B, Godzik A. Structure 15 1141-1147 (2007)
  5. On the origins of enzyme inhibitor selectivity and promiscuity: a case study of protein kinase binding to staurosporine. Tanramluk D, Schreyer A, Pitt WR, Blundell TL. Chem Biol Drug Des 74 16-24 (2009)
  6. Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. Rueda M, Bottegoni G, Abagyan R. J Chem Inf Model 49 716-725 (2009)
  7. Cyclin A2 and CDK2 as Novel Targets of Aspirin and Salicylic Acid: A Potential Role in Cancer Prevention. Dachineni R, Ai G, Kumar DR, Sadhu SS, Tummala H, Bhat GJ. Mol Cancer Res 14 241-252 (2016)
  8. Life beyond the Tanimoto coefficient: similarity measures for interaction fingerprints. Rácz A, Bajusz D, Héberger K. J Cheminform 10 48 (2018)
  9. A new method for ligand docking to flexible receptors by dual alanine scanning and refinement (SCARE). Bottegoni G, Kufareva I, Totrov M, Abagyan R. J Comput Aided Mol Des 22 311-325 (2008)
  10. In Silico Identification and In Vitro and In Vivo Validation of Anti-Psychotic Drug Fluspirilene as a Potential CDK2 Inhibitor and a Candidate Anti-Cancer Drug. Shi XN, Li H, Yao H, Liu X, Li L, Leung KS, Kung HF, Lu D, Wong MH, Lin MC. PLoS One 10 e0132072 (2015)
  11. An enriched structural kinase database to enable kinome-wide structure-based analyses and drug discovery. Brooijmans N, Chang YW, Mobilio D, Denny RA, Humblet C. Protein Sci 19 763-774 (2010)
  12. Binding-site assessment by virtual fragment screening. Huang N, Jacobson MP. PLoS One 5 e10109 (2010)
  13. Functional flexibility of human cyclin-dependent kinase-2 and its evolutionary conservation. Bártová I, Koca J, Otyepka M. Protein Sci 17 22-33 (2008)
  14. Structure-based druggability assessment of the mammalian structural proteome with inclusion of light protein flexibility. Loving KA, Lin A, Cheng AC. PLoS Comput Biol 10 e1003741 (2014)
  15. Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening. Chatterjee A, Cutler SJ, Doerksen RJ, Khan IA, Williamson JS. Bioorg Med Chem 22 6409-6421 (2014)
  16. iDrug: a web-accessible and interactive drug discovery and design platform. Wang X, Chen H, Yang F, Gong J, Li S, Pei J, Liu X, Jiang H, Lai L, Li H. J Cheminform 6 28 (2014)
  17. EDULISS: a small-molecule database with data-mining and pharmacophore searching capabilities. Hsin KY, Morgan HP, Shave SR, Hinton AC, Taylor P, Walkinshaw MD. Nucleic Acids Res 39 D1042-8 (2011)
  18. Truly Target-Focused Pharmacophore Modeling: A Novel Tool for Mapping Intermolecular Surfaces. Mortier J, Dhakal P, Volkamer A. Molecules 23 E1959 (2018)
  19. Virtual target screening: validation using kinase inhibitors. Santiago DN, Pevzner Y, Durand AA, Tran M, Scheerer RR, Daniel K, Sung SS, Woodcock HL, Guida WC, Brooks WH. J Chem Inf Model 52 2192-2203 (2012)
  20. Deciphering Key Pharmacological Pathways of Qingdai Acting on Chronic Myeloid Leukemia Using a Network Pharmacology-Based Strategy. Li H, Liu L, Liu C, Zhuang J, Zhou C, Yang J, Gao C, Liu G, Lv Q, Sun C. Med Sci Monit 24 5668-5688 (2018)
  21. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms. Chiu YY, Lin CT, Huang JW, Hsu KC, Tseng JH, You SR, Yang JM. Nucleic Acids Res 41 D430-40 (2013)
  22. A knowledge-guided strategy for improving the accuracy of scoring functions in binding affinity prediction. Cheng T, Liu Z, Wang R. BMC Bioinformatics 11 193 (2010)
  23. GWOVina: A grey wolf optimization approach to rigid and flexible receptor docking. Wong KM, Tai HK, Siu SWI. Chem Biol Drug Des 97 97-110 (2021)
  24. A Network Pharmacological Approach to Reveal the Pharmacological Targets and Its Associated Biological Mechanisms of Prunetin-5-O-Glucoside against Gastric Cancer. Vetrivel P, Murugesan R, Bhosale PB, Ha SE, Kim HH, Heo JD, Kim GS. Cancers (Basel) 13 1918 (2021)
  25. Homology modeling and docking study of cyclin-dependent kinase (CDK) 10. Sun M, Li Z, Zhang Y, Zheng Q, Sun CC. Bioorg Med Chem Lett 15 2851-2856 (2005)
