1awe Citations

The solution structure of the pleckstrin homology domain of human SOS1. A possible structural role for the sequential association of diffuse B cell lymphoma and pleckstrin homology domains.

J Biol Chem 272 30340-4 (1997)
Cited: 42 times
EuropePMC logo PMID: 9374522

Abstract

A large subset of pleckstrin homology (PH) domains are immediately to the C terminus of diffuse B cell lymphoma (Dbl) homology (DbH) domains. Dbl domains are generally considered to be GTPase-exchange factors; many are proto-oncogenes. PH domains appear to function as membrane-recruitment factors, or have specific protein-protein interactions. Since dual domain (DbH/PH) constructs are known to have significant properties in other pathways, it is possible that a defined interdomain relationship is required for DbH/PH function. We determined the solution structure of the human SOS1 PH domain for a construct partially extended into the preceding DbH domain. There are specific structural contacts between the PH and the vestigial DbH domain. This appears to involve structural elements common to this subfamily of PH domains, and to DbH domains. The human SOS1 PH domain binds to inositol 1,4,5-triphosphate with a approximately 60 mu M affinity. Using chemical shift titration, the binding site is identified to be essentially identical to that observed crystallographically for the inositol 1,4,5-triphosphate complex with the PH domain of phospholipase Cdelta. This site may serve as an interdomain regulator of DbH or other domains' functions. While the overall fold of the human SOS1 PH domain is similar to other PH domains, the size and position of the intrastrand loops and the presence of an N-terminal alpha-helix of the vestigial DbH domain suggest that the subfamily of PH domains associated with DbH domains may be a well defined structural group in which the PH domain is a membrane recruiter and modulator.

Reviews - 1awe mentioned but not cited (1)

  1. Conditional peripheral membrane proteins: facing up to limited specificity. Moravcevic K, Oxley CL, Lemmon MA. Structure 20 15-27 (2012)

Articles - 1awe mentioned but not cited (6)

  1. Global conformational rearrangements during the activation of the GDP/GTP exchange factor Vav3. Llorca O, Arias-Palomo E, Zugaza JL, Bustelo XR. EMBO J 24 1330-1340 (2005)
  2. Structural and functional characterization of the kindlin-1 pleckstrin homology domain. Yates LA, Lumb CN, Brahme NN, Zalyte R, Bird LE, De Colibus L, Owens RJ, Calderwood DA, Sansom MS, Gilbert RJ. J Biol Chem 287 43246-43261 (2012)
  3. Identification of a novel actin-binding domain within the Rho guanine nucleotide exchange factor TEM4. Mitin N, Rossman KL, Der CJ. PLoS One 7 e41876 (2012)
  4. Defining the Domain Arrangement of the Mammalian Target of Rapamycin Complex Component Rictor Protein. Zhou P, Zhang N, Nussinov R, Ma B. J Comput Biol 22 876-886 (2015)
  5. Modeling of RAS complexes supports roles in cancer for less studied partners. Engin HB, Carlin D, Pratt D, Carter H. BMC Biophys 10 5 (2017)
  6. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (10)

  1. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Lemmon MA, Ferguson KM. Biochem J 350 Pt 1 1-18 (2000)
  2. Signaling and subcellular targeting by membrane-binding domains. Hurley JH, Misra S. Annu Rev Biophys Biomol Struct 29 49-79 (2000)
  3. The role of PI 3-kinase in insulin action. Alessi DR, Downes CP. Biochim Biophys Acta 1436 151-164 (1998)
  4. The PH superfold: a structural scaffold for multiple functions. Blomberg N, Baraldi E, Nilges M, Saraste M. Trends Biochem Sci 24 441-445 (1999)
  5. Signaling to the Rho GTPases: networking with the DH domain. Hoffman GR, Cerione RA. FEBS Lett 513 85-91 (2002)
  6. Phospholipid-binding protein domains. Bottomley MJ, Salim K, Panayotou G. Biochim Biophys Acta 1436 165-183 (1998)
  7. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Jun JE, Rubio I, Roose JP. Front Immunol 4 239 (2013)
  8. Protein fold irregularities that hinder sequence analysis. Russell RB, Russell RB, Ponting CP. Curr Opin Struct Biol 8 364-371 (1998)
  9. Modular PH and C2 domains in membrane attachment and other functions. Katan M, Allen VL. FEBS Lett 452 36-40 (1999)
  10. A central role for phosphatidic acid as a lipid mediator of regulated exocytosis in apicomplexa. Bullen HE, Soldati-Favre D. FEBS Lett 590 2469-2481 (2016)

Articles citing this publication (25)

  1. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Zhao C, Du G, Skowronek K, Frohman MA, Bar-Sagi D. Nat Cell Biol 9 706-712 (2007)
  2. Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Movilla N, Bustelo XR. Mol Cell Biol 19 7870-7885 (1999)
  3. Membrane-dependent signal integration by the Ras activator Son of sevenless. Gureasko J, Galush WJ, Boykevisch S, Sondermann H, Bar-Sagi D, Groves JT, Kuriyan J. Nat Struct Mol Biol 15 452-461 (2008)
  4. A crystallographic view of interactions between Dbs and Cdc42: PH domain-assisted guanine nucleotide exchange. Rossman KL, Worthylake DK, Snyder JT, Siderovski DP, Campbell SL, Sondek J. EMBO J 21 1315-1326 (2002)
  5. Crystal structure of the Dbl and pleckstrin homology domains from the human Son of sevenless protein. Soisson SM, Nimnual AS, Uy M, Bar-Sagi D, Kuriyan J. Cell 95 259-268 (1998)
  6. The Gab1 PH domain is required for localization of Gab1 at sites of cell-cell contact and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Maroun CR, Holgado-Madruga M, Royal I, Naujokas MA, Fournier TM, Wong AJ, Park M. Mol Cell Biol 19 1784-1799 (1999)
  7. NMR structure and mutagenesis of the N-terminal Dbl homology domain of the nucleotide exchange factor Trio. Liu X, Wang H, Eberstadt M, Schnuchel A, Olejniczak ET, Meadows RP, Schkeryantz JM, Janowick DA, Harlan JE, Harris EA, Staunton DE, Fesik SW. Cell 95 269-277 (1998)
  8. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Wong HC, Mao J, Nguyen JT, Srinivas S, Zhang W, Liu B, Li L, Wu D, Zheng J. Nat Struct Biol 7 1178-1184 (2000)
  9. Structure and mutagenesis of the Dbl homology domain. Aghazadeh B, Zhu K, Kubiseski TJ, Liu GA, Pawson T, Zheng Y, Rosen MK. Nat Struct Biol 5 1098-1107 (1998)
  10. SOS1 mutations in Noonan syndrome: molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations. Lepri F, De Luca A, Stella L, Rossi C, Baldassarre G, Pantaleoni F, Cordeddu V, Williams BJ, Dentici ML, Caputo V, Venanzi S, Bonaguro M, Kavamura I, Faienza MF, Pilotta A, Stanzial F, Faravelli F, Gabrielli O, Marino B, Neri G, Silengo MC, Ferrero GB, Torrrente I, Selicorni A, Mazzanti L, Digilio MC, Zampino G, Dallapiccola B, Gelb BD, Tartaglia M. Hum Mutat 32 760-772 (2011)
  11. Role of the histone domain in the autoinhibition and activation of the Ras activator Son of Sevenless. Gureasko J, Kuchment O, Makino DL, Sondermann H, Bar-Sagi D, Kuriyan J. Proc Natl Acad Sci U S A 107 3430-3435 (2010)
  12. Classification of protein sequences by homology modeling and quantitative analysis of electrostatic similarity. Blomberg N, Gabdoulline RR, Nilges M, Wade RC. Proteins 37 379-387 (1999)
  13. Mammalian son of sevenless Guanine nucleotide exchange factors: old concepts and new perspectives. Rojas JM, Oliva JL, Santos E. Genes Cancer 2 298-305 (2011)
  14. Loss of phosphatidylinositol 3-phosphate binding by the C-terminal Tiam-1 pleckstrin homology domain prevents in vivo Rac1 activation without affecting membrane targeting. Baumeister MA, Martinu L, Rossman KL, Sondek J, Lemmon MA, Chou MM. J Biol Chem 278 11457-11464 (2003)
  15. Computational docking and solution x-ray scattering predict a membrane-interacting role for the histone domain of the Ras activator son of sevenless. Sondermann H, Nagar B, Bar-Sagi D, Kuriyan J. Proc Natl Acad Sci U S A 102 16632-16637 (2005)
  16. The Dbs PH domain contributes independently to membrane targeting and regulation of guanine nucleotide-exchange activity. Baumeister MA, Rossman KL, Sondek J, Lemmon MA. Biochem J 400 563-572 (2006)
  17. Structure of a PH domain from the C. elegans muscle protein UNC-89 suggests a novel function. Blomberg N, Baraldi E, Sattler M, Saraste M, Nilges M. Structure 8 1079-1087 (2000)
  18. Heteronuclear relaxation study of the PH domain of beta-spectrin: restriction of loop motions upon binding inositol trisphosphate. Gryk MR, Abseher R, Simon B, Nilges M, Oschkinat H. J Mol Biol 280 879-896 (1998)
  19. Differential motility of p190bcr-abl- and p210bcr-abl-expressing cells: respective roles of Vav and Bcr-Abl GEFs. Daubon T, Chasseriau J, El Ali A, Rivet J, Kitzis A, Constantin B, Bourmeyster N. Oncogene 27 2673-2685 (2008)
  20. Identification of myosin II as a binding protein to the PH domain of protein kinase B. Tanaka M, Konishi H, Touhara K, Sakane F, Hirata M, Ono Y, Kikkawa U. Biochem Biophys Res Commun 255 169-174 (1999)
  21. Engineering the phosphoinositide-binding profile of a class I pleckstrin homology domain. Cozier GE, Bouyoucef D, Cullen PJ. J Biol Chem 278 39489-39496 (2003)
  22. Structure of the C-terminal guanine nucleotide exchange factor module of Trio in an autoinhibited conformation reveals its oncogenic potential. Bandekar SJ, Arang N, Tully ES, Tang BA, Barton BL, Li S, Gutkind JS, Tesmer JJG. Sci Signal 12 eaav2449 (2019)
  23. Pleckstrin homology domains of tec family protein kinases. Okoh MP, Vihinen M. Biochem Biophys Res Commun 265 151-157 (1999)
  24. Molecular modelling and site-directed mutagenesis of the inositol 1,3,4,5-tetrakisphosphate-binding pleckstrin homology domain from the Ras GTPase-activating protein GAP1IP4BP. Cozier G, Sessions R, Bottomley JR, Reynolds JS, Cullen PJ. Biochem J 349 333-342 (2000)
  25. Three distinct regions of cRaf kinase domain interact with membrane. Prakash P, Hancock JF, Gorfe AA. Sci Rep 9 2057 (2019)