1b7e Citations

The three-dimensional structure of a Tn5 transposase-related protein determined to 2.9-A resolution.

J Biol Chem 274 11904-13 (1999)
Cited: 49 times
EuropePMC logo PMID: 10207011

Abstract

Transposon Tn5 employs a unique means of self-regulation by expressing a truncated version of the transposase enzyme that acts as an inhibitor. The inhibitor protein differs from the full-length transposase only by the absence of the first 55 N-terminal amino acid residues. It contains the catalytic active site of transposase and a C-terminal domain involved in protein-protein interactions. The three-dimensional structure of Tn5 inhibitor determined to 2.9-A resolution is reported here. A portion of the protein fold of the catalytic core domain is similar to the folds of human immunodeficiency virus-1 integrase, avian sarcoma virus integrase, and bacteriophage Mu transposase. The Tn5 inhibitor contains an insertion that extends the beta-sheet of the catalytic core from 5 to 9 strands. All three of the conserved residues that make up the "DDE" motif of the active site are visible in the structure. An arginine residue that is strictly conserved among the IS4 family of bacterial transposases is present at the center of the active site, suggesting a catalytic motif of "DDRE." A novel C-terminal domain forms a dimer interface across a crystallographic 2-fold axis. Although this dimer represents the structure of the inhibited complex, it provides insight into the structure of the synaptic complex.

Reviews - 1b7e mentioned but not cited (1)

  1. DDE transposases: Structural similarity and diversity. Nesmelova IV, Hackett PB. Adv Drug Deliv Rev 62 1187-1195 (2010)

Articles - 1b7e mentioned but not cited (2)

  1. The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification. Majorek KA, Dunin-Horkawicz S, Steczkiewicz K, Muszewska A, Nowotny M, Ginalski K, Bujnicki JM. Nucleic Acids Res 42 4160-4179 (2014)
  2. On the use of direct-coupling analysis with a reduced alphabet of amino acids combined with super-secondary structure motifs for protein fold prediction. Anton B, Besalú M, Fornes O, Bonet J, Molina A, Molina-Fernandez R, De Las Cuevas G, Fernandez-Fuentes N, Oliva B. NAR Genom Bioinform 3 lqab027 (2021)


Reviews citing this publication (12)

  1. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG. Annu Rev Immunol 18 495-527 (2000)
  2. Integrating DNA: transposases and retroviral integrases. Haren L, Ton-Hoang B, Chandler M. Annu Rev Microbiol 53 245-281 (1999)
  3. Tn7: smarter than we thought. Peters JE, Craig NL. Nat Rev Mol Cell Biol 2 806-814 (2001)
  4. Integrating prokaryotes and eukaryotes: DNA transposases in light of structure. Hickman AB, Chandler M, Dyda F. Crit Rev Biochem Mol Biol 45 50-69 (2010)
  5. Tn5 as a model for understanding DNA transposition. Reznikoff WS. Mol Microbiol 47 1199-1206 (2003)
  6. Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements. Tobes R, Pareja E. BMC Genomics 7 62 (2006)
  7. Structure/function insights into Tn5 transposition. Steiniger-White M, Rayment I, Reznikoff WS. Curr Opin Struct Biol 14 50-57 (2004)
  8. Playing second fiddle: second-strand processing and liberation of transposable elements from donor DNA. Turlan C, Chandler M. Trends Microbiol 8 268-274 (2000)
  9. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Burton BM, Baker TA. Protein Sci 14 1945-1954 (2005)
  10. Tn5: A molecular window on transposition. Reznikoff WS, Bhasin A, Davies DR, Goryshin IY, Mahnke LA, Naumann T, Rayment I, Steiniger-White M, Twining SS. Biochem Biophys Res Commun 266 729-734 (1999)
  11. The mu transpososome through a topological lens. Harshey RM, Jayaram M. Crit Rev Biochem Mol Biol 41 387-405 (2006)
  12. Escherichia coli and Salmonella 2000: the view from here. Schaechter M, View From Here Group. Microbiol Mol Biol Rev 65 119-130 (2001)

Articles citing this publication (34)

