1b75 Citations

The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases.

EMBO J 17 6377-84 (1998)
Cited: 47 times
EuropePMC logo PMID: 9799245

Abstract

The structure of the Escherichia coli ribosomal protein L25 has been determined to an r.m.s. displacement of backbone heavy atoms of 0.62 +/- 0.14 A by multi-dimensional heteronuclear NMR spectroscopy on protein samples uniformly labeled with 15N or 15N/13C. L25 shows a new topology for RNA-binding proteins consisting of a six-stranded beta-barrel and two alpha-helices. A putative RNA-binding surface for L25 has been obtained by comparison of backbone 15N chemical shifts for L25 with and without a bound cognate RNA containing the eubacterial E-loop that is the site for binding of L25 to 5S ribosomal RNA. Sequence comparisons with related proteins, including the general stress protein, CTC, show that the residues involved in RNA binding are highly conserved, thereby providing further confirmation of the binding surface. Tertiary structure comparisons indicate that the six-stranded beta-barrels of L25 and of the tRNA anticodon-binding domain of glutaminyl-tRNA synthetase are similar.

Reviews - 1b75 mentioned but not cited (1)

  1. The natural history of ubiquitin and ubiquitin-related domains. Burroughs AM, Iyer LM, Aravind L. Front Biosci (Landmark Ed) 17 1433-1460 (2012)

Articles - 1b75 mentioned but not cited (6)

  1. Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Burroughs AM, Balaji S, Iyer LM, Aravind L. Biol Direct 2 18 (2007)
  2. A coarse-grained force field for Protein-RNA docking. Setny P, Zacharias M. Nucleic Acids Res 39 9118-9129 (2011)
  3. De novo computational RNA modeling into cryo-EM maps of large ribonucleoprotein complexes. Kappel K, Liu S, Larsen KP, Skiniotis G, Puglisi EV, Puglisi JD, Zhou ZH, Zhao R, Das R. Nat Methods 15 947-954 (2018)
  4. Long-residency hydration, cation binding, and dynamics of loop E/helix IV rRNA-L25 protein complex. Réblová K, Spacková N, Koca J, Leontis NB, Sponer J. Biophys J 87 3397-3412 (2004)
  5. Sampling Native-like Structures of RNA-Protein Complexes through Rosetta Folding and Docking. Kappel K, Das R. Structure 27 140-151.e5 (2019)
  6. An account of solvent accessibility in protein-RNA recognition. Mukherjee S, Bahadur RP. Sci Rep 8 10546 (2018)


Reviews citing this publication (7)

  1. NMR spectroscopy of RNA. Fürtig B, Richter C, Wöhnert J, Schwalbe H. Chembiochem 4 936-962 (2003)
  2. 5 S rRNA: structure and interactions. Szymański M, Barciszewska MZ, Erdmann VA, Barciszewski J. Biochem J 371 641-651 (2003)
  3. Specific features of 5S rRNA structure - its interactions with macromolecules and possible functions. Smirnov AV, Entelis NS, Krasheninnikov IA, Martin R, Tarassov IA. Biochemistry (Mosc) 73 1418-1437 (2008)
  4. From protein sequence to function. Danchin A. Curr Opin Struct Biol 9 363-367 (1999)
  5. A decade of progress in understanding the structural basis of protein synthesis. Al-Karadaghi S, Kristensen O, Liljas A. Prog Biophys Mol Biol 73 167-193 (2000)
  6. Bacterial 5S rRNA-binding proteins of the CTC family. Gongadze GM, Korepanov AP, Korobeinikova AV, Garber MB. Biochemistry (Mosc) 73 1405-1417 (2008)
  7. Structural Aspects of Ribosomal RNA Recognition by Ribosomal Proteins. Nikulin AD. Biochemistry (Mosc) 83 S111-S133 (2018)

Articles citing this publication (33)

