1bis Citations

Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium.

Proc Natl Acad Sci U S A 95 9150-4 (1998)
Related entries: 1biu, 1biz

Cited: 223 times
EuropePMC logo PMID: 9689049

Abstract

HIV-1 integrase is an essential enzyme in the life cycle of the virus, responsible for catalyzing the insertion of the viral genome into the host cell chromosome; it provides an attractive target for antiviral drug design. The previously reported crystal structure of the HIV-1 integrase core domain revealed that this domain belongs to the superfamily of polynucleotidyltransferases. However, the position of the conserved catalytic carboxylic acids differed from those observed in other enzymes of the class, and attempts to crystallize in the presence of the cofactor, Mg2+, were unsuccessful. We report here three additional crystal structures of the core domain of HIV-1 integrase mutants, crystallized in the presence and absence of cacodylate, as well as complexed with Mg2+. These three crystal forms, containing between them seven independent core domain structures, demonstrate the unambiguous extension of the previously disordered helix alpha4 toward the amino terminus from residue M154 and show that the catalytic E152 points in the general direction of the two catalytic aspartates, D64 and D116. In the vicinity of the active site, the structure of the protein in the absence of cacodylate exhibits significant deviations from the previously reported structures. These differences can be attributed to the modification of C65 and C130 by cacodylate, which was an essential component of the original crystallization mixture. We also demonstrate that in the absence of cacodylate this protein will bind to Mg2+, and could provide a satisfactory platform for binding of inhibitors.

Reviews - 1bis mentioned but not cited (4)

  1. Structural biology of retroviral DNA integration. Li X, Krishnan L, Cherepanov P, Engelman A. Virology 411 194-205 (2011)
  2. Computer tools in the discovery of HIV-1 integrase inhibitors. Liao C, Nicklaus MC. Future Med Chem 2 1123-1140 (2010)
  3. HIV-1 Reverse Transcriptase/Integrase Dual Inhibitors: A Review of Recent Advances and Structure-activity Relationship Studies. Mahboubi-Rabbani M, Abbasi M, Hajimahdi Z, Zarghi A. Iran J Pharm Res 20 333-369 (2021)
  4. The Effect of Treatment-Associated Mutations on HIV Replication and Transmission Cycles. Johnson MM, Jones CE, Clark DN. Viruses 15 107 (2022)

Articles - 1bis mentioned but not cited (26)

  1. Structural basis for the recognition between HIV-1 integrase and transcriptional coactivator p75. Cherepanov P, Ambrosio AL, Rahman S, Ellenberger T, Engelman A. Proc Natl Acad Sci U S A 102 17308-17313 (2005)
  2. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Chen JC, Krucinski J, Miercke LJ, Finer-Moore JS, Tang AH, Leavitt AD, Stroud RM. Proc Natl Acad Sci U S A 97 8233-8238 (2000)
  3. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. Wang JY, Ling H, Yang W, Craigie R. EMBO J 20 7333-7343 (2001)
  4. Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Goldgur Y, Dyda F, Hickman AB, Jenkins TM, Craigie R, Davies DR. Proc Natl Acad Sci U S A 95 9150-9154 (1998)
  5. HIV transmission. Selection bias at the heterosexual HIV-1 transmission bottleneck. Carlson JM, Schaefer M, Monaco DC, Batorsky R, Claiborne DT, Prince J, Deymier MJ, Ende ZS, Klatt NR, DeZiel CE, Lin TH, Peng J, Seese AM, Shapiro R, Frater J, Ndung'u T, Tang J, Goepfert P, Gilmour J, Price MA, Kilembe W, Heckerman D, Goulder PJ, Allen TM, Allen S, Hunter E. Science 345 1254031 (2014)
  6. Virus evolution reveals an exclusive role for LEDGF/p75 in chromosomal tethering of HIV. Hombrouck A, De Rijck J, Hendrix J, Vandekerckhove L, Voet A, De Maeyer M, Witvrouw M, Engelborghs Y, Christ F, Gijsbers R, Debyser Z. PLoS Pathog 3 e47 (2007)
  7. Facile measurement of ¹H-¹5N residual dipolar couplings in larger perdeuterated proteins. Fitzkee NC, Bax A. J Biomol NMR 48 65-70 (2010)
  8. Genetic analyses of DNA-binding mutants in the catalytic core domain of human immunodeficiency virus type 1 integrase. Lu R, Limón A, Ghory HZ, Engelman A. J Virol 79 2493-2505 (2005)
  9. HIV control is mediated in part by CD8+ T-cell targeting of specific epitopes. Pereyra F, Heckerman D, Carlson JM, Kadie C, Soghoian DZ, Karel D, Goldenthal A, Davis OB, DeZiel CE, Lin T, Peng J, Piechocka A, Carrington M, Walker BD. J Virol 88 12937-12948 (2014)
  10. Cavities and atomic packing in protein structures and interfaces. Sonavane S, Chakrabarti P. PLoS Comput Biol 4 e1000188 (2008)
