1b64 Citations

The solution structure of the guanine nucleotide exchange domain of human elongation factor 1beta reveals a striking resemblance to that of EF-Ts from Escherichia coli.

Structure 7 217-26 (1999)
Cited: 27 times
EuropePMC logo PMID: 10368288

Abstract

Background

In eukaryotic protein synthesis, the multi-subunit elongation factor 1 (EF-1) plays an important role in ensuring the fidelity and regulating the rate of translation. EF-1alpha, which transports the aminoacyl tRNA to the ribosome, is a member of the G-protein superfamily. EF-1beta regulates the activity of EF-1alpha by catalyzing the exchange of GDP for GTP and thereby regenerating the active form of EF-1alpha. The structure of the bacterial analog of EF-1alpha, EF-Tu has been solved in complex with its GDP exchange factor, EF-Ts. These structures indicate a mechanism for GDP-GTP exchange in prokaryotes. Although there is good sequence conservation between EF-1alpha and EF-Tu, there is essentially no sequence similarity between EF-1beta and EF-Ts. We wished to explore whether the prokaryotic exchange mechanism could shed any light on the mechanism of eukaryotic translation elongation.

Results

Here, we report the structure of the guanine-nucleotide exchange factor (GEF) domain of human EF-1beta (hEF-1beta, residues 135-224); hEF-1beta[135-224], determined by nuclear magnetic resonance spectroscopy. Sequence conservation analysis of the GEF domains of EF-1 subunits beta and delta from widely divergent organisms indicates that the most highly conserved residues are in two loop regions. Intriguingly, hEF-1beta[135-224] shares structural homology with the GEF domain of EF-Ts despite their different primary sequences.

Conclusion

On the basis of both the structural homology between EF-Ts and hEF-1beta[135-224] and the sequence conservation analysis, we propose that the mechanism of guanine-nucleotide exchange in protein synthesis has been conserved in prokaryotes and eukaryotes. In particular, Tyr181 of hEF-1beta[135-224] appears to be analogous to Phe81 of Escherichia coli EF-Ts.

Reviews - 1b64 mentioned but not cited (1)

  1. Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field. Nielsen JT, Eghbalnia HR, Nielsen NC. Prog Nucl Magn Reson Spectrosc 60 1-28 (2012)

Articles - 1b64 mentioned but not cited (7)

  1. Crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 reveals a new protein family with an RNA recognition motif-like domain. Ebihara A, Yao M, Masui R, Tanaka I, Yokoyama S, Kuramitsu S. Protein Sci 15 1494-1499 (2006)
  2. Improved prediction of critical residues for protein function based on network and phylogenetic analyses. Thibert B, Bredesen DE, del Rio G. BMC Bioinformatics 6 213 (2005)
  3. CASP5 target classification. Kinch LN, Qi Y, Hubbard TJ, Grishin NV. Proteins 53 Suppl 6 340-351 (2003)
  4. Crystal structure of Mycobacterium tuberculosis LrpA, a leucine-responsive global regulator associated with starvation response. Reddy MC, Gokulan K, Jacobs WR, Ioerger TR, Sacchettini JC. Protein Sci 17 159-170 (2008)
  5. Efficient identification of critical residues based only on protein structure by network analysis. Cusack MP, Thibert B, Bredesen DE, Del Rio G. PLoS One 2 e421 (2007)
  6. Quaternary organization of the human eEF1B complex reveals unique multi-GEF domain assembly. Bondarchuk TV, Shalak VF, Lozhko DM, Fatalska A, Szczepanowski RH, Liudkovska V, Tsuvariev OY, Dadlez M, El'skaya AV, Negrutskii BS. Nucleic Acids Res 50 9490-9504 (2022)
  7. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (5)

  1. Elongation factors in protein biosynthesis. Andersen GR, Nissen P, Nyborg J. Trends Biochem Sci 28 434-441 (2003)
  2. Structural information for explaining the molecular mechanism of protein biosynthesis. Clark BF, Thirup S, Kjeldgaard M, Nyborg J. FEBS Lett 452 41-46 (1999)
  3. Regulation of GTPases in the bacterial translation machinery. Sprinzl M, Brock S, Huang Y, Milovnik P, Nanninga M, Nesper-Brock M, Rütthard H, Szkaradkiewicz K. Biol Chem 381 367-375 (2000)
  4. Structural studies of eukaryotic elongation factors. Andersen GR, Nyborg J. Cold Spring Harb Symp Quant Biol 66 425-437 (2001)
  5. Non-translational Connections of eEF1B in the Cytoplasm and Nucleus of Cancer Cells. Negrutskii B. Front Mol Biosci 7 56 (2020)