  1. An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Noeske J, Richter C, Grundl MA, Nasiri HR, Schwalbe H, Wöhnert J. Proc Natl Acad Sci U S A 102 1372-1377 (2005)
  2. An aminoacyl-tRNA synthetase paralog with a catalytic role in histidine biosynthesis. Sissler M, Delorme C, Bond J, Ehrlich SD, Renault P, Francklyn C. Proc Natl Acad Sci U S A 96 8985-8990 (1999)
  3. The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution. Mueller F, Sommer I, Baranov P, Matadeen R, Stoldt M, Wöhnert J, Görlach M, van Heel M, Brimacombe R. J Mol Biol 298 35-59 (2000)
  4. Structure of Escherichia coli ribosomal protein L25 complexed with a 5S rRNA fragment at 1.8-A resolution. Lu M, Steitz TA. Proc Natl Acad Sci U S A 97 2023-2028 (2000)
  5. Direct identification of NH...N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy. Wöhnert J, Dingley AJ, Stoldt M, Görlach M, Grzesiek S, Brown LR. Nucleic Acids Res 27 3104-3110 (1999)
  6. Determinants of the recognition of enteroviral cloverleaf RNA by coxsackievirus B3 proteinase 3C. Zell R, Sidigi K, Bucci E, Stelzner A, Görlach M. RNA 8 188-201 (2002)
  7. Crystal structure of the intact archaeal translation initiation factor 2 demonstrates very high conformational flexibility in the alpha- and beta-subunits. Stolboushkina E, Nikonov S, Nikulin A, Bläsi U, Manstein DJ, Fedorov R, Garber M, Nikonov O. J Mol Biol 382 680-691 (2008)
  8. A proteomic analysis of the salt stress response of Listeria monocytogenes. Duché O, Trémoulet F, Namane A, Labadie J, European Listeria Genome Consortium. FEMS Microbiol Lett 215 183-188 (2002)
  9. Structure of Hsp15 reveals a novel RNA-binding motif. Staker BL, Korber P, Bardwell JC, Saper MA. EMBO J 19 749-757 (2000)
  10. 5S ribosomal RNA database Y2K. Szymanski M, Barciszewska MZ, Barciszewski J, Erdmann VA. Nucleic Acids Res 28 166-167 (2000)
  11. Role of ctc from Listeria monocytogenes in osmotolerance. Gardan R, Duché O, Leroy-Sétrin S, Labadie J, European Listeria Genome Consortium. Appl Environ Microbiol 69 154-161 (2003)
  12. The solution structure of ribosomal protein L36 from Thermus thermophilus reveals a zinc-ribbon-like fold. Härd T, Rak A, Allard P, Kloo L, Garber M. J Mol Biol 296 169-180 (2000)
  13. Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy. Wacker A, Buck J, Mathieu D, Richter C, Wöhnert J, Schwalbe H. Nucleic Acids Res 39 6802-6812 (2011)
  14. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy. Warhaut S, Mertinkus KR, Höllthaler P, Fürtig B, Heilemann M, Hengesbach M, Schwalbe H. Nucleic Acids Res 45 5512-5522 (2017)
  15. Triple-resonance experiments for correlation of H5 and exchangeable pyrimidine base hydrogens in (13)C,(15)N-labeled RNA. Wöhnert J, Ramachandran R, Görlach M, Brown LR. J Magn Reson 139 430-433 (1999)
  16. Cross-species hybridization of a Borrelia burgdorferi DNA array reveals infection- and culture-associated genes of the unsequenced genome of the relapsing fever agent Borrelia hermsii. Zhong J, Barbour AG. Mol Microbiol 51 729-748 (2004)
  17. tRNA-assisted overproduction of eukaryotic ribosomal proteins. Dieci G, Bottarelli L, Ballabeni A, Ottonello S. Protein Expr Purif 18 346-354 (2000)
  18. 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides. Richter C, Kovacs H, Buck J, Wacker A, Fürtig B, Bermel W, Schwalbe H. J Biomol NMR 47 259-269 (2010)
  19. Triple resonance experiments for the simultaneous correlation of H6/H5 and exchangeable protons of pyrimidine nucleotides in 13C,15N-labeled RNA applicable to larger RNA molecules. Wöhnert J, Görlach M, Schwalbe H. J Biomol NMR 26 79-83 (2003)
  20. Dynamic alpha-helices: conformations that do not conform. Sandhu KS, Dash D. Proteins 68 109-122 (2007)
  21. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding. Nakashima T, Yao M, Kawamura S, Iwasaki K, Kimura M, Tanaka I. RNA 7 692-701 (2001)
  22. N-terminal domain, residues 1-91, of ribosomal protein TL5 from Thermus thermophilus binds specifically and strongly to the region of 5S rRNA containing loop E. Gongadze GM, Meshcheryakov VA, Serganov AA, Fomenkova NP, Mudrik ES, Jonsson BH, Liljas A, Nikonov SV, Garber MB. FEBS Lett 451 51-55 (1999)
  23. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches. Wacker A, Buck J, Richter C, Schwalbe H, Wöhnert J. RNA Biol 9 672-680 (2012)
  24. Adenine protonation enables cyclic-di-GMP binding to cyclic-GAMP sensing riboswitches. Keller H, Weickhmann AK, Bock T, Wöhnert J. RNA 24 1390-1402 (2018)
  25. Evaluation of 15N-detected H-N correlation experiments on increasingly large RNAs. Schnieders R, Richter C, Warhaut S, de Jesus V, Keyhani S, Duchardt-Ferner E, Keller H, Wöhnert J, Kuhn LT, Breeze AL, Bermel W, Schwalbe H, Fürtig B. J Biomol NMR 69 31-44 (2017)
  26. Identification of Borrelia burgdorferi ribosomal protein L25 by the phage surface display method and evaluation of the protein's value for serodiagnosis. Mueller M, Bunk S, Diterich I, Weichel M, Rauter C, Hassler D, Hermann C, Crameri R, Hartung T. J Clin Microbiol 44 3778-3780 (2006)
  27. Impact of spin label rigidity on extent and accuracy of distance information from PRE data. Schnorr KA, Gophane DB, Helmling C, Cetiner E, Pasemann K, Fürtig B, Wacker A, Qureshi NS, Gränz M, Barthelmes D, Jonker HRA, Stirnal E, Sigurdsson ST, Schwalbe H. J Biomol NMR 68 53-63 (2017)
  28. 5S rRNA-recognition module of CTC family proteins and its evolution. Korobeinikova AV, Gongadze GM, Korepanov AP, Eliseev BD, Bazhenova MV, Garber MB. Biochemistry (Mosc) 73 156-163 (2008)
  29. Aminoacyl-tRNA synthetases database Y2K. Szymanski M, Barciszewski J. Nucleic Acids Res 28 326-328 (2000)
  30. Comparison of different torsion angle approaches for NMR structure determination. Bardiaux B, Malliavin TE, Nilges M, Mazur AK. J Biomol NMR 34 153-166 (2006)
  31. Ligand binding to 2΄-deoxyguanosine sensing riboswitch in metabolic context. Kim YB, Wacker A, Laer KV, Rogov VV, Suess B, Schwalbe H. Nucleic Acids Res 45 5375-5386 (2017)
  32. Evaluation of Escherichia coli proteins that burden nonaffinity-based chromatography as a potential strategy for improved purification performance. Bartlow P, Tiwari N, Beitle RR, Ataai MM. Biotechnol Prog 28 137-145 (2012)
  33. Protein CTC from Aquifex aeolicus possesses a full-sized 5S rRNA-binding domain. Korobeinikova AV, Shestakov SA, Korepanov AP, Garber MB, Gongadze GM. Biochimie 91 453-456 (2009)