  11. Determination of the structures of symmetric protein oligomers from NMR chemical shifts and residual dipolar couplings. Sgourakis NG, Lange OF, DiMaio F, André I, Fitzkee NC, Rossi P, Montelione GT, Bax A, Baker D. J Am Chem Soc 133 6288-6298 (2011)
  12. Novel bifunctional quinolonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis, biological activities, and mechanism of action. Di Santo R, Costi R, Roux A, Artico M, Lavecchia A, Marinelli L, Novellino E, Palmisano L, Andreotti M, Amici R, Galluzzo CM, Nencioni L, Palamara AT, Pommier Y, Marchand C. J Med Chem 49 1939-1945 (2006)
  13. Inhibiting the HIV integration process: past, present, and the future. Di Santo R. J Med Chem 57 539-566 (2014)
  14. Molecular dynamics studies of the wild-type and double mutant HIV-1 integrase complexed with the 5CITEP inhibitor: mechanism for inhibition and drug resistance. Barreca ML, Lee KW, Chimirri A, Briggs JM. Biophys J 84 1450-1463 (2003)
  15. Incorporating dipolar solvents with variable density in Poisson-Boltzmann electrostatics. Azuara C, Orland H, Bon M, Koehl P, Delarue M. Biophys J 95 5587-5605 (2008)
  16. Architecture and assembly of HIV integrase multimers in the absence of DNA substrates. Bojja RS, Andrake MD, Merkel G, Weigand S, Dunbrack RL, Skalka AM. J Biol Chem 288 7373-7386 (2013)
  17. NF-YC complexity is generated by dual promoters and alternative splicing. Ceribelli M, Benatti P, Imbriano C, Mantovani R. J Biol Chem 284 34189-34200 (2009)
  18. Binding modes of diketo-acid inhibitors of HIV-1 integrase: a comparative molecular dynamics simulation study. Huang M, Grant GH, Richards WG. J Mol Graph Model 29 956-964 (2011)
  19. Design and synthesis of bis-amide and hydrazide-containing derivatives of malonic acid as potential HIV-1 integrase inhibitors. Sechi M, Azzena U, Delussu MP, Dallocchio R, Dessì A, Cosseddu A, Pala N, Neamati N. Molecules 13 2442-2461 (2008)
  20. Structural basis of Mos1 transposase inhibition by the anti-retroviral drug Raltegravir. Wolkowicz UM, Morris ER, Robson M, Trubitsyna M, Richardson JM. ACS Chem Biol 9 743-751 (2014)
  21. Engineered Sleeping Beauty transposase redirects transposon integration away from genes. Miskey C, Kesselring L, Querques I, Abrusán G, Barabas O, Ivics Z. Nucleic Acids Res 50 2807-2825 (2022)
  22. Cotranscription and intergenic splicing of the PPARG and TSEN2 genes in cattle. Roux M, Levéziel H, Amarger V. BMC Genomics 7 71 (2006)
  23. The Preserved HTH-Docking Cleft of HIV-1 Integrase Is Functionally Critical. Galilee M, Britan-Rosich E, Griner SL, Uysal S, Baumgärtel V, Lamb DC, Kossiakoff AA, Kotler M, Stroud RM, Marx A, Alian A. Structure 24 1936-1946 (2016)
  24. Scandium-44 Radiolabeled Peptide and Peptidomimetic Conjugates Targeting Neuropilin-1 Co-Receptor as Potential Tools for Cancer Diagnosis and Anti-Angiogenic Therapy. Masłowska K, Redkiewicz P, Halik PK, Witkowska E, Tymecka D, Walczak R, Choiński J, Misicka A, Gniazdowska E. Biomedicines 11 564 (2023)
  25. Structural studies of the catalytic core of the primate foamy virus (PFV-1) integrase. Réty S, Reaeábková L, Dubanchet B, Silhán J, Legrand P, Lewit-Bentley A. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 881-886 (2010)
  26. The conformational feasibility for the formation of reaching dimer in ASV and HIV integrase: a molecular dynamics study. Balasubramanian S, Rajagopalan M, Bojja RS, Skalka AM, Andrake MD, Ramaswamy A. J Biomol Struct Dyn 35 3469-3485 (2017)


Reviews citing this publication (32)

  1. Integrating DNA: transposases and retroviral integrases. Haren L, Ton-Hoang B, Chandler M. Annu Rev Microbiol 53 245-281 (1999)
  2. Integrase and integration: biochemical activities of HIV-1 integrase. Delelis O, Carayon K, Saïb A, Deprez E, Mouscadet JF. Retrovirology 5 114 (2008)
  3. Molecular basis of human immunodeficiency virus type 1 drug resistance: overview and recent developments. Menéndez-Arias L. Antiviral Res 98 93-120 (2013)
  4. Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. Wlodawer A, Minor W, Dauter Z, Jaskolski M. FEBS J 275 1-21 (2008)
  5. Retroviral DNA integration. Hindmarsh P, Leis J. Microbiol Mol Biol Rev 63 836-43, table of contents (1999)
  6. Molecular basis of human immunodeficiency virus drug resistance: an update. Menéndez-Arias L. Antiviral Res 85 210-231 (2010)
  7. Integrase, LEDGF/p75 and HIV replication. Poeschla EM. Cell Mol Life Sci 65 1403-1424 (2008)