  1. Transposition of hAT elements links transposable elements and V(D)J recombination. Zhou L, Mitra R, Atkinson PW, Hickman AB, Dyda F, Craig NL. Nature 432 995-1001 (2004)
  2. Molecular evolutionary analysis of the widespread piggyBac transposon family and related "domesticated" sequences. Sarkar A, Sim C, Hong YS, Hogan JR, Fraser MJ, Robertson HM, Collins FH. Mol Genet Genomics 270 173-180 (2003)
  3. Identification of two catalytic residues in RAG1 that define a single active site within the RAG1/RAG2 protein complex. Fugmann SD, Villey IJ, Ptaszek LM, Schatz DG. Mol Cell 5 97-107 (2000)
  4. Transposon Tn5. Reznikoff WS. Annu Rev Genet 42 269-286 (2008)
  5. Unexpected structural diversity in DNA recombination: the restriction endonuclease connection. Hickman AB, Li Y, Mathew SV, May EW, Craig NL, Dyda F. Mol Cell 5 1025-1034 (2000)
  6. The ORF1 protein encoded by LINE-1: structure and function during L1 retrotransposition. Martin SL. J Biomed Biotechnol 2006 45621 (2006)
  7. Transposons inactivate biosynthesis of the nonribosomal peptide microcystin in naturally occurring Planktothrix spp. Christiansen G, Kurmayer R, Liu Q, Börner T. Appl Environ Microbiol 72 117-123 (2006)
  8. Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat Ends. Chen A, Weber IT, Harrison RW, Leis J. J Biol Chem 281 4173-4182 (2006)
  9. Structural analysis of the bipartite DNA-binding domain of Tc3 transposase bound to transposon DNA. Watkins S, van Pouderoyen G, Sixma TK. Nucleic Acids Res 32 4306-4312 (2004)
  10. Characterization of a Tn5 pre-cleavage synaptic complex. Bhasin A, Goryshin IY, Steiniger-White M, York D, Reznikoff WS. J Mol Biol 302 49-63 (2000)
  11. Trans catalysis in Tn5 transposition. Naumann TA, Reznikoff WS. Proc Natl Acad Sci U S A 97 8944-8949 (2000)
  12. A three-dimensional model of the human immunodeficiency virus type 1 integration complex. Wielens J, Crosby IT, Chalmers DK. J Comput Aided Mol Des 19 301-317 (2005)
  13. Biochemical characterization of a SET and transposase fusion protein, Metnase: its DNA binding and DNA cleavage activity. Roman Y, Oshige M, Lee YJ, Goodwin K, Georgiadis MM, Hromas RA, Lee SH. Biochemistry 46 11369-11376 (2007)
  14. DNA melting initiates the RAG catalytic pathway. Ru H, Mi W, Zhang P, Alt FW, Schatz DG, Liao M, Wu H. Nat Struct Mol Biol 25 732-742 (2018)
  15. Tn5 transposase with an altered specificity for transposon ends. Naumann TA, Reznikoff WS. J Bacteriol 184 233-240 (2002)
  16. Amino acid residues in Rag1 crucial for DNA hairpin formation. Lu CP, Sandoval H, Brandt VL, Rice PA, Roth DB. Nat Struct Mol Biol 13 1010-1015 (2006)
  17. Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv. Tobiason DM, Buchner JM, Thiel WH, Gernert KM, Karls AC. Mol Microbiol 39 641-651 (2001)
  18. Analysis of the DDE motif in the Mutator superfamily. Hua-Van A, Capy P. J Mol Evol 67 670-681 (2008)
  19. Hyperactive mariner transposons are created by mutations that disrupt allosterism and increase the rate of transposon end synapsis. Liu D, Chalmers R. Nucleic Acids Res 42 2637-2645 (2014)
  20. Phosphate coordination and movement of DNA in the Tn5 synaptic complex: role of the (R)YREK motif. Klenchin VA, Czyz A, Goryshin IY, Gradman R, Lovell S, Rayment I, Reznikoff WS. Nucleic Acids Res 36 5855-5862 (2008)
  21. Rag-1 mutations associated with B-cell-negative scid dissociate the nicking and transesterification steps of V(D)J recombination. Li W, Chang FC, Desiderio S. Mol Cell Biol 21 3935-3946 (2001)
  22. The Arabidopsis TAG1 transposase has an N-terminal zinc finger DNA binding domain that recognizes distinct subterminal motifs. Mack AM, Crawford NM. Plant Cell 13 2319-2331 (2001)
  23. A high-throughput assay for Tn5 Tnp-induced DNA cleavage. Ason B, Reznikoff WS. Nucleic Acids Res 32 e83 (2004)
  24. Targeting Tn5 transposase identifies human immunodeficiency virus type 1 inhibitors. Ason B, Knauss DJ, Balke AM, Merkel G, Skalka AM, Reznikoff WS. Antimicrob Agents Chemother 49 2035-2043 (2005)
  25. Comparative sequence analysis of IS50/Tn5 transposase. Reznikoff WS, Bordenstein SR, Apodaca J. J Bacteriol 186 8240-8247 (2004)
  26. Insertion sequence profiling of UK Mycoplasma bovis field isolates. Miles K, McAuliffe L, Persson A, Ayling RD, Nicholas RA. Vet Microbiol 107 301-306 (2005)
  27. A bifunctional DNA binding region in Tn5 transposase. Gradman RJ, Ptacin JL, Bhasin A, Reznikoff WS, Goryshin IY. Mol Microbiol 67 528-540 (2008)
  28. Mutation of Tn5 transposase beta-loop residues affects all steps of Tn5 transposition: the role of conformational changes in Tn5 transposition. Steiniger M, Metzler J, Reznikoff WS. Biochemistry 45 15552-15562 (2006)
  29. Soluble expression, purification and characterization of the full length IS2 Transposase. Lewis LA, Astatke M, Umekubo PT, Alvi S, Saby R, Afrose J. Mob DNA 2 14 (2011)
  30. Purification of the Caenorhabditis elegans transposase Tc1A refolded during gel filtration chromatography. García-Sáez I, Plasterk RH. Protein Expr Purif 19 355-361 (2000)
  31. Structural insight into Tn3 family transposition mechanism. Shkumatov AV, Aryanpour N, Oger CA, Goossens G, Hallet BF, Efremov RG. Nat Commun 13 6155 (2022)
  32. Bacillus subtilis YkuK protein is distantly related to RNase H. Knizewski Ł, Ginalski K. FEMS Microbiol Lett 251 341-346 (2005)
  33. Tn5 tagments and transposes oligos to single-stranded DNA for strand-specific RNA sequencing. Zhang Y, Tang Y, Sun Z, Jia J, Fang Y, Wan X, Fang D. Genome Res 33 412-426 (2023)
  34. Tn5 synaptic complex formation: role of transposase residue W450. Gradman RJ, Reznikoff WS. J Bacteriol 190 1484-1487 (2008)