1b0x Citations

The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization.

Nat Struct Biol 6 44-9 (1999)
Cited: 161 times
EuropePMC logo PMID: 9886291

Abstract

The sterile alpha motif (SAM) domain is a novel protein module of approximately 70 amino acids that is found in a variety of signaling molecules including tyrosine and serine/threonine protein kinases, cytoplasmic scaffolding and adaptor proteins, regulators of lipid metabolism, and GTPases as well as members of the ETS family of transcription factors. The SAM domain can potentially function as a protein interaction module through the ability to homo- and hetero-oligomerize with other SAM domains. This functional property elicits the oncogenic activation of chimeric proteins arising from translocation of the SAM domain of TEL to coding regions of the betaPDGF receptor, Abl, JAK2 protein kinase and the AML1 transcription factor. Here we describe the 2.0 A X-ray crystal structure of a SAM domain homodimer from the intracellular region of the EphA4 receptor tyrosine kinase. The structure reveals a mode of dimerization that we predict is shared amongst the SAM domains of the Eph receptor tyrosine kinases and possibly other SAM domain containing proteins. These data indicate a mechanism through which an independently folding protein module can form homophilic complexes that regulate signaling events at the membrane and in the nucleus.

Reviews - 1b0x mentioned but not cited (2)

  1. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  2. Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Kan Y, Paung Y, Seeliger MA, Miller WT. Cells 12 900 (2023)

Articles - 1b0x mentioned but not cited (9)

  1. Common fold in helix-hairpin-helix proteins. Shao X, Grishin NV. Nucleic Acids Res 28 2643-2650 (2000)
  2. Prediction of functional sites by analysis of sequence and structure conservation. Panchenko AR, Kondrashov F, Bryant S. Protein Sci 13 884-892 (2004)
  3. NMR studies of a heterotypic Sam-Sam domain association: the interaction between the lipid phosphatase Ship2 and the EphA2 receptor. Leone M, Cellitti J, Pellecchia M. Biochemistry 47 12721-12728 (2008)
  4. Packing helices in proteins by global optimization of a potential energy function. Nanias M, Chinchio M, Pillardy J, Ripoll DR, Scheraga HA. Proc Natl Acad Sci U S A 100 1706-1710 (2003)
  5. The NMR structure of the murine DLC2 SAM domain reveals a variant fold that is similar to a four-helix bundle. Kwan JJ, Donaldson LW. BMC Struct Biol 7 34 (2007)
  6. Structure of the SLy1 SAM homodimer reveals a new interface for SAM domain self-association. Kukuk L, Dingley AJ, Granzin J, Nagel-Steger L, Thiagarajan-Rosenkranz P, Ciupka D, Hänel K, Batra-Safferling R, Pacheco V, Stoldt M, Pfeffer K, Beer-Hammer S, Willbold D, Koenig BW. Sci Rep 9 54 (2019)
  7. A cancer mutation promotes EphA4 oligomerization and signaling by altering the conformation of the SAM domain. Light TP, Gomez-Soler M, Wang Z, Karl K, Zapata-Mercado E, Gehring MP, Lechtenberg BC, Pogorelov TV, Hristova K, Pasquale EB. J Biol Chem 297 100876 (2021)
  8. Reduction of the secondary structure topological space through direct estimation of the contact energy formed by the secondary structures. Sun W, He J. BMC Bioinformatics 10 Suppl 1 S40 (2009)
  9. Epitope-focused immunogen design based on the ebolavirus glycoprotein HR2-MPER region. Schoeder CT, Gilchuk P, Sangha AK, Ledwitch KV, Malherbe DC, Zhang X, Binshtein E, Williamson LE, Martina CE, Dong J, Armstrong E, Sutton R, Nargi R, Rodriguez J, Kuzmina N, Fiala B, King NP, Bukreyev A, Crowe JE, Meiler J. PLoS Pathog 18 e1010518 (2022)


Reviews citing this publication (43)

  1. Mechanisms and functions of Eph and ephrin signalling. Kullander K, Klein R. Nat Rev Mol Cell Biol 3 475-486 (2002)
  2. Protein tyrosine kinase structure and function. Hubbard SR, Till JH. Annu Rev Biochem 69 373-398 (2000)
  3. Mixed-lineage kinase control of JNK and p38 MAPK pathways. Gallo KA, Johnson GL. Nat Rev Mol Cell Biol 3 663-672 (2002)
  4. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Dohlman HG, Thorner JW. Annu Rev Biochem 70 703-754 (2001)
  5. Dynamic regulation of axon guidance. Yu TW, Bargmann CI. Nat Neurosci 4 Suppl 1169-1176 (2001)
  6. Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Reiners J, Nagel-Wolfrum K, Jürgens K, Märker T, Wolfrum U. Exp Eye Res 83 97-119 (2006)
  7. The many faces of SAM. Qiao F, Bowie JU. Sci STKE 2005 re7 (2005)
  8. G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Brady AE, Limbird LE. Cell Signal 14 297-309 (2002)
  9. Regulation and targets of receptor tyrosine kinases. Pawson T. Eur J Cancer 38 Suppl 5 S3-10 (2002)
  10. Eph receptor-ephrin bidirectional signals that target Ras and Rho proteins. Noren NK, Pasquale EB. Cell Signal 16 655-666 (2004)
  11. Eph signaling: a structural view. Himanen JP, Nikolov DB. Trends Neurosci 26 46-51 (2003)
  12. Roles of Eph receptors and ephrins in the normal and damaged adult CNS. Goldshmit Y, McLenachan S, Turnley A. Brain Res Rev 52 327-345 (2006)
  13. Role of FLT3 in leukemia. Gilliland DG, Griffin JD. Curr Opin Hematol 9 274-281 (2002)
  14. ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Schmandke A, Schmandke A, Strittmatter SM. Neuroscientist 13 454-469 (2007)
  15. Minding the gaps to promote thrombus growth and stability. Brass LF, Zhu L, Stalker TJ. J Clin Invest 115 3385-3392 (2005)
  16. Differential regulation of EphA2 in normal and malignant cells. Walker-Daniels J, Hess AR, Hendrix MJ, Kinch MS. Am J Pathol 162 1037-1042 (2003)
  17. Emergence of FGFR family gene fusions as therapeutic targets in a wide spectrum of solid tumours. Parker BC, Engels M, Annala M, Zhang W. J Pathol 232 4-15 (2014)
  18. Control of cell behaviour by signalling through Eph receptors and ephrins. Mellitzer G, Xu Q, Wilkinson DG. Curr Opin Neurobiol 10 400-408 (2000)
  19. Eph receptors and ephrins. Himanen JP, Nikolov DB. Int J Biochem Cell Biol 35 130-134 (2003)
  20. Interaction domains: from simple binding events to complex cellular behavior. Pawson T, Raina M, Nash P. FEBS Lett 513 2-10 (2002)
  21. Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains. Ve T, Williams SJ, Kobe B. Apoptosis 20 250-261 (2015)
  22. Growth factor signaling pathways in vascular development. Tallquist MD, Soriano P, Klinghoffer RA. Oncogene 18 7917-7932 (1999)
  23. Eph receptors, ephrins, and synaptic function. Murai KK, Pasquale EB. Neuroscientist 10 304-314 (2004)
  24. Eph-dependent cell-cell adhesion and segregation in development and cancer. Nievergall E, Lackmann M, Janes PW. Cell Mol Life Sci 69 1813-1842 (2012)
  25. The termination of PI3K signalling by SHIP1 and SHIP2 inositol 5-phosphatases. Backers K, Blero D, Paternotte N, Zhang J, Erneux C. Adv Enzyme Regul 43 15-28 (2003)
  26. Structural Perspectives on Axon Guidance. Seiradake E, Jones EY, Klein R. Annu Rev Cell Dev Biol 32 577-608 (2016)
  27. Eph receptor signalling: from catalytic to non-catalytic functions. Liang LY, Patel O, Janes PW, Murphy JM, Lucet IS. Oncogene 38 6567-6584 (2019)
  28. Bidirectional ephrin/Eph signaling in synaptic functions. Aoto J, Chen L. Brain Res 1184 72-80 (2007)
  29. Dancing with the dead: Eph receptors and their kinase-null partners. Truitt L, Freywald A. Biochem Cell Biol 89 115-129 (2011)
  30. Structure and apoptotic function of p73. Yoon MK, Ha JH, Lee MS, Chi SW. BMB Rep 48 81-90 (2015)
  31. EphA3 biology and cancer. Janes PW, Slape CI, Farnsworth RH, Atapattu L, Scott AM, Vail ME. Growth Factors 32 176-189 (2014)
  32. Protein families in multicellular organisms. Copley RR, Schultz J, Ponting CP, Bork P. Curr Opin Struct Biol 9 408-415 (1999)
  33. Eph receptors and ephrins. Nakamoto M. Int J Biochem Cell Biol 32 7-12 (2000)
  34. EPHA3 as a novel therapeutic target in the hematological malignancies. Keane N, Freeman C, Swords R, Giles FJ. Expert Rev Hematol 5 325-340 (2012)
  35. The plant PRAT proteins - preprotein and amino acid transport in mitochondria and chloroplasts. Pudelski B, Kraus S, Soll J, Philippar K. Plant Biol (Stuttg) 12 Suppl 1 42-55 (2010)
  36. Structurally delineating stromal interaction molecules as the endoplasmic reticulum calcium sensors and regulators of calcium release-activated calcium entry. Stathopulos PB, Ikura M. Immunol Rev 231 113-131 (2009)
  37. RTK SLAP down: the emerging role of Src-like adaptor protein as a key player in receptor tyrosine kinase signaling. Wybenga-Groot LE, McGlade CJ. Cell Signal 27 267-274 (2015)
  38. The role of Eph receptors in lens function and disease. Son AI, Park JE, Zhou R. Sci China Life Sci 55 434-443 (2012)
  39. Ephs and ephrins close ranks. Cutforth T, Harrison CJ. Trends Neurosci 25 332-334 (2002)
  40. From the research laboratory to the database: the Caenorhabditis elegans kinome in UniProtKB. Zaru R, Magrane M, O'Donovan C, UniProt Consortium. Biochem J 474 493-515 (2017)
  41. [Eph family receptors as therapeutic targets]. Zozulya SA, Udovichenko IP. Bioorg Khim 38 267-279 (2012)
  42. Deciphering T Cell Immunometabolism with Activity-Based Protein Profiling. Borne AL, Huang T, McCloud RL, Pachaiyappan B, Bullock TNJ, Hsu KL. Curr Top Microbiol Immunol 420 175-210 (2019)
  43. Sticky, Adaptable, and Many-sided: SAM protein versatility in normal and pathological hematopoietic states. Ray S, Hewitt K. Bioessays 45 e2300022 (2023)

Articles citing this publication (107)

  1. Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Himanen JP, Chumley MJ, Lackmann M, Li C, Barton WA, Jeffrey PD, Vearing C, Geleick D, Feldheim DA, Boyd AW, Henkemeyer M, Nikolov DB. Nat Neurosci 7 501-509 (2004)
  2. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M. Cell 135 110-122 (2008)
  3. The liprin protein SYD-2 regulates the differentiation of presynaptic termini in C. elegans. Zhen M, Jin Y. Nature 401 371-375 (1999)
  4. Crystal structure of an Eph receptor-ephrin complex. Himanen JP, Rajashankar KR, Lackmann M, Cowan CA, Henkemeyer M, Nikolov DB. Nature 414 933-938 (2001)
  5. Structural basis for autoinhibition of the Ephb2 receptor tyrosine kinase by the unphosphorylated juxtamembrane region. Wybenga-Groot LE, Baskin B, Ong SH, Tong J, Pawson T, Sicheri F. Cell 106 745-757 (2001)
  6. Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Daniely Y, Liao G, Dixon D, Linnoila RI, Lori A, Randell SH, Oren M, Jetten AM. Am J Physiol Cell Physiol 287 C171-81 (2004)
  7. Kinase-dependent and kinase-independent functions of EphA4 receptors in major axon tract formation in vivo. Kullander K, Mather NK, Diella F, Dottori M, Boyd AW, Klein R. Neuron 29 73-84 (2001)
  8. Polymerization of the SAM domain of TEL in leukemogenesis and transcriptional repression. Kim CA, Phillips ML, Kim W, Gingery M, Tran HH, Robinson MA, Faham S, Bowie JU. EMBO J 20 4173-4182 (2001)
  9. Interactions in the network of Usher syndrome type 1 proteins. Adato A, Michel V, Kikkawa Y, Reiners J, Alagramam KN, Weil D, Yonekawa H, Wolfrum U, El-Amraoui A, Petit C. Hum Mol Genet 14 347-356 (2005)
  10. A C-terminal inhibitory domain controls the activity of p63 by an intramolecular mechanism. Serber Z, Lai HC, Yang A, Ou HD, Sigal MS, Kelly AE, Darimont BD, Duijf PH, Van Bokhoven H, McKeon F, Dötsch V. Mol Cell Biol 22 8601-8611 (2002)
  11. The RNA-binding SAM domain of Smaug defines a new family of post-transcriptional regulators. Aviv T, Lin Z, Lau S, Rendl LM, Sicheri F, Smibert CA. Nat Struct Biol 10 614-621 (2003)
  12. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression. Dyson MR, Shadbolt SP, Vincent KJ, Perera RL, McCafferty J. BMC Biotechnol 4 32 (2004)
  13. A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. Newlon MG, Roy M, Morikis D, Carr DW, Westphal R, Scott JD, Jennings PA. EMBO J 20 1651-1662 (2001)
  14. An ERK2 docking site in the Pointed domain distinguishes a subset of ETS transcription factors. Seidel JJ, Graves BJ. Genes Dev 16 127-137 (2002)
  15. ARAP1: a point of convergence for Arf and Rho signaling. Miura K, Jacques KM, Stauffer S, Kubosaki A, Zhu K, Hirsch DS, Resau J, Zheng Y, Randazzo PA. Mol Cell 9 109-119 (2002)
  16. Phosphorylation of tyrosine residues in the kinase domain and juxtamembrane region regulates the biological and catalytic activities of Eph receptors. Binns KL, Taylor PP, Sicheri F, Pawson T, Holland SJ. Mol Cell Biol 20 4791-4805 (2000)
  17. Downregulation of the Ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for ephrin-induced neurite retraction. Elowe S, Holland SJ, Kulkarni S, Pawson T. Mol Cell Biol 21 7429-7441 (2001)
  18. The EPHA2 gene is associated with cataracts linked to chromosome 1p. Shiels A, Bennett TM, Knopf HL, Maraini G, Li A, Jiao X, Hejtmancik JF. Mol Vis 14 2042-2055 (2008)
  19. p53 Family members p63 and p73 are SAM domain-containing proteins. Thanos CD, Bowie JU. Protein Sci 8 1708-1710 (1999)
  20. Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-Kinase-dependent Rac1 activation. Zhuang G, Hunter S, Hwang Y, Chen J. J Biol Chem 282 2683-2694 (2007)
  21. Derepression by depolymerization; structural insights into the regulation of Yan by Mae. Qiao F, Song H, Kim CA, Sawaya MR, Hunter JB, Gingery M, Rebay I, Courey AJ, Bowie JU. Cell 118 163-173 (2004)
  22. Targeting protein phosphatase 1 (PP1) to the actin cytoskeleton: the neurabin I/PP1 complex regulates cell morphology. Oliver CJ, Terry-Lorenzo RT, Elliott E, Bloomer WA, Li S, Brautigan DL, Colbran RJ, Shenolikar S. Mol Cell Biol 22 4690-4701 (2002)
  23. RNA recognition via the SAM domain of Smaug. Green JB, Gardner CD, Wharton RP, Aggarwal AK. Mol Cell 11 1537-1548 (2003)
  24. Screening for soluble expression of recombinant proteins in a 96-well format. Knaust RK, Nordlund P. Anal Biochem 297 79-85 (2001)
  25. Adaptor protein Ste50p links the Ste11p MEKK to the HOG pathway through plasma membrane association. Wu C, Jansen G, Zhang J, Thomas DY, Whiteway M. Genes Dev 20 734-746 (2006)
  26. Crystal structure of an ephrin ectodomain. Toth J, Cutforth T, Gelinas AD, Bethoney KA, Bard J, Harrison CJ. Dev Cell 1 83-92 (2001)
  27. Missense mutation in sterile alpha motif of novel protein SamCystin is associated with polycystic kidney disease in (cy/+) rat. Brown JH, Bihoreau MT, Hoffmann S, Kränzlin B, Tychinskaya I, Obermüller N, Podlich D, Boehn SN, Kaisaki PJ, Megel N, Danoy P, Copley RR, Broxholme J, Witzgall R, Lathrop M, Gretz N, Gauguier D. J Am Soc Nephrol 16 3517-3526 (2005)
  28. Receptor protein tyrosine kinase EphB4 is up-regulated in colon cancer. Stephenson SA, Slomka S, Douglas EL, Hewett PJ, Hardingham JE. BMC Mol Biol 2 15 (2001)
  29. The epithelium-specific ETS protein EHF/ESE-3 is a context-dependent transcriptional repressor downstream of MAPK signaling cascades. Tugores A, Le J, Sorokina I, Snijders AJ, Duyao M, Reddy PS, Carlee L, Ronshaugen M, Mushegian A, Watanaskul T, Chu S, Buckler A, Emtage S, McCormick MK. J Biol Chem 276 20397-20406 (2001)
  30. Diacylglycerol kinase delta suppresses ER-to-Golgi traffic via its SAM and PH domains. Nagaya H, Wada I, Jia YJ, Kanoh H. Mol Biol Cell 13 302-316 (2002)
  31. Solution structure of the receptor tyrosine kinase EphB2 SAM domain and identification of two distinct homotypic interaction sites. Smalla M, Schmieder P, Kelly M, Ter Laak A, Krause G, Ball L, Wahl M, Bork P, Oschkinat H. Protein Sci 8 1954-1961 (1999)
  32. CLAN, a novel human CED-4-like gene. Damiano JS, Stehlik C, Pio F, Godzik A, Reed JC. Genomics 75 77-83 (2001)
  33. PTP1B regulates Eph receptor function and trafficking. Nievergall E, Janes PW, Stegmayer C, Vail ME, Haj FG, Teng SW, Neel BG, Bastiaens PI, Lackmann M. J Cell Biol 191 1189-1203 (2010)
  34. Autoregulation by the juxtamembrane region of the human ephrin receptor tyrosine kinase A3 (EphA3). Davis TL, Walker JR, Loppnau P, Butler-Cole C, Allali-Hassani A, Dhe-Paganon S. Structure 16 873-884 (2008)
  35. The Xenopus homologue of Bicaudal-C is a localized maternal mRNA that can induce endoderm formation. Wessely O, De Robertis EM. Development 127 2053-2062 (2000)
  36. Functional analysis of CNK in RAS signaling. Therrien M, Wong AM, Kwan E, Rubin GM. Proc Natl Acad Sci U S A 96 13259-13263 (1999)
  37. Sp100 interacts with ETS-1 and stimulates its transcriptional activity. Wasylyk C, Schlumberger SE, Criqui-Filipe P, Wasylyk B. Mol Cell Biol 22 2687-2702 (2002)
  38. A KSR/CNK complex mediated by HYP, a novel SAM domain-containing protein, regulates RAS-dependent RAF activation in Drosophila. Douziech M, Sahmi M, Laberge G, Therrien M. Genes Dev 20 807-819 (2006)
  39. HACS1 encodes a novel SH3-SAM adaptor protein differentially expressed in normal and malignant hematopoietic cells. Claudio JO, Zhu YX, Benn SJ, Shukla AH, McGlade CJ, Falcioni N, Stewart AK. Oncogene 20 5373-5377 (2001)
  40. Diversity in structure and function of the Ets family PNT domains. Mackereth CD, Schärpf M, Gentile LN, MacIntosh SE, Slupsky CM, McIntosh LP. J Mol Biol 342 1249-1264 (2004)
  41. The PI3K effector Arap3 interacts with the PI(3,4,5)P3 phosphatase SHIP2 in a SAM domain-dependent manner. Raaijmakers JH, Deneubourg L, Rehmann H, de Koning J, Zhang Z, Krugmann S, Erneux C, Bos JL. Cell Signal 19 1249-1257 (2007)
  42. Cancer-associated mutations activate the nonreceptor tyrosine kinase Ack1. Prieto-Echagüe V, Gucwa A, Craddock BP, Brown DA, Miller WT. J Biol Chem 285 10605-10615 (2010)
  43. NMR structure of a heterodimeric SAM:SAM complex: characterization and manipulation of EphA2 binding reveal new cellular functions of SHIP2. Lee HJ, Hota PK, Chugha P, Guo H, Miao H, Zhang L, Kim SJ, Stetzik L, Wang BC, Buck M. Structure 20 41-55 (2012)
  44. Tel-2 is a novel transcriptional repressor related to the Ets factor Tel/ETV-6. Gu X, Shin BH, Akbarali Y, Weiss A, Boltax J, Oettgen P, Libermann TA. J Biol Chem 276 9421-9436 (2001)
  45. A protein phosphatase-1gamma1 isoform selectivity determinant in dendritic spine-associated neurabin. Carmody LC, Bauman PA, Bass MA, Mavila N, DePaoli-Roach AA, Colbran RJ. J Biol Chem 279 21714-21723 (2004)
  46. Densin-180, a synaptic protein, links to PSD-95 through its direct interaction with MAGUIN-1. Ohtakara K, Nishizawa M, Izawa I, Hata Y, Matsushima S, Taki W, Inada H, Takai Y, Inagaki M. Genes Cells 7 1149-1160 (2002)
  47. Human cataract mutations in EPHA2 SAM domain alter receptor stability and function. Park JE, Son AI, Hua R, Wang L, Zhang X, Zhou R. PLoS One 7 e36564 (2012)
  48. Identifying polymer-forming SAM domains. Meruelo AD, Bowie JU. Proteins 74 1-5 (2009)
  49. Unliganded EphA3 dimerization promoted by the SAM domain. Singh DR, Cao Q, King C, Salotto M, Ahmed F, Zhou XY, Pasquale EB, Hristova K. Biochem J 471 101-109 (2015)
  50. Deleted in liver cancer protein family in human malignancies (Review). Lukasik D, Wilczek E, Wasiutynski A, Gornicka B. Oncol Lett 2 763-768 (2011)
  51. The polycystic kidney disease-related proteins Bicc1 and SamCystin interact. Stagner EE, Bouvrette DJ, Cheng J, Bryda EC. Biochem Biophys Res Commun 383 16-21 (2009)
  52. Ectopic EphA4 receptor induces posterior protrusions via FGF signaling in Xenopus embryos. Park EK, Warner N, Bong YS, Stapleton D, Maeda R, Pawson T, Daar IO. Mol Biol Cell 15 1647-1655 (2004)
  53. EphB2 and ephrin-B2 regulate the ionic homeostasis of vestibular endolymph. Dravis C, Wu T, Chumley MJ, Yokoyama N, Wei S, Wu DK, Marcus DC, Henkemeyer M. Hear Res 223 93-104 (2007)
  54. Bimodal regulation of RAF by CNK in Drosophila. Douziech M, Roy F, Laberge G, Lefrançois M, Armengod AV, Therrien M. EMBO J 22 5068-5078 (2003)
  55. Biophysical characterization of the interaction domains and mapping of the contact residues in the XPF-ERCC1 complex. Choi YJ, Ryu KS, Ko YM, Chae YK, Pelton JG, Wemmer DE, Choi BS. J Biol Chem 280 28644-28652 (2005)
  56. Mutations in the SAM domain of the ETV6-NTRK3 chimeric tyrosine kinase block polymerization and transformation activity. Tognon CE, Mackereth CD, Somasiri AM, McIntosh LP, Sorensen PH. Mol Cell Biol 24 4636-4650 (2004)
  57. Solution structure of the dimeric SAM domain of MAPKKK Ste11 and its interactions with the adaptor protein Ste50 from the budding yeast: implications for Ste11 activation and signal transmission through the Ste50-Ste11 complex. Bhattacharjya S, Xu P, Gingras R, Shaykhutdinov R, Wu C, Whiteway M, Ni F. J Mol Biol 344 1071-1087 (2004)
  58. Solution structures, dynamics, and lipid-binding of the sterile alpha-motif domain of the deleted in liver cancer 2. Li H, Fung KL, Jin DY, Chung SS, Ching YP, Ng IO, Sze KH, Ko BC, Sun H. Proteins 67 1154-1166 (2007)
  59. Characterization of the Epha1 receptor tyrosine kinase: expression in epithelial tissues. Coulthard MG, Lickliter JD, Subanesan N, Chen K, Webb GC, Lowry AJ, Koblar S, Bottema CD, Boyd AW. Growth Factors 18 303-317 (2001)
  60. Roles of Eph/ephrin bidirectional signaling in central nervous system injury and recovery. Yang JS, Wei HX, Chen PP, Wu G. Exp Ther Med 15 2219-2227 (2018)
  61. The SAM domain inhibits EphA2 interactions in the plasma membrane. Singh DR, Ahmed F, Paul MD, Gedam M, Pasquale EB, Hristova K. Biochim Biophys Acta Mol Cell Res 1864 31-38 (2017)
  62. SANS (USH1G) expression in developing and mature mammalian retina. Overlack N, Maerker T, Latz M, Nagel-Wolfrum K, Wolfrum U. Vision Res 48 400-412 (2008)
  63. The mouse SHIP2 (Inppl1) gene: complementary DNA, genomic structure, promoter analysis, and gene expression in the embryo and adult mouse. Schurmans S, Carrió R, Behrends J, Pouillon V, Merino J, Clément S. Genomics 62 260-271 (1999)
  64. Characterization of the chronic myelomonocytic leukemia associated TEL-PDGF beta R fusion protein. Sjöblom T, Boureux A, Rönnstrand L, Heldin CH, Ghysdael J, Ostman A. Oncogene 18 7055-7062 (1999)
  65. Regulation of Ack1 localization and activity by the amino-terminal SAM domain. Prieto-Echagüe V, Gucwa A, Brown DA, Miller WT. BMC Biochem 11 42 (2010)
  66. Structures of the EphA2 Receptor at the Membrane: Role of Lipid Interactions. Chavent M, Seiradake E, Jones EY, Sansom MS. Structure 24 337-347 (2016)
  67. The novel SAM domain protein Aveugle is required for Raf activation in the Drosophila EGF receptor signaling pathway. Roignant JY, Hamel S, Janody F, Treisman JE. Genes Dev 20 795-806 (2006)
  68. The solution structure of the S.cerevisiae Ste11 MAPKKK SAM domain and its partnership with Ste50. Kwan JJ, Warner N, Pawson T, Donaldson LW. J Mol Biol 342 681-693 (2004)
  69. A CC-SAM, for coiled coil-sterile α motif, domain targets the scaffold KSR-1 to specific sites in the plasma membrane. Koveal D, Schuh-Nuhfer N, Ritt D, Page R, Morrison DK, Peti W. Sci Signal 5 ra94 (2012)
  70. A nuclear localization signal at the SAM-SAM domain interface of AIDA-1 suggests a requirement for domain uncoupling prior to nuclear import. Kurabi A, Brener S, Mobli M, Kwan JJ, Donaldson LW. J Mol Biol 392 1168-1177 (2009)
  71. Characterization of Durham virus, a novel rhabdovirus that encodes both a C and SH protein. Allison AB, Palacios G, Travassos da Rosa A, Popov VL, Lu L, Xiao SY, DeToy K, Briese T, Lipkin WI, Keel MK, Stallknecht DE, Bishop GR, Tesh RB. Virus Res 155 112-122 (2011)
  72. Polymerization of the SAM domain of MAPKKK Ste11 from the budding yeast: implications for efficient signaling through the MAPK cascades. Bhattacharjya S, Xu P, Chakrapani M, Johnston L, Ni F. Protein Sci 14 828-835 (2005)
  73. SAM domains can utilize similar surfaces for the formation of polymers and closed oligomers. Ramachander R, Bowie JU. J Mol Biol 342 1353-1358 (2004)
  74. Specific Eph receptor-cytoplasmic effector signaling mediated by SAM-SAM domain interactions. Wang Y, Shang Y, Li J, Chen W, Li G, Wan J, Liu W, Zhang M. Elife 7 e35677 (2018)
  75. The SH3/PH domain protein AgBoi1/2 collaborates with the Rho-type GTPase AgRho3 to prevent nonpolar growth at hyphal tips of Ashbya gossypii. Knechtle P, Wendland J, Philippsen P. Eukaryot Cell 5 1635-1647 (2006)
  76. Cloning of the genomic locus of mouse SH2 containing inositol 5-phosphatase (SHIP) and a novel 110-kDa splice isoform, SHIPdelta. Wolf I, Lucas DM, Algate PA, Rohrschneider LR. Genomics 69 104-112 (2000)
  77. NMR structural studies of the Ste11 SAM domain in the dodecyl phosphocholine micelle. Bhunia A, Domadia PN, Mohanram H, Bhattacharjya S. Proteins 74 328-343 (2009)
  78. Transmission of Turnip yellows virus by Myzus persicae Is Reduced by Feeding Aphids on Double-Stranded RNA Targeting the Ephrin Receptor Protein. Mulot M, Monsion B, Boissinot S, Rastegar M, Meyer S, Bochet N, Brault V. Front Microbiol 9 457 (2018)
  79. Coupled regulation by the juxtamembrane and sterile α motif (SAM) linker is a hallmark of ephrin tyrosine kinase evolution. Kwon A, John M, Ruan Z, Kannan N. J Biol Chem 293 5102-5116 (2018)
  80. SLP-76 sterile α motif (SAM) and individual H5 α helix mediate oligomer formation for microclusters and T-cell activation. Liu H, Thaker YR, Stagg L, Schneider H, Ladbury JE, Rudd CE. J Biol Chem 288 29539-29549 (2013)
  81. The NMR and X-ray structures of the Saccharomyces cerevisiae Vts1 SAM domain define a surface for the recognition of RNA hairpins. Aviv T, Amborski AN, Zhao XS, Kwan JJ, Johnson PE, Sicheri F, Donaldson LW. J Mol Biol 356 274-279 (2006)
  82. Completing the structural family portrait of the human EphB tyrosine kinase domains. Overman RC, Debreczeni JE, Truman CM, McAlister MS, Attwood TK. Protein Sci 23 627-638 (2014)
  83. Identification of Nash1, a novel protein containing a nuclear localization signal, a sterile alpha motif, and an SH3 domain preferentially expressed in mast cells. Uchida T, Nakao A, Nakano N, Kuramasu A, Saito H, Okumura K, Ra C, Ogawa H. Biochem Biophys Res Commun 288 137-141 (2001)
  84. Identification of a novel EphB4 phosphodegron regulated by the autocrine IGFII/IRA axis in malignant mesothelioma. Scalia P, Pandini G, Carnevale V, Giordano A, Williams SJ. Oncogene 38 5987-6001 (2019)
  85. Atherin: a newly identified, lesion-specific, LDL-binding protein in human atherosclerosis. Lees AM, Deconinck AE, Campbell BD, Lees RS. Atherosclerosis 182 219-230 (2005)
  86. Biological network modeling identifies IPCS in Leishmania as a therapeutic target. Mandlik V, Shinde S, Chaudhary A, Singh S. Integr Biol (Camb) 4 1130-1142 (2012)
  87. Solution structure of the Vts1 SAM domain in the presence of RNA. Edwards TA, Butterwick JA, Zeng L, Gupta YK, Wang X, Wharton RP, Palmer AG, Aggarwal AK. J Mol Biol 356 1065-1072 (2006)
  88. Frequent aberrant methylation of the promoter region of sterile alpha motif domain 14 in pulmonary adenocarcinoma. Sun W, Iijima T, Kano J, Kobayashi H, Li D, Morishita Y, Okubo C, Anami Y, Noguchi M. Cancer Sci 99 2177-2184 (2008)
  89. The miR-378c-Samd1 circuit promotes phenotypic modulation of vascular smooth muscle cells and foam cells formation in atherosclerosis lesions. Tian S, Cao Y, Wang J, Bi Y, Zhong J, Meng X, Sun W, Yang R, Gan L, Wang X, Li H, Wang R. Sci Rep 11 10548 (2021)
  90. Toward the semisynthesis of multidomain transmembrane receptors: modification of Eph tyrosine kinases. Singla N, Himanen JP, Muir TW, Nikolov DB. Protein Sci 17 1740-1747 (2008)
  91. Anticancer activity of the PR domain of tumor suppressor RIZ1. Sun W, Qiao L, Liu Q, Chen L, Ling B, Sammynaiken R, Yang J. Int J Med Sci 8 161-167 (2011)
  92. Binding and function of phosphotyrosines of the Ephrin A2 (EphA2) receptor using synthetic sterile α motif (SAM) domains. Borthakur S, Lee H, Kim S, Wang BC, Buck M. J Biol Chem 289 19694-19703 (2014)
  93. Mining mammalian genomes for folding competent proteins using Tat-dependent genetic selection in Escherichia coli. Lim HK, Mansell TJ, Linderman SW, Fisher AC, Dyson MR, DeLisa MP. Protein Sci 18 2537-2549 (2009)
  94. Identification of the Photoreceptor Transcriptional Co-Repressor SAMD11 as Novel Cause of Autosomal Recessive Retinitis Pigmentosa. Corton M, Avila-Fernández A, Campello L, Sánchez M, Benavides B, López-Molina MI, Fernández-Sánchez L, Sánchez-Alcudia R, da Silva LRJ, Reyes N, Martín-Garrido E, Zurita O, Fernández-San José P, Pérez-Carro R, García-García F, Dopazo J, García-Sandoval B, Cuenca N, Ayuso C. Sci Rep 6 35370 (2016)
  95. Mutation in SAM domain of TP63 is associated with nonsyndromic cleft lip and palate and cleft palate. Kantaputra PN, Malaivijitnond S, Vieira AR, Heering J, Dötsch V, Khankasikum T, Sripathomsawat W. Am J Med Genet A 155A 1432-1436 (2011)
  96. Phosphorylation of the MAPKKK regulator Ste50p in Saccharomyces cerevisiae: a casein kinase I phosphorylation site is required for proper mating function. Wu C, Arcand M, Jansen G, Zhong M, Iouk T, Thomas DY, Meloche S, Whiteway M. Eukaryot Cell 2 949-961 (2003)
  97. Plasmodium pseudo-Tyrosine Kinase-like binds PP1 and SERA5 and is exported to host erythrocytes. Gnangnon B, Fréville A, Cailliau K, Cailliau K, Leroy C, De Witte C, Tulasne D, Martoriarti A, Jung V, Guerrera IC, Marion S, Khalife J, Pierrot C. Sci Rep 9 8120 (2019)
  98. Systematic biochemical characterization of the SAM domains in Eph receptor family from Mus Musculus. Wang Y, Li Q, Zheng Y, Li G, Liu W. Biochem Biophys Res Commun 473 1281-1287 (2016)
  99. ANKS3 Co-Localises with ANKS6 in Mouse Renal Cilia and Is Associated with Vasopressin Signaling and Apoptosis In Vivo in Mice. Delestré L, Bakey Z, Prado C, Hoffmann S, Bihoreau MT, Lelongt B, Gauguier D. PLoS One 10 e0136781 (2015)
  100. Germ-line and somatic EPHA2 coding variants in lens aging and cataract. Bennett TM, M'Hamdi O, Hejtmancik JF, Shiels A. PLoS One 12 e0189881 (2017)
  101. Structure of the EphB6 receptor ectodomain. Mason EO, Goldgur Y, Robev D, Freywald A, Nikolov DB, Himanen JP. PLoS One 16 e0247335 (2021)
  102. Degenerate PCR-based cloning method for Eph receptors and analysis of their expression in the developing murine central nervous system and vasculature. Bovenkamp DE, Greer PA. DNA Cell Biol 20 203-213 (2001)
  103. Molecular dynamics simulation of the C-terminal sterile alpha-motif domain of human p73alpha: evidence of a dynamical relationship between helices 3 and 5. Falconi M, Melino G, Desideri A. Biochem Biophys Res Commun 316 1037-1042 (2004)
  104. The intracellular domains of the EphB6 and EphA10 receptor tyrosine pseudokinases function as dynamic signalling hubs. Liang LY, Roy M, Horne CR, Sandow JJ, Surudoi M, Dagley LF, Young SN, Dite T, Babon JJ, Janes PW, Patel O, Murphy JM, Lucet IS. Biochem J 478 3351-3371 (2021)
  105. Unexpected Distribution of Chitin and Chitin Synthase across Soft-Bodied Cnidarians. Vandepas LE, Tassia MG, Halanych KM, Amemiya CT. Biomolecules 13 777 (2023)
  106. A Robust FISH Assay to Detect FGFR2 Translocations in Intrahepatic Cholangiocarcinoma Patients. Zhang L, Zheng H, Xu L, You S, Shen Y, Han Y, Anderson S. Diagnostics (Basel) 13 2088 (2023)
  107. Epitope mapping of an anti-diacylglycerol kinase delta monoclonal antibody DdMab-1. Sano M, Asano T, Kaneko MK, Kato Y. Biochem Biophys Rep 24 100808 (2020)