  8. Tn5 as a model for understanding DNA transposition. Reznikoff WS. Mol Microbiol 47 1199-1206 (2003)
  9. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Annunziata F, Pinna C, Dallavalle S, Tamborini L, Pinto A. Int J Mol Sci 21 E4618 (2020)
  10. Piecing together the structure of retroviral integrase, an important target in AIDS therapy. Jaskolski M, Alexandratos JN, Bujacz G, Wlodawer A. FEBS J 276 2926-2946 (2009)
  11. HIV-1 IN inhibitors: 2010 update and perspectives. Marchand C, Maddali K, Métifiot M, Pommier Y. Curr Top Med Chem 9 1016-1037 (2009)
  12. Structure/function insights into Tn5 transposition. Steiniger-White M, Rayment I, Reznikoff WS. Curr Opin Struct Biol 14 50-57 (2004)
  13. Emerging pharmacology: inhibitors of human immunodeficiency virus integration. Hazuda D, Iwamoto M, Wenning L. Annu Rev Pharmacol Toxicol 49 377-394 (2009)
  14. DDE transposases: Structural similarity and diversity. Nesmelova IV, Hackett PB. Adv Drug Deliv Rev 62 1187-1195 (2010)
  15. Past and future. Current drugs targeting HIV-1 integrase and reverse transcriptase-associated ribonuclease H activity: single and dual active site inhibitors. Esposito F, Tramontano E. Antivir Chem Chemother 23 129-144 (2014)
  16. Contemporary Transposon Tools: A Review and Guide through Mechanisms and Applications of Sleeping Beauty, piggyBac and Tol2 for Genome Engineering. Sandoval-Villegas N, Nurieva W, Amberger M, Ivics Z. Int J Mol Sci 22 5084 (2021)
  17. HIV integrase inhibitors as therapeutic agents in AIDS. Nair V, Chi G. Rev Med Virol 17 277-295 (2007)
  18. Current developments in HIV chemotherapy. Meadows DC, Gervay-Hague J. ChemMedChem 1 16-29 (2006)
  19. HIV-1 integrase inhibitors: an emerging clinical reality. Dayam R, Al-Mawsawi LQ, Neamati N. Drugs R D 8 155-168 (2007)
  20. HIV-1 integrase: the next target for AIDS therapy? d'Angelo J, Mouscadet JF, Desmaële D, Zouhiri F, Leh H. Pathol Biol (Paris) 49 237-246 (2001)
  21. Therapeutic strategies underpinning the development of novel techniques for the treatment of HIV infection. Tan JJ, Cong XJ, Hu LM, Wang CX, Jia L, Liang XJ. Drug Discov Today 15 186-197 (2010)
  22. Chemistry and structure-activity relationship of the styrylquinoline-type HIV integrase inhibitors. Mouscadet JF, Desmaële D. Molecules 15 3048-3078 (2010)
  23. Peptides that inhibit HIV-1 integrase by blocking its protein-protein interactions. Maes M, Loyter A, Friedler A. FEBS J 279 2795-2809 (2012)
  24. Raltegravir: molecular basis of its mechanism of action. Mouscadet JF, Tchertanov L. Eur J Med Res 14 Suppl 3 5-16 (2009)
  25. HIV-1 integrase multimerization as a therapeutic target. Feng L, Larue RC, Slaughter A, Kessl JJ, Kvaratskhelia M. Curr Top Microbiol Immunol 389 93-119 (2015)
  26. Different Pathways Leading to Integrase Inhibitors Resistance. Thierry E, Deprez E, Delelis O. Front Microbiol 7 2165 (2016)
  27. V(D)J recombination: how to tame a transposase. Brandt VL, Roth DB. Immunol Rev 200 249-260 (2004)
  28. HIV-1 integrase inhibitors: a review of their chemical development. Ingale KB, Bhatia MS. Antivir Chem Chemother 22 95-105 (2011)
  29. Developing G-quartet oligonucleotides as novel anti-HIV agents: focus on anti-HIV drug design. Jing N. Expert Opin Investig Drugs 9 1777-1785 (2000)
  30. Retroviral integrase protein and intasome nucleoprotein complex structures. Grawenhoff J, Engelman AN. World J Biol Chem 8 32-44 (2017)
  31. Different Pathways Conferring Integrase Strand-Transfer Inhibitors Resistance. Richetta C, Tu NQ, Delelis O. Viruses 14 2591 (2022)
  32. Interactions of HIV-1 proteins as targets for developing anti-HIV-1 peptides. Chandra K, Maes M, Friedler A. Future Med Chem 7 1055-1077 (2015)

Articles citing this publication (161)

  1. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Goldgur Y, Craigie R, Cohen GH, Fujiwara T, Yoshinaga T, Fujishita T, Sugimoto H, Endo T, Murai H, Davies DR. Proc Natl Acad Sci U S A 96 13040-13043 (1999)
  2. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Grobler JA, Stillmock K, Hu B, Witmer M, Felock P, Espeseth AS, Wolfe A, Egbertson M, Bourgeois M, Melamed J, Wai JS, Young S, Vacca J, Hazuda DJ. Proc Natl Acad Sci U S A 99 6661-6666 (2002)
  3. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). Shimura K, Kodama E, Sakagami Y, Matsuzaki Y, Watanabe W, Yamataka K, Watanabe Y, Ohata Y, Doi S, Sato M, Kano M, Ikeda S, Matsuoka M. J Virol 82 764-774 (2008)
  4. Sequence specificity of viral end DNA binding by HIV-1 integrase reveals critical regions for protein-DNA interaction. Esposito D, Craigie R. EMBO J 17 5832-5843 (1998)