Articles citing this publication (14)

  1. Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Balpha. Andersen GR, Pedersen L, Valente L, Chatterjee I, Kinzy TG, Kjeldgaard M, Nyborg J. Mol Cell 6 1261-1266 (2000)
  2. Mutations in elongation factor 1beta, a guanine nucleotide exchange factor, enhance translational fidelity. Carr-Schmid A, Valente L, Loik VI, Williams T, Starita LM, Kinzy TG. Mol Cell Biol 19 5257-5266 (1999)
  3. The crystal structure of Sulfolobus solfataricus elongation factor 1alpha in complex with GDP reveals novel features in nucleotide binding and exchange. Vitagliano L, Masullo M, Sica F, Zagari A, Bocchini V. EMBO J 20 5305-5311 (2001)
  4. High resolution crystal structure of bovine mitochondrial EF-Tu in complex with GDP. Andersen GR, Thirup S, Spremulli LL, Nyborg J. J Mol Biol 297 421-436 (2000)
  5. Kinetics of the interactions between yeast elongation factors 1A and 1Balpha, guanine nucleotides, and aminoacyl-tRNA. Gromadski KB, Schümmer T, Strømgaard A, Knudsen CR, Kinzy TG, Rodnina MV. J Biol Chem 282 35629-35637 (2007)
  6. Mapping the human translation elongation factor eEF1H complex using the yeast two-hybrid system. Mansilla F, Friis I, Jadidi M, Nielsen KM, Clark BF, Knudsen CR. Biochem J 365 669-676 (2002)
  7. Eukaryotic Translation Elongation Factor 1 Delta Inhibits the Nuclear Import of the Nucleoprotein and PA-PB1 Heterodimer of Influenza A Virus. Gao Q, Yang C, Ren C, Zhang S, Gao X, Jin M, Chen H, Ma W, Zhou H. J Virol 95 e01391-20 (2020)
  8. Evolutionarily conserved binding of translationally controlled tumor protein to eukaryotic elongation factor 1B. Wu H, Gong W, Yao X, Wang J, Perrett S, Feng Y. J Biol Chem 290 8694-8710 (2015)
  9. Crystal structure of the YajQ protein from Haemophilus influenzae reveals a tandem of RNP-like domains. Teplyakov A, Obmolova G, Bir N, Reddy P, Howard AJ, Gilliland GL. J Struct Funct Genomics 4 1-9 (2003)
  10. Rapid fold and structure determination of the archaeal translation elongation factor 1beta from Methanobacterium thermoautotrophicum. Kozlov G, Ekiel I, Beglova N, Yee A, Dharamsi A, Engel A, Siddiqui N, Nong A, Gehring K. J Biomol NMR 17 187-194 (2000)
  11. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα. Trosiuk TV, Shalak VF, Szczepanowski RH, Negrutskii BS, El'skaya AV. FEBS J 283 484-497 (2016)
  12. The eEF1 family of mammalian translation elongation factors. Negrutskii BS, Shalak VF, Novosylna OV, Porubleva LV, Lozhko DM, El'skaya AV. BBA Adv 3 100067 (2023)
  13. The C-terminal region of human eukaryotic elongation factor 1Bδ. Wu H, Wang C, Gong W, Wang J, Xuan J, Perrett S, Feng Y. J Biomol NMR 64 181-187 (2016)
  14. Crystallization and preliminary X-ray crystallographic analysis of the Sulfolobus solfataricus nucleotide-exchange factor 1beta. Ruggiero A, Masullo M, Arcari P, Raimo G, Vitagliano L, Zagari A. Acta Crystallogr Sect F Struct Biol Cryst Commun 61 1000-1002 (2005)


Related citations provided by authors (1)

  1. 1H, 15N and 13C Chemical Shift Assignment of the Guanine Nucleotide Exchange Domain of Human Elongation Factor-One Beta. Perez JM, Kriek J, Dijk J, Moller W, Siegal G, Hard K, Kalverda AP, Canters GW J. Biomol. NMR 12 467- (1998)