  26. PAK4 crystal structures suggest unusual kinase conformational movements. Zhang EY, Ha BH, Boggon TJ. Biochim Biophys Acta Proteins Proteom 1866 356-365 (2018)
  27. Machine Learning Modeling of Protein-intrinsic Features Predicts Tractability of Targeted Protein Degradation. Zhang W, Roy Burman SS, Chen J, Donovan KA, Cao Y, Shu C, Zhang B, Zeng Z, Gu S, Zhang Y, Li D, Fischer ES, Tokheim C, Shirley Liu X. Genomics Proteomics Bioinformatics 20 882-898 (2022)
  28. Relating the shape of protein binding sites to binding affinity profiles: is there an association? Simon Z, Vigh-Smeller M, Peragovics A, Csukly G, Zahoránszky-Kohalmi G, Rauscher AA, Jelinek B, Hári P, Bitter I, Málnási-Csizmadia A, Czobor P. BMC Struct Biol 10 32 (2010)
  29. Understanding the polypharmacological anticancer effects of Xiao Chai Hu Tang via a computational pharmacological model. Zheng CS, Wu YS, Bao HJ, Xu XJ, Chen XQ, Ye HZ, Wu GW, Xu HF, Li XH, Chen JS, Liu XX. Exp Ther Med 7 1777-1783 (2014)
  30. Using the multi-objective optimization replica exchange Monte Carlo enhanced sampling method for protein-small molecule docking. Wang H, Liu H, Cai L, Wang C, Lv Q. BMC Bioinformatics 18 327 (2017)
  31. BF3-OEt2 Catalyzed C3-Alkylation of Indole: Synthesis of Indolylsuccinimidesand Their Cytotoxicity Studies. Shaikh IN, Rahim A, Faazil S, Adil SF, Assal ME, Hatshan MR. Molecules 26 2202 (2021)
  32. Binding-Site Match Maker (BSMM): A Computational Method for the Design of Multi-Target Ligands. Zhou J, Wu JH. Molecules 25 E1821 (2020)
  33. Molecular docking analysis of mefluhybenamine with lung cancer targets. Alghamdi YS. Bioinformation 18 1186-1191 (2022)
  34. Novel tetrahydroisoquinolines as DHFR and CDK2 inhibitors: synthesis, characterization, anticancer activity and antioxidant properties. Sayed EM, Bakhite EA, Hassanien R, Farhan N, Aly HF, Morsy SG, Hassan NA. BMC Chem 18 34 (2024)
  35. Prediction of kinase-inhibitor binding affinity using energetic parameters. Usha S, Selvaraj S. Bioinformation 12 172-181 (2016)


Reviews citing this publication (19)

  1. Pharmacological inhibitors of cyclin-dependent kinases. Knockaert M, Greengard P, Meijer L. Trends Pharmacol Sci 23 417-425 (2002)
  2. Strategies toward the design of novel and selective protein tyrosine kinase inhibitors. Traxler P, Furet P. Pharmacol Ther 82 195-206 (1999)
  3. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Dar AC, Shokat KM. Annu Rev Biochem 80 769-795 (2011)
  4. Magic bullets for protein kinases. Bishop AC, Buzko O, Shokat KM. Trends Cell Biol 11 167-172 (2001)
  5. Indolocarbazole natural products: occurrence, biosynthesis, and biological activity. Sánchez C, Méndez C, Salas JA. Nat Prod Rep 23 1007-1045 (2006)
  6. Protein kinases as targets for anticancer agents: from inhibitors to useful drugs. Fabbro D, Ruetz S, Buchdunger E, Cowan-Jacob SW, Fendrich G, Liebetanz J, Mestan J, O'Reilly T, Traxler P, Chaudhuri B, Fretz H, Zimmermann J, Meyer T, Caravatti G, Furet P, Manley PW. Pharmacol Ther 93 79-98 (2002)
  7. The chemical biology of protein phosphorylation. Tarrant MK, Cole PA. Annu Rev Biochem 78 797-825 (2009)
  8. Structure-activity relationship: analyses of p-glycoprotein substrates and inhibitors. Wang RB, Kuo CL, Lien LL, Lien EJ. J Clin Pharm Ther 28 203-228 (2003)
  9. Structural aspects of protein kinase control-role of conformational flexibility. Engh RA, Bossemeyer D. Pharmacol Ther 93 99-111 (2002)
  10. Structure-based design of cyclin-dependent kinase inhibitors. Davies TG, Pratt DJ, Endicott JA, Johnson LN, Noble ME. Pharmacol Ther 93 125-133 (2002)
  11. Structural studies with inhibitors of the cell cycle regulatory kinase cyclin-dependent protein kinase 2. Johnson LN, De Moliner E, Brown NR, Song H, Barford D, Endicott JA, Noble ME. Pharmacol Ther 93 113-124 (2002)
  12. Selectivity and potency of cyclin-dependent kinase inhibitors. Sridhar J, Akula N, Pattabiraman N. AAPS J 8 E204-21 (2006)
  13. Structures of staurosporine bound to CDK2 and cAPK--new tools for structure-based design of protein kinase inhibitors. Toledo LM, Lydon NB. Structure 5 1551-1556 (1997)
  14. Natural products as kinase inhibitors. Liu J, Hu Y, Waller DL, Wang J, Liu Q. Nat Prod Rep 29 392-403 (2012)
  15. Recent advances in de novo design strategy for practical lead identification. Honma T. Med Res Rev 23 606-632 (2003)
  16. The protein kinase activity modulation sites: mechanisms for cellular regulation - targets for therapeutic intervention. Engh RA, Bossemeyer D. Adv Enzyme Regul 41 121-149 (2001)
  17. Chemical inhibitors of cyclin-dependent kinases: insights into design from X-ray crystallographic studies. Noble ME, Endicott JA. Pharmacol Ther 82 269-278 (1999)
  18. Targeting CDK1 in cancer: mechanisms and implications. Wang Q, Bode AM, Zhang T. NPJ Precis Oncol 7 58 (2023)
  19. The Antitubercular Activities of Natural Products with Fused-Nitrogen-Containing Heterocycles. Boshoff HI, Malhotra N, Barry CE, Oh S. Pharmaceuticals (Basel) 17 211 (2024)

Articles citing this publication (97)

  1. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Bishop AC, Ubersax JA, Petsch DT, Matheos DP, Gray NS, Blethrow J, Shimizu E, Tsien JZ, Schultz PG, Rose MD, Wood JL, Morgan DO, Shokat KM. Nature 407 395-401 (2000)
  2. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Walker EH, Pacold ME, Perisic O, Stephens L, Hawkins PT, Wymann MP, Williams RL. Mol Cell 6 909-919 (2000)
  3. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Hoessel R, Leclerc S, Endicott JA, Nobel ME, Lawrie A, Tunnah P, Leost M, Damiens E, Marie D, Marko D, Niederberger E, Tang W, Eisenbrand G, Meijer L. Nat Cell Biol 1 60-67 (1999)
  4. Inhibition of cyclin-dependent kinases, GSK-3beta and CK1 by hymenialdisine, a marine sponge constituent. Meijer L, Thunnissen AM, White AW, Garnier M, Nikolic M, Tsai LH, Walter J, Cleverley KE, Salinas PC, Wu YZ, Biernat J, Mandelkow EM, Kim SH, Pettit GR. Chem Biol 7 51-63 (2000)
  5. Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. Yaguchi S, Fukui Y, Koshimizu I, Yoshimi H, Matsuno T, Gouda H, Hirono S, Yamazaki K, Yamori T. J Natl Cancer Inst 98 545-556 (2006)
  6. Structural characterization of the GSK-3beta active site using selective and non-selective ATP-mimetic inhibitors. Bertrand JA, Thieffine S, Vulpetti A, Cristiani C, Valsasina B, Knapp S, Kalisz HM, Flocco M. J Mol Biol 333 393-407 (2003)
  7. Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Zhu X, Kim JL, Newcomb JR, Rose PE, Stover DR, Toledo LM, Zhao H, Morgenstern KA. Structure 7 651-661 (1999)
  8. Loss of LKB1 kinase activity in Peutz-Jeghers syndrome, and evidence for allelic and locus heterogeneity. Mehenni H, Gehrig C, Nezu J, Oku A, Shimane M, Rossier C, Guex N, Blouin JL, Scott HS, Antonarakis SE. Am J Hum Genet 63 1641-1650 (1998)
  9. A novel mode of Gleevec binding is revealed by the structure of spleen tyrosine kinase. Atwell S, Adams JM, Badger J, Buchanan MD, Feil IK, Froning KJ, Gao X, Hendle J, Keegan K, Leon BC, Müller-Dieckmann HJ, Nienaber VL, Noland BW, Post K, Rajashankar KR, Ramos A, Russell M, Burley SK, Buchanan SG. J Biol Chem 279 55827-55832 (2004)
  10. 3-Anilino-4-arylmaleimides: potent and selective inhibitors of glycogen synthase kinase-3 (GSK-3). Smith DG, Buffet M, Fenwick AE, Haigh D, Ife RJ, Saunders M, Slingsby BP, Stacey R, Ward RW. Bioorg Med Chem Lett 11 635-639 (2001)
  11. Crystal structures of IRAK-4 kinase in complex with inhibitors: a serine/threonine kinase with tyrosine as a gatekeeper. Wang Z, Liu J, Sudom A, Ayres M, Li S, Wesche H, Powers JP, Walker NP. Structure 14 1835-1844 (2006)
  12. Ruthenium half-sandwich complexes bound to protein kinase Pim-1. Debreczeni JE, Bullock AN, Atilla GE, Williams DS, Bregman H, Knapp S, Meggers E. Angew Chem Int Ed Engl 45 1580-1585 (2006)
  13. Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a. Schiering N, Knapp S, Marconi M, Flocco MM, Cui J, Perego R, Rusconi L, Cristiani C. Proc Natl Acad Sci U S A 100 12654-12659 (2003)
  14. Structure of the protein tyrosine kinase domain of C-terminal Src kinase (CSK) in complex with staurosporine. Lamers MB, Antson AA, Hubbard RE, Scott RK, Williams DH. J Mol Biol 285 713-725 (1999)
  15. Discovery of a potential allosteric ligand binding site in CDK2. Betzi S, Alam R, Martin M, Lubbers DJ, Han H, Jakkaraj SR, Georg GI, Schönbrunn E. ACS Chem Biol 6 492-501 (2011)
  16. Inhibitor binding to active and inactive CDK2: the crystal structure of CDK2-cyclin A/indirubin-5-sulphonate. Davies TG, Tunnah P, Meijer L, Marko D, Eisenbrand G, Endicott JA, Noble ME. Structure 9 389-397 (2001)
  17. Structural basis for UCN-01 (7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition. Komander D, Kular GS, Bain J, Elliott M, Alessi DR, Van Aalten DM. Biochem J 375 255-262 (2003)
  18. Proteome-wide identification of cellular targets affected by bisindolylmaleimide-type protein kinase C inhibitors. Brehmer D, Godl K, Zech B, Wissing J, Daub H. Mol Cell Proteomics 3 490-500 (2004)
  19. Cell cycle-regulated proteolysis of mitotic target proteins. Bastians H, Topper LM, Gorbsky GL, Ruderman JV. Mol Biol Cell 10 3927-3941 (1999)
  20. Structural and functional characterization of the human protein kinase ASK1. Bunkoczi G, Salah E, Filippakopoulos P, Fedorov O, Müller S, Sobott F, Parker SA, Zhang H, Min W, Turk BE, Knapp S. Structure 15 1215-1226 (2007)
  21. Structural basis for inhibition of cyclin-dependent kinase 9 by flavopiridol. de Azevedo WF, Canduri F, da Silveira NJ. Biochem Biophys Res Commun 293 566-571 (2002)
  22. Auto-activation mechanism of the Mycobacterium tuberculosis PknB receptor Ser/Thr kinase. Mieczkowski C, Iavarone AT, Alber T. EMBO J 27 3186-3197 (2008)
  23. Hit-to-lead studies: the discovery of potent, orally active, thiophenecarboxamide IKK-2 inhibitors. Baxter A, Brough S, Cooper A, Floettmann E, Foster S, Harding C, Kettle J, McInally T, Martin C, Mobbs M, Needham M, Newham P, Paine S, St-Gallay S, Salter S, Unitt J, Xue Y. Bioorg Med Chem Lett 14 2817-2822 (2004)
  24. Structures of P. falciparum PfPK5 test the CDK regulation paradigm and suggest mechanisms of small molecule inhibition. Holton S, Merckx A, Burgess D, Doerig C, Noble M, Endicott J. Structure 11 1329-1337 (2003)
  25. Discovery of a novel family of CDK inhibitors with the program LIDAEUS: structural basis for ligand-induced disordering of the activation loop. Wu SY, McNae I, Kontopidis G, McClue SJ, McInnes C, Stewart KJ, Wang S, Zheleva DI, Marriage H, Lane DP, Taylor P, Fischer PM, Walkinshaw MD. Structure 11 399-410 (2003)
  26. The crystal structure of choline kinase reveals a eukaryotic protein kinase fold. Peisach D, Gee P, Kent C, Xu Z. Structure 11 703-713 (2003)
  27. A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP. Patel Y, Gillet VJ, Bravi G, Leach AR. J Comput Aided Mol Des 16 653-681 (2002)
  28. The K252a derivatives, inhibitors for the PAK/MLK kinase family selectively block the growth of RAS transformants. Nheu TV, He H, Hirokawa Y, Tamaki K, Florin L, Schmitz ML, Suzuki-Takahashi I, Jorissen RN, Burgess AW, Nishimura S, Wood J, Maruta H. Cancer J 8 328-336 (2002)
  29. A novel approach to the discovery of small-molecule ligands of CDK2. Martin MP, Alam R, Betzi S, Ingles DJ, Zhu JY, Schönbrunn E. Chembiochem 13 2128-2136 (2012)
  30. Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment. Jauch R, Cho MK, Jäkel S, Netter C, Schreiter K, Aicher B, Zweckstetter M, Jäckle H, Wahl MC. EMBO J 25 4020-4032 (2006)
  31. Imidazo[1,2-a]pyridines: a potent and selective class of cyclin-dependent kinase inhibitors identified through structure-based hybridisation. Anderson M, Beattie JF, Breault GA, Breed J, Byth KF, Culshaw JD, Ellston RP, Green S, Minshull CA, Norman RA, Pauptit RA, Stanway J, Thomas AP, Jewsbury PJ. Bioorg Med Chem Lett 13 3021-3026 (2003)
  32. Alternative binding modes of an inhibitor to two different kinases. De Moliner E, Brown NR, Johnson LN. Eur J Biochem 270 3174-3181 (2003)
  33. Performance of the MM/GBSA scoring using a binding site hydrogen bond network-based frame selection: the protein kinase case. Adasme-Carreño F, Muñoz-Gutierrez C, Caballero J, Alzate-Morales JH. Phys Chem Chem Phys 16 14047-14058 (2014)
  34. Ruthenium half-sandwich complexes as protein kinase inhibitors: derivatization of the pyridocarbazole pharmacophore ligand. Pagano N, Maksimoska J, Bregman H, Williams DS, Webster RD, Xue F, Meggers E. Org Biomol Chem 5 1218-1227 (2007)
  35. Cyclin-dependent kinase 4 inhibitors as a treatment for cancer. Part 1: identification and optimisation of substituted 4,6-bis anilino pyrimidines. Beattie JF, Breault GA, Ellston RP, Green S, Jewsbury PJ, Midgley CJ, Naven RT, Minshull CA, Pauptit RA, Tucker JA, Pease JE. Bioorg Med Chem Lett 13 2955-2960 (2003)
  36. Anticancer compound plumbagin and its molecular targets: a structural insight into the inhibitory mechanisms using computational approaches. Jamal MS, Parveen S, Beg MA, Suhail M, Chaudhary AG, Damanhouri GA, Abuzenadah AM, Rehan M. PLoS One 9 e87309 (2014)
  37. Crystal structures of the N-terminal kinase domain of human RSK1 bound to three different ligands: Implications for the design of RSK1 specific inhibitors. Ikuta M, Kornienko M, Byrne N, Reid JC, Mizuarai S, Kotani H, Munshi SK. Protein Sci 16 2626-2635 (2007)
  38. Mapping the kinase domain of Janus Kinase 3. Adams C, Aldous DJ, Amendola S, Bamborough P, Bright C, Crowe S, Eastwood P, Fenton G, Foster M, Harrison TK, King S, Lai J, Lawrence C, Letallec JP, McCarthy C, Moorcroft N, Page K, Rao S, Redford J, Sadiq S, Smith K, Souness JE, Thurairatnam S, Vine M, Wyman B. Bioorg Med Chem Lett 13 3105-3110 (2003)
  39. Switching on a signaling pathway with an organoruthenium complex. Williams DS, Atilla GE, Bregman H, Arzoumanian A, Klein PS, Meggers E. Angew Chem Int Ed Engl 44 1984-1987 (2005)
  40. Integrating structure- and ligand-based virtual screening: comparison of individual, parallel, and fused molecular docking and similarity search calculations on multiple targets. Tan L, Geppert H, Sisay MT, Gütschow M, Bajorath J. ChemMedChem 3 1566-1571 (2008)
  41. Molecular dynamics simulation studies of GSK-3β ATP competitive inhibitors: understanding the factors contributing to selectivity. Arfeen M, Patel R, Khan T, Bharatam PV. J Biomol Struct Dyn 33 2578-2593 (2015)
  42. Imidazo[1,2-b]pyridazines: a potent and selective class of cyclin-dependent kinase inhibitors. Byth KF, Cooper N, Culshaw JD, Heaton DW, Oakes SE, Minshull CA, Norman RA, Pauptit RA, Tucker JA, Breed J, Pannifer A, Rowsell S, Stanway JJ, Valentine AL, Thomas AP. Bioorg Med Chem Lett 14 2249-2252 (2004)
  43. SU9516: biochemical analysis of cdk inhibition and crystal structure in complex with cdk2. Moshinsky DJ, Bellamacina CR, Boisvert DC, Huang P, Hui T, Jancarik J, Kim SH, Rice AG. Biochem Biophys Res Commun 310 1026-1031 (2003)
  44. 2-(6-Phenyl-1H-indazol-3-yl)-1H-benzo[d]imidazoles: design and synthesis of a potent and isoform selective PKC-zeta inhibitor. Trujillo JI, Kiefer JR, Huang W, Thorarensen A, Xing L, Caspers NL, Day JE, Mathis KJ, Kretzmer KK, Reitz BA, Weinberg RA, Stegeman RA, Wrightstone A, Christine L, Compton R, Li X. Bioorg Med Chem Lett 19 908-911 (2009)
  45. Comparison of the efficacy of 7-hydroxystaurosporine (UCN-01) and other staurosporine analogs to abrogate cisplatin-induced cell cycle arrest in human breast cancer cell lines. Lee SI, Brown MK, Eastman A. Biochem Pharmacol 58 1713-1721 (1999)
  46. Comprehensive structural and functional characterization of the human kinome by protein structure modeling and ligand virtual screening. Brylinski M, Skolnick J. J Chem Inf Model 50 1839-1854 (2010)
  47. Cyclin-dependent kinase 4 inhibitors as a treatment for cancer. Part 2: identification and optimisation of substituted 2,4-bis anilino pyrimidines. Breault GA, Ellston RP, Green S, James SR, Jewsbury PJ, Midgley CJ, Pauptit RA, Minshull CA, Tucker JA, Pease JE. Bioorg Med Chem Lett 13 2961-2966 (2003)
  48. A Rising Cancer Prevention Target of RSK2 in Human Skin Cancer. Arul N, Cho YY. Front Oncol 3 201 (2013)
  49. The protein kinase C inhibitor bisindolyl maleimide 2 binds with reversed orientations to different conformations of protein kinase A. Gassel M, Breitenlechner CB, König N, Huber R, Engh RA, Bossemeyer D. J Biol Chem 279 23679-23690 (2004)
  50. Molecular models of cyclin-dependent kinase 1 complexed with inhibitors. Canduri F, Uchoa HB, de Azevedo WF. Biochem Biophys Res Commun 324 661-666 (2004)
  51. Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors. Dobeš P, Fanfrlík J, Rezáč J, Otyepka M, Hobza P. J Comput Aided Mol Des 25 223-235 (2011)
  52. High-efficiency liposomal encapsulation of a tyrosine kinase inhibitor leads to improved in vivo toxicity and tumor response profile. Mukthavaram R, Jiang P, Saklecha R, Simberg D, Bharati IS, Nomura N, Chao Y, Pastorino S, Pingle SC, Fogal V, Wrasidlo W, Makale M, Kesari S. Int J Nanomedicine 8 3991-4006 (2013)
  53. Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3). Poulsen A, William A, Blanchard S, Lee A, Nagaraj H, Wang H, Teo E, Tan E, Goh KC, Dymock B. J Comput Aided Mol Des 26 437-450 (2012)
  54. Inhibitory effects of AG490 on H2O2-induced TRPM2-mediated Ca(2+) entry. Shimizu S, Yonezawa R, Hagiwara T, Yoshida T, Takahashi N, Hamano S, Negoro T, Toda T, Wakamori M, Mori Y, Ishii M. Eur J Pharmacol 742 22-30 (2014)
  55. Structure-activity relationship of N-methyl-bisindolylmaleimide derivatives as cell death inhibitors. Katoh M, Dodo K, Fujita M, Sodeoka M. Bioorg Med Chem Lett 15 3109-3113 (2005)
  56. Identification of new potential Mycobacterium tuberculosis shikimate kinase inhibitors through molecular docking simulations. Vianna CP, de Azevedo WF. J Mol Model 18 755-764 (2012)
  57. Molecular Dynamics Simulations and Classical Multidimensional Scaling Unveil New Metastable States in the Conformational Landscape of CDK2. Pisani P, Caporuscio F, Carlino L, Rastelli G. PLoS One 11 e0154066 (2016)
  58. PI(18:1/18:1) is a SCD1-derived lipokine that limits stress signaling. Thürmer M, Gollowitzer A, Pein H, Neukirch K, Gelmez E, Waltl L, Wielsch N, Winkler R, Löser K, Grander J, Hotze M, Harder S, Döding A, Meßner M, Troisi F, Ardelt M, Schlüter H, Pachmayr J, Gutiérrez-Gutiérrez Ó, Rudolph KL, Thedieck K, Schulze-Späte U, González-Estévez C, Kosan C, Svatoš A, Kwiatkowski M, Koeberle A. Nat Commun 13 2982 (2022)
  59. Staurosporine tethered peptide ligands that target cAMP-dependent protein kinase (PKA): optimization and selectivity profiling. Shomin CD, Meyer SC, Ghosh I. Bioorg Med Chem 17 6196-6202 (2009)
  60. The discovery of AZD5597, a potent imidazole pyrimidine amide CDK inhibitor suitable for intravenous dosing. Jones CD, Andrews DM, Barker AJ, Blades K, Daunt P, East S, Geh C, Graham MA, Johnson KM, Loddick SA, McFarland HM, McGregor A, Moss L, Rudge DA, Simpson PB, Swain ML, Tam KY, Tucker JA, Walker M. Bioorg Med Chem Lett 18 6369-6373 (2008)
  61. Antikinetoplastid Activity of Indolocarbazoles from Streptomyces sanyensis. Cartuche L, Sifaoui I, López-Arencibia A, Bethencourt-Estrella CJ, San Nicolás-Hernández D, Lorenzo-Morales J, Piñero JE, Díaz-Marrero AR, Fernández JJ. Biomolecules 10 E657 (2020)
  62. Exposure of protein kinase motifs that trigger binding of Hsp90 and Cdc37. Prince T, Matts RL. Biochem Biophys Res Commun 338 1447-1454 (2005)
  63. Structure-based design of nitrogen-linked macrocyclic kinase inhibitors leading to the clinical candidate SB1317/TG02, a potent inhibitor of cyclin dependant kinases (CDKs), Janus kinase 2 (JAK2), and Fms-like tyrosine kinase-3 (FLT3). Poulsen A, William A, Blanchard S, Nagaraj H, Williams M, Wang H, Lee A, Sun E, Teo EL, Tan E, Goh KC, Dymock B. J Mol Model 19 119-130 (2013)
  64. Study of the inhibition of cyclin-dependent kinases with roscovitine and indirubin-3'-oxime from molecular dynamics simulations. Zhang B, Tan VB, Lim KM, Tay TE, Zhuang S. J Mol Model 13 79-89 (2007)
  65. Structure-based design of potent CDK1 inhibitors derived from olomoucine. Furet P, Zimmermann J, Capraro HG, Meyer T, Imbach P. J Comput Aided Mol Des 14 403-409 (2000)
  66. A liquid chromatography/mass spectrometry-based method for the selection of ATP competitive kinase inhibitors. Khandekar SS, Feng B, Yi T, Chen S, Laping N, Bramson N. J Biomol Screen 10 447-455 (2005)
  67. Enamine N-Oxides: Synthesis and Application to Hypoxia-Responsive Prodrugs and Imaging Agents. Kang D, Cheung ST, Wong-Rolle A, Kim J. ACS Cent Sci 7 631-640 (2021)
  68. Identification of 5-nitroindazole as a multitargeted inhibitor for CDK and transferase kinase in lung cancer: a multisampling algorithm-based structural study. Ahmad S, Raza K. Mol Divers (2023)
  69. In silico study of fucoxanthin as a tumor cytotoxic agent. Januar HI, Dewi AS, Marraskuranto E, Wikanta T. J Pharm Bioallied Sci 4 56-59 (2012)
  70. Development of a novel fluorescent probe for fluorescence correlation spectroscopic detection of kinase inhibitors. Kawaguchi M, Terai T, Utata R, Kato M, Tsuganezawa K, Tanaka A, Kojima H, Okabe T, Nagano T. Bioorg Med Chem Lett 18 3752-3755 (2008)
  71. Imidazole piperazines: SAR and development of a potent class of cyclin-dependent kinase inhibitors with a novel binding mode. Finlay MR, Acton DG, Andrews DM, Barker AJ, Dennis M, Fisher E, Graham MA, Green CP, Heaton DW, Karoutchi G, Loddick SA, Morgentin R, Roberts A, Tucker JA, Weir HM. Bioorg Med Chem Lett 18 4442-4446 (2008)
  72. Synthesis and biological evaluation of novel macrocyclic bis-7-azaindolylmaleimides as potent and highly selective glycogen synthase kinase-3 beta (GSK-3 beta) inhibitors. Shen L, Prouty C, Conway BR, Westover L, Xu JZ, Look RA, Chen X, Beavers MP, Roberts J, Murray WV, Demarest KT, Kuo GH. Bioorg Med Chem 12 1239-1255 (2004)
  73. Characterization of an ATP-dependent pathway of activation for the heterocyclic amine carcinogen N-hydroxy-2-amino-3-methylimidazo[4, 5-f]quinoline. Agus C, Ilett KF, Kadlubar FF, Minchin RF. Carcinogenesis 21 1213-1219 (2000)
  74. Imidazoles: SAR and development of a potent class of cyclin-dependent kinase inhibitors. Anderson M, Andrews DM, Barker AJ, Brassington CA, Breed J, Byth KF, Culshaw JD, Finlay MR, Fisher E, McMiken HH, Green CP, Heaton DW, Nash IA, Newcombe NJ, Oakes SE, Pauptit RA, Roberts A, Stanway JJ, Thomas AP, Tucker JA, Walker M, Weir HM. Bioorg Med Chem Lett 18 5487-5492 (2008)
  75. Evaluation of Indolocarbazoles from Streptomyces sanyensis as a Novel Source of Therapeutic Agents against the Brain-Eating Amoeba Naegleria fowleri. Rizo-Liendo A, Sifaoui I, Cartuche L, Arberas-Jiménez I, Reyes-Batlle M, Fernández JJ, Piñero JE, Díaz-Marrero AR, Lorenzo-Morales J. Microorganisms 8 E789 (2020)
  76. Structure-based drug design to the discovery of new 2-aminothiazole CDK2 inhibitors. Vulpetti A, Casale E, Roletto F, Amici R, Villa M, Pevarello P. J Mol Graph Model 24 341-348 (2006)
  77. Computational evaluation of some indenopyrazole derivatives as anticancer compounds; application of QSAR and docking methodologies. Shahlaei M, Fassihi A, Saghaie L, Arkan E, Madadkar-Sobhani A, Pourhossein A. J Enzyme Inhib Med Chem 28 16-32 (2013)
  78. Structural insights into IKKbeta inhibition by natural products staurosporine and quercetin. Avila CM, Romeiro NC, Sant'Anna CM, Barreiro EJ, Fraga CA. Bioorg Med Chem Lett 19 6907-6910 (2009)
  79. A flavonoid gossypin binds to cyclin-dependent kinase 2. Kim H, Lee E, Kim J, Jung B, Chong Y, Ahn JH, Lim Y. Bioorg Med Chem Lett 18 661-664 (2008)
  80. An in silico exploration of the interaction mechanism of pyrazolo[1,5-a]pyrimidine type CDK2 inhibitors. Li Y, Gao W, Li F, Wang J, Zhang J, Yang Y, Zhang S, Yang L. Mol Biosyst 9 2266-2281 (2013)
  81. Analysis of CDK2 active-site hydration: a method to design new inhibitors. Kríz Z, Otyepka M, Bártová I, Koca J. Proteins 55 258-274 (2004)
  82. Crystal structure of the MAP3K TAO2 kinase domain bound by an inhibitor staurosporine. Zhou TJ, Sun LG, Gao Y, Goldsmith EJ. Acta Biochim Biophys Sin (Shanghai) 38 385-392 (2006)
  83. Novel 5,7-disubstituted 6-amino-5H-pyrrolo[3,2-b]pyrazine-2,3-dicarbonitriles, the promising protein kinase inhibitors with antiproliferative activity. Dubinina GG, Platonov MO, Golovach SM, Borysko PO, Tolmachov AO, Volovenko YM. Eur J Med Chem 41 727-737 (2006)
  84. Phosphocatalytic Kinome Activity Profiling of Apoptotic and Ferroptotic Agents in Multiple Myeloma Cells. Logie E, Novo CP, Driesen A, Van Vlierberghe P, Vanden Berghe W. Int J Mol Sci 22 12731 (2021)
  85. Antiamoebic Activities of Indolocarbazole Metabolites Isolated from Streptomyces sanyensis Cultures. Cartuche L, Reyes-Batlle M, Sifaoui I, Arberas-Jiménez I, Piñero JE, Fernández JJ, Lorenzo-Morales J, Díaz-Marrero AR. Mar Drugs 17 E588 (2019)
  86. Interaction energies for the purine inhibitor roscovitine with cyclin-dependent kinase 2: correlated ab initio quantum-chemical, DFT and empirical calculations. Dobes P, Otyepka M, Strnad M, Hobza P. Chemistry 12 4297-4304 (2006)
  87. Comparative analysis of the surface interaction properties of the binding sites of CDK2, CDK4, and ERK2. Kelly MD, Mancera RL. ChemMedChem 1 366-375 (2006)
  88. Exponential repulsion improves structural predictability of molecular docking. Bazgier V, Berka K, Otyepka M, Banáš P. J Comput Chem 37 2485-2494 (2016)
  89. Synthesis and biological evaluation of pyrazolo[1,5-a]-pyrimidine-containing 99mTc Nitrido radiopharmaceuticals as imaging agents for tumors. Ding R, He Y, Xu J, Liu H, Wang X, Feng M, Qi C, Zhang J. Molecules 15 8723-8733 (2010)
  90. The synthesis of bioactive indolocarbazoles related to K-252a. Moffat D, Nichols CJ, Riley DA, Simpkins NS. Org Biomol Chem 3 2953-2975 (2005)
  91. Cdk2 activity is dispensable for triggering replicon initiation after transient hypoxia in T24 cells. Stabenow D, Probst H, van Betteraey-Nikoleit M. FEBS J 272 5623-5634 (2005)
  92. Crystal structure of the kinase domain of a receptor tyrosine kinase from a choanoflagellate, Monosiga brevicollis. Bajaj T, Kuriyan J, Gee CL. PLoS One 18 e0276413 (2023)
  93. Molecular Mechanisms of Anticancer Activity of N-Glycosides of Indolocarbazoles LCS-1208 and LCS-1269. Zenkov RG, Vlasova OA, Maksimova VP, Fetisov TI, Karpechenko NY, Ektova LV, Eremina VA, Popova VG, Usalka OG, Lesovaya EA, Belitsky GA, Yakubovskaya MG, Kirsanov KI. Molecules 26 7329 (2021)
  94. Multiplexed Fluorescence Plate Reader In Situ Protein Expression Assay in Apoptotic HepG2 Cells. Jakabfi-Csepregi R, Kovács GL, Kaltenecker P, Kőszegi T. Int J Mol Sci 24 6564 (2023)
  95. Synthesis of Some Novel Fused Pyrimido[4″,5″:5',6']-[1,2,4]triazino[3',4':3,4] [1,2,4]triazino[5,6-b]indoles with Expected Anticancer Activity. Ali RS, Saad HA. Molecules 23 E693 (2018)
  96. Configurational stability of bisindolylmaleimide cyclophanes: from conformers to the first configurationally stable, atropisomeric bisindolylmaleimides. Barrett S, Bartlett S, Bolt A, Ironmonger A, Joce C, Nelson A, Woodhall T. Chemistry 11 6277-6285 (2005)
  97. Identification of a human cDNA encoding a kinase-defective cdk5 isoform. Moorthamer M, Zumstein-Mecker S, Stephan C, Mittl P, Chaudhuri B. Biochem Biophys Res Commun 253 305-310 (1998)


Related citations provided by authors (1)

  1. Crystal Structure of Cyclin-Dependent Kinase 2. De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH Nature 363 595- (1993)