  5. Mutational analysis of RAG1 and RAG2 identifies three catalytic amino acids in RAG1 critical for both cleavage steps of V(D)J recombination. Landree MA, Wibbenmeyer JA, Roth DB. Genes Dev 13 3059-3069 (1999)
  6. Mutations of acidic residues in RAG1 define the active site of the V(D)J recombinase. Kim DR, Dai Y, Mundy CL, Yang W, Oettinger MA. Genes Dev 13 3070-3080 (1999)
  7. An interlocked dimeric parallel-stranded DNA quadruplex: a potent inhibitor of HIV-1 integrase. Phan AT, Kuryavyi V, Ma JB, Faure A, Andréola ML, Patel DJ. Proc Natl Acad Sci U S A 102 634-639 (2005)
  8. The active sites of the influenza cap-dependent endonuclease are on different polymerase subunits. Li ML, Rao P, Krug RM. EMBO J 20 2078-2086 (2001)
  9. A novel co-crystal structure affords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75. Hare S, Shun MC, Gupta SS, Valkov E, Engelman A, Cherepanov P. PLoS Pathog 5 e1000259 (2009)
  10. Requirement for integrase during reverse transcription of human immunodeficiency virus type 1 and the effect of cysteine mutations of integrase on its interactions with reverse transcriptase. Zhu K, Dobard C, Chow SA. J Virol 78 5045-5055 (2004)
  11. Functional and structural characterization of the integrase from the prototype foamy virus. Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, Cherepanov P. Nucleic Acids Res 37 243-255 (2009)
  12. Dynamic modulation of HIV-1 integrase structure and function by cellular lens epithelium-derived growth factor (LEDGF) protein. McKee CJ, Kessl JJ, Shkriabai N, Dar MJ, Engelman A, Kvaratskhelia M. J Biol Chem 283 31802-31812 (2008)
  13. Human immunodeficiency virus type 1 integrase: arrangement of protein domains in active cDNA complexes. Gao K, Butler SL, Bushman F. EMBO J 20 3565-3576 (2001)
  14. Processing of viral DNA ends channels the HIV-1 integration reaction to concerted integration. Li M, Craigie R. J Biol Chem 280 29334-29339 (2005)
  15. Inositol hexakisphosphate kinase products contain diphosphate and triphosphate groups. Draskovic P, Saiardi A, Bhandari R, Burton A, Ilc G, Kovacevic M, Snyder SH, Podobnik M. Chem Biol 15 274-286 (2008)
  16. Crystal structure of an active two-domain derivative of Rous sarcoma virus integrase. Yang ZN, Mueser TC, Bushman FD, Hyde CC. J Mol Biol 296 535-548 (2000)
  17. The human SETMAR protein preserves most of the activities of the ancestral Hsmar1 transposase. Liu D, Bischerour J, Siddique A, Buisine N, Bigot Y, Chalmers R. Mol Cell Biol 27 1125-1132 (2007)
  18. X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293)--an initial glance of the viral DNA binding platform. Chen Z, Yan Y, Munshi S, Li Y, Zugay-Murphy J, Xu B, Witmer M, Felock P, Wolfe A, Sardana V, Emini EA, Hazuda D, Kuo LC. J Mol Biol 296 521-533 (2000)
  19. Identification of novel mutations responsible for resistance to MK-2048, a second-generation HIV-1 integrase inhibitor. Bar-Magen T, Sloan RD, Donahue DA, Kuhl BD, Zabeida A, Xu H, Oliveira M, Hazuda DJ, Wainberg MA. J Virol 84 9210-9216 (2010)
  20. Lens epithelium-derived growth factor/p75 interacts with the transposase-derived DDE domain of PogZ. Bartholomeeusen K, Christ F, Hendrix J, Rain JC, Emiliani S, Benarous R, Debyser Z, Gijsbers R, De Rijck J. J Biol Chem 284 11467-11477 (2009)
  21. Discovery of a small-molecule HIV-1 integrase inhibitor-binding site. Al-Mawsawi LQ, Fikkert V, Dayam R, Witvrouw M, Burke TR, Borchers CH, Neamati N. Proc Natl Acad Sci U S A 103 10080-10085 (2006)
  22. Mechanism of Mos1 transposition: insights from structural analysis. Richardson JM, Dawson A, O'Hagan N, Taylor P, Finnegan DJ, Walkinshaw MD. EMBO J 25 1324-1334 (2006)
  23. The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase. Winger JA, Derbyshire ER, Lamers MH, Marletta MA, Kuriyan J. BMC Struct Biol 8 42 (2008)
  24. DNA binding induces dissociation of the multimeric form of HIV-1 integrase: a time-resolved fluorescence anisotropy study. Deprez E, Tauc P, Leh H, Mouscadet JF, Auclair C, Hawkins ME, Brochon JC. Proc Natl Acad Sci U S A 98 10090-10095 (2001)
  25. Inhibition of human immunodeficiency virus type 1 reverse transcriptase, RNase H, and integrase activities by hydroxytropolones. Didierjean J, Isel C, Querré F, Mouscadet JF, Aubertin AM, Valnot JY, Piettre SR, Marquet R. Antimicrob Agents Chemother 49 4884-4894 (2005)
  26. Refined solution structure of the C-terminal DNA-binding domain of human immunovirus-1 integrase. Eijkelenboom AP, Sprangers R, Hård K, Puras Lutzke RA, Plasterk RH, Boelens R, Kaptein R. Proteins 36 556-564 (1999)
  27. Active site binding modes of curcumin in HIV-1 protease and integrase. Vajragupta O, Boonchoong P, Morris GM, Olson AJ. Bioorg Med Chem Lett 15 3364-3368 (2005)
  28. HIV-1 subtype B and C integrase enzymes exhibit differential patterns of resistance to integrase inhibitors in biochemical assays. Bar-Magen T, Donahue DA, McDonough EI, Kuhl BD, Faltenbacher VH, Xu H, Michaud V, Sloan RD, Wainberg MA. AIDS 24 2171-2179 (2010)
  29. Organization and dynamics of the Mu transpososome: recombination by communication between two active sites. Williams TL, Jackson EL, Carritte A, Baker TA. Genes Dev 13 2725-2737 (1999)
  30. Modeling, analysis, and validation of a novel HIV integrase structure provide insights into the binding modes of potent integrase inhibitors. Chen X, Tsiang M, Yu F, Hung M, Jones GS, Zeynalzadegan A, Qi X, Jin H, Kim CU, Swaminathan S, Chen JM. J Mol Biol 380 504-519 (2008)
  31. Evaluation of the functional involvement of human immunodeficiency virus type 1 integrase in nuclear import of viral cDNA during acute infection. Ikeda T, Nishitsuji H, Zhou X, Nara N, Ohashi T, Kannagi M, Masuda T. J Virol 78 11563-11573 (2004)
  32. Structure-based mutagenesis of the integrase-LEDGF/p75 interface uncouples a strict correlation between in vitro protein binding and HIV-1 fitness. Rahman S, Lu R, Vandegraaff N, Cherepanov P, Engelman A. Virology 357 79-90 (2007)
  33. Structural Basis for Inhibitor-Induced Aggregation of HIV Integrase. Gupta K, Turkki V, Sherrill-Mix S, Hwang Y, Eilers G, Taylor L, McDanal C, Wang P, Temelkoff D, Nolte RT, Velthuisen E, Jeffrey J, Van Duyne GD, Bushman FD. PLoS Biol 14 e1002584 (2016)
  34. Interaction of the HIV-1 intasome with transportin 3 protein (TNPO3 or TRN-SR2). Larue R, Gupta K, Wuensch C, Shkriabai N, Kessl JJ, Danhart E, Feng L, Taltynov O, Christ F, Van Duyne GD, Debyser Z, Foster MP, Kvaratskhelia M. J Biol Chem 287 34044-34058 (2012)
  35. Subunit-specific protein footprinting reveals significant structural rearrangements and a role for N-terminal Lys-14 of HIV-1 Integrase during viral DNA binding. Zhao Z, McKee CJ, Kessl JJ, Santos WL, Daigle JE, Engelman A, Verdine G, Kvaratskhelia M. J Biol Chem 283 5632-5641 (2008)
  36. Mechanism of HIV-1 integrase inhibition by styrylquinoline derivatives in vitro. Deprez E, Barbe S, Kolaski M, Leh H, Zouhiri F, Auclair C, Brochon JC, Le Bret M, Mouscadet JF. Mol Pharmacol 65 85-98 (2004)
  37. Molecular dynamics studies on the HIV-1 integrase catalytic domain. Lins RD, Briggs JM, Straatsma TP, Carlson HA, Greenwald J, Choe S, McCammon JA. Biophys J 76 2999-3011 (1999)
  38. FRET analysis reveals distinct conformations of IN tetramers in the presence of viral DNA or LEDGF/p75. Kessl JJ, Li M, Ignatov M, Shkriabai N, Eidahl JO, Feng L, Musier-Forsyth K, Craigie R, Kvaratskhelia M. Nucleic Acids Res 39 9009-9022 (2011)
  39. Modeling HIV-1 integrase complexes based on their hydrodynamic properties. Podtelezhnikov AA, Gao K, Bushman FD, McCammon JA. Biopolymers 68 110-120 (2003)
  40. Peptides derived from the reverse transcriptase of human immunodeficiency virus type 1 as novel inhibitors of the viral integrase. Oz Gleenberg I, Avidan O, Goldgur Y, Herschhorn A, Hizi A. J Biol Chem 280 21987-21996 (2005)
  41. A platform for designing HIV integrase inhibitors. Part 2: a two-metal binding model as a potential mechanism of HIV integrase inhibitors. Kawasuji T, Fuji M, Yoshinaga T, Sato A, Fujiwara T, Kiyama R. Bioorg Med Chem 14 8420-8429 (2006)
  42. A homology model of HIV-1 integrase and analysis of mutations designed to test the model. Johnson BC, Métifiot M, Ferris A, Pommier Y, Hughes SH. J Mol Biol 425 2133-2146 (2013)
  43. Inhibition of the activities of reverse transcriptase and integrase of human immunodeficiency virus type-1 by peptides derived from the homologous viral protein R (Vpr). Gleenberg IO, Herschhorn A, Hizi A. J Mol Biol 369 1230-1243 (2007)
  44. An amino acid in the central catalytic domain of three retroviral integrases that affects target site selection in nonviral DNA. Harper AL, Sudol M, Katzman M. J Virol 77 3838-3845 (2003)
  45. Analysis of the full-length integrase-DNA complex by a modified approach for DNA docking. De Luca L, Pedretti A, Vistoli G, Barreca ML, Villa L, Monforte P, Chimirri A. Biochem Biophys Res Commun 310 1083-1088 (2003)
  46. Induced-fit docking approach provides insight into the binding mode and mechanism of action of HIV-1 integrase inhibitors. Barreca ML, Iraci N, De Luca L, Chimirri A. ChemMedChem 4 1446-1456 (2009)
  47. Sequential deletion of the integrase (Gag-Pol) carboxyl terminus reveals distinct phenotypic classes of defective HIV-1. Mohammed KD, Topper MB, Muesing MA. J Virol 85 4654-4666 (2011)
  48. Small molecule inhibitors of the LEDGF site of human immunodeficiency virus integrase identified by fragment screening and structure based design. Peat TS, Rhodes DI, Vandegraaff N, Le G, Smith JA, Clark LJ, Jones ED, Coates JA, Thienthong N, Newman J, Dolezal O, Mulder R, Ryan JH, Savage GP, Francis CL, Deadman JJ. PLoS One 7 e40147 (2012)
  49. Use of patient-derived human immunodeficiency virus type 1 integrases to identify a protein residue that affects target site selection. Harper AL, Skinner LM, Sudol M, Katzman M. J Virol 75 7756-7762 (2001)
  50. A three-dimensional model of the human immunodeficiency virus type 1 integration complex. Wielens J, Crosby IT, Chalmers DK. J Comput Aided Mol Des 19 301-317 (2005)
  51. Atomic-resolution crystal structure of the proteolytic domain of Archaeoglobus fulgidus lon reveals the conformational variability in the active sites of lon proteases. Botos I, Melnikov EE, Cherry S, Kozlov S, Makhovskaya OV, Tropea JE, Gustchina A, Rotanova TV, Wlodawer A. J Mol Biol 351 144-157 (2005)
  52. Identification of an inhibitor-binding site to HIV-1 integrase with affinity acetylation and mass spectrometry. Shkriabai N, Patil SS, Hess S, Budihas SR, Craigie R, Burke TR, Le Grice SF, Kvaratskhelia M. Proc Natl Acad Sci U S A 101 6894-6899 (2004)
  53. Molecular dynamics approaches estimate the binding energy of HIV-1 integrase inhibitors and correlate with in vitro activity. Johnson BC, Métifiot M, Pommier Y, Hughes SH. Antimicrob Agents Chemother 56 411-419 (2012)
  54. All three residues of the Tn 10 transposase DDE catalytic triad function in divalent metal ion binding. Allingham JS, Pribil PA, Haniford DB. J Mol Biol 289 1195-1206 (1999)
  55. L-chicoric acid inhibits human immunodeficiency virus type 1 integration in vivo and is a noncompetitive but reversible inhibitor of HIV-1 integrase in vitro. Reinke RA, Lee DJ, McDougall BR, King PJ, Victoria J, Mao Y, Lei X, Reinecke MG, Robinson WE. Virology 326 203-219 (2004)
  56. 3-Hydroxypyrimidine-2,4-diones as an inhibitor scaffold of HIV integrase. Tang J, Maddali K, Metifiot M, Sham YY, Vince R, Pommier Y, Wang Z. J Med Chem 54 2282-2292 (2011)
  57. Basic quinolinonyl diketo acid derivatives as inhibitors of HIV integrase and their activity against RNase H function of reverse transcriptase. Costi R, Métifiot M, Chung S, Cuzzucoli Crucitti G, Maddali K, Pescatori L, Messore A, Madia VN, Pupo G, Scipione L, Tortorella S, Di Leva FS, Cosconati S, Marinelli L, Novellino E, Le Grice SF, Corona A, Pommier Y, Marchand C, Di Santo R. J Med Chem 57 3223-3234 (2014)
  58. Comparison of multiple molecular dynamics trajectories calculated for the drug-resistant HIV-1 integrase T66I/M154I catalytic domain. Brigo A, Lee KW, Iurcu Mustata G, Briggs JM. Biophys J 88 3072-3082 (2005)
  59. Crystal structure of the HIV-1 integrase core domain in complex with sucrose reveals details of an allosteric inhibitory binding site. Wielens J, Headey SJ, Jeevarajah D, Rhodes DI, Deadman J, Chalmers DK, Scanlon MJ, Parker MW. FEBS Lett 584 1455-1462 (2010)
  60. Measuring rapid hydrogen exchange in the homodimeric 36 kDa HIV-1 integrase catalytic core domain. Fitzkee NC, Torchia DA, Bax A. Protein Sci 20 500-512 (2011)
  61. Active site binding modes of the beta-diketoacids: a multi-active site approach in HIV-1 integrase inhibitor design. Dayam R, Neamati N. Bioorg Med Chem 12 6371-6381 (2004)
  62. Discovery of structurally diverse HIV-1 integrase inhibitors based on a chalcone pharmacophore. Deng J, Sanchez T, Al-Mawsawi LQ, Dayam R, Yunes RA, Garofalo A, Bolger MB, Neamati N. Bioorg Med Chem 15 4985-5002 (2007)
  63. Architecture of a full-length retroviral integrase monomer and dimer, revealed by small angle X-ray scattering and chemical cross-linking. Bojja RS, Andrake MD, Weigand S, Merkel G, Yarychkivska O, Henderson A, Kummerling M, Skalka AM. J Biol Chem 286 17047-17059 (2011)
  64. Identification of single Mn(2+) binding sites required for activation of the mutant proteins of E.coli RNase HI at Glu48 and/or Asp134 by X-ray crystallography. Tsunaka Y, Takano K, Matsumura H, Yamagata Y, Kanaya S. J Mol Biol 345 1171-1183 (2005)
  65. Structural basis for a new mechanism of inhibition of HIV-1 integrase identified by fragment screening and structure-based design. Rhodes DI, Peat TS, Vandegraaff N, Jeevarajah D, Le G, Jones ED, Smith JA, Coates JA, Winfield LJ, Thienthong N, Newman J, Lucent D, Ryan JH, Savage GP, Francis CL, Deadman JJ. Antivir Chem Chemother 21 155-168 (2011)
  66. Human immunodeficiency virus type-1 integrase containing a glycine to serine mutation at position 140 is attenuated for catalysis and resistant to integrase inhibitors. King PJ, Lee DJ, Reinke RA, Victoria JG, Beale K, Robinson WE. Virology 306 147-161 (2003)
  67. Mapping DNA-binding sites of HIV-1 integrase by protein footprinting. Dirac AM, Kjems J. Eur J Biochem 268 743-751 (2001)
  68. A critical role of the C-terminal segment for allosteric inhibitor-induced aberrant multimerization of HIV-1 integrase. Shkriabai N, Dharmarajan V, Slaughter A, Kessl JJ, Larue RC, Feng L, Fuchs JR, Griffin PR, Kvaratskhelia M. J Biol Chem 289 26430-26440 (2014)
  69. Design and synthesis of novel dihydroquinoline-3-carboxylic acids as HIV-1 integrase inhibitors. Sechi M, Rizzi G, Bacchi A, Carcelli M, Rogolino D, Pala N, Sanchez TW, Taheri L, Dayam R, Neamati N. Bioorg Med Chem 17 2925-2935 (2009)
  70. N- and C-terminal cooperation in rotavirus enterotoxin: novel mechanism of modulation of the properties of a multifunctional protein by a structurally and functionally overlapping conformational domain. Jagannath MR, Kesavulu MM, Deepa R, Sastri PN, Kumar SS, Suguna K, Rao CD. J Virol 80 412-425 (2006)
  71. Homogeneous high-throughput screening assays for HIV-1 integrase 3beta-processing and strand transfer activities. Wang Y, Klock H, Yin H, Wolff K, Bieza K, Niswonger K, Matzen J, Gunderson D, Hale J, Lesley S, Kuhen K, Caldwell J, Brinker A. J Biomol Screen 10 456-462 (2005)
  72. Overexpression and biosynthetic deuterium enrichment of TEM-1 beta-lactamase for structural characterization by magnetic resonance methods. Sosa-Peinado A, Mustafi D, Makinen MW. Protein Expr Purif 19 235-245 (2000)
  73. Revealing domain structure through linker-scanning analysis of the murine leukemia virus (MuLV) RNase H and MuLV and human immunodeficiency virus type 1 integrase proteins. Puglia J, Wang T, Smith-Snyder C, Cote M, Scher M, Pelletier JN, John S, Jonsson CB, Roth MJ. J Virol 80 9497-9510 (2006)
  74. Solution conformation and dynamics of the HIV-1 integrase core domain. Fitzkee NC, Masse JE, Shen Y, Davies DR, Bax A. J Biol Chem 285 18072-18084 (2010)
  75. Comparative molecular dynamics simulations of HIV-1 integrase and the T66I/M154I mutant: binding modes and drug resistance to a diketo acid inhibitor. Brigo A, Lee KW, Fogolari F, Mustata GI, Briggs JM. Proteins 59 723-741 (2005)
  76. Scaffold rearrangement of dihydroxypyrimidine inhibitors of HIV integrase: Docking model revisited. Tang J, Maddali K, Pommier Y, Sham YY, Wang Z. Bioorg Med Chem Lett 20 3275-3279 (2010)
  77. 3-Hydroxypyrimidine-2,4-dione-5-N-benzylcarboxamides Potently Inhibit HIV-1 Integrase and RNase H. Wu B, Tang J, Wilson DJ, Huber AD, Casey MC, Ji J, Kankanala J, Xie J, Sarafianos SG, Wang Z. J Med Chem 59 6136-6148 (2016)
  78. Conformationally restrained carbazolone-containing alpha,gamma-diketo acids as inhibitors of HIV integrase. Li X, Vince R. Bioorg Med Chem 14 2942-2955 (2006)
  79. Mass spectrometric analysis of the HIV-1 integrase-pyridoxal 5'-phosphate complex reveals a new binding site for a nucleotide inhibitor. Williams KL, Zhang Y, Shkriabai N, Karki RG, Nicklaus MC, Kotrikadze N, Hess S, Le Grice SF, Craigie R, Pathak VK, Kvaratskhelia M. J Biol Chem 280 7949-7955 (2005)
  80. Pre-organized structure of viral DNA at the binding-processing site of HIV-1 integrase. Renisio JG, Cosquer S, Cherrak I, El Antri S, Mauffret O, Fermandjian S. Nucleic Acids Res 33 1970-1981 (2005)
  81. Interrogating HIV integrase for compounds that bind--a SAMPL challenge. Peat TS, Dolezal O, Newman J, Mobley D, Deadman JJ. J Comput Aided Mol Des 28 347-362 (2014)
  82. Mapping the epitope of an inhibitory monoclonal antibody to the C-terminal DNA-binding domain of HIV-1 integrase. Yi J, Cheng H, Andrake MD, Dunbrack RL, Roder H, Skalka AM. J Biol Chem 277 12164-12174 (2002)
  83. Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay. Diamond TL, Bushman FD. Nucleic Acids Res 34 6116-6125 (2006)
  84. Constructing HIV-1 integrase tetramer and exploring influences of metal ions on forming integrase-DNA complex. Wang LD, Liu CL, Chen WZ, Wang CX. Biochem Biophys Res Commun 337 313-319 (2005)
  85. HIV-1 integrase catalytic core: molecular dynamics and simulated fluorescence decays. Laboulais C, Deprez E, Leh H, Mouscadet JF, Brochon JC, Le Bret M. Biophys J 81 473-489 (2001)
  86. Refined solution structure of the dimeric N-terminal HHCC domain of HIV-2 integrase. Eijkelenboom AP, van den Ent FM, Wechselberger R, Plasterk RH, Kaptein R, Boelens R. J Biomol NMR 18 119-128 (2000)
  87. Self-association and domains of interactions of an amphipathic helix peptide inhibitor of HIV-1 integrase assessed by analytical ultracentrifugation and NMR experiments in trifluoroethanol/H(2)O mixtures. Maroun RG, Krebs D, El Antri S, Deroussent A, Lescot E, Troalen F, Porumb H, Goldberg ME, Fermandjian S. J Biol Chem 274 34174-34185 (1999)
  88. Functional domains of the IS1 transposase: analysis in vivo and in vitro. Ton-Hoang B, Turlan C, Chandler M. Mol Microbiol 53 1529-1543 (2004)
  89. Separate structural and functional domains of Tn4430 transposase contribute to target immunity. Lambin M, Nicolas E, Oger CA, Nguyen N, Prozzi D, Hallet B. Mol Microbiol 83 805-820 (2012)
  90. The Diamond STING server. Neshich G, Borro LC, Higa RH, Kuser PR, Yamagishi ME, Franco EH, Krauchenco JN, Fileto R, Ribeiro AA, Bezerra GB, Velludo TM, Jimenez TS, Furukawa N, Teshima H, Kitajima K, Bava A, Sarai A, Togawa RC, Mancini AL. Nucleic Acids Res 33 W29-35 (2005)
  91. HIV-1 Integrase-DNA Recognition Mechanisms. Kessl JJ, McKee CJ, Eidahl JO, Shkriabai N, Katz A, Kvaratskhelia M. Viruses 1 713-736 (2009)
  92. Metal binding by the D,DX35E motif of human immunodeficiency virus type 1 integrase: selective rescue of Cys substitutions by Mn2+ in vitro. Gao K, Wong S, Bushman F. J Virol 78 6715-6722 (2004)
  93. Prediction of the binding mode and resistance profile for a dual-target pyrrolyl diketo acid scaffold against HIV-1 integrase and reverse-transcriptase-associated ribonuclease H. Yang F, Zheng G, Fu T, Li X, Tu G, Li YH, Yao X, Xue W, Zhu F. Phys Chem Chem Phys 20 23873-23884 (2018)
  94. Brownian and essential dynamics studies of the HIV-1 integrase catalytic domain. Weber W, Demirdjian H, Lins RD, Briggs JM, Ferreira R, McCammon JA. J Biomol Struct Dyn 16 733-745 (1998)
  95. Division of labor within human immunodeficiency virus integrase complexes: determinants of catalysis and target DNA capture. Diamond TL, Bushman FD. J Virol 79 15376-15387 (2005)
  96. Identification of HIV-1 integrase inhibitors via three-dimensional database searching using ASV and HIV-1 integrases as targets. Chen IJ, Neamati N, Nicklaus MC, Orr A, Anderson L, Barchi JJ, Kelley JA, Pommier Y, MacKerell AD. Bioorg Med Chem 8 2385-2398 (2000)
  97. Integrase of Mason-Pfizer monkey virus. Snásel J, Krejcík Z, Jencová V, Rosenberg I, Ruml T, Alexandratos J, Gustchina A, Pichová I. FEBS J 272 203-216 (2005)
  98. HIV-1 IN alternative molecular recognition of DNA induced by raltegravir resistance mutations. Mouscadet JF, Arora R, André J, Lambry JC, Delelis O, Malet I, Marcelin AG, Calvez V, Tchertanov L. J Mol Recognit 22 480-494 (2009)
  99. Mass spectrometry-based footprinting of protein-protein interactions. McKee CJ, Kessl JJ, Norris JO, Shkriabai N, Kvaratskhelia M. Methods 47 304-307 (2009)
  100. Similarities in the HIV-1 and ASV integrase active sites upon metal cofactor binding. Lins RD, Straatsma TP, Briggs JM. Biopolymers 53 308-315 (2000)
  101. Targeting Tn5 transposase identifies human immunodeficiency virus type 1 inhibitors. Ason B, Knauss DJ, Balke AM, Merkel G, Skalka AM, Reznikoff WS. Antimicrob Agents Chemother 49 2035-2043 (2005)
  102. Allosteric HIV Integrase Inhibitors Promote Formation of Inactive Branched Polymers via Homomeric Carboxy-Terminal Domain Interactions. Gupta K, Allen A, Giraldo C, Eilers G, Sharp R, Hwang Y, Murali H, Cruz K, Janmey P, Bushman F, Van Duyne GD. Structure 29 213-225.e5 (2021)
  103. Communications: Electron polarization critically stabilizes the Mg2+ complex in the catalytic core domain of HIV-1 integrase. Lu Y, Mei Y, Zhang JZ, Zhang D. J Chem Phys 132 131101 (2010)
  104. Development and Identification of a Novel Anti-HIV-1 Peptide Derived by Modification of the N-Terminal Domain of HIV-1 Integrase. Sala M, Spensiero A, Esposito F, Scala MC, Vernieri E, Bertamino A, Manfra M, Carotenuto A, Grieco P, Novellino E, Cadeddu M, Tramontano E, Schols D, Campiglia P, Gomez-Monterrey IM. Front Microbiol 7 845 (2016)
  105. Inhibition of human immunodeficiency virus type-1 reverse transcriptase by a novel peptide derived from the viral integrase. Oz Gleenberg I, Herschhorn A, Goldgur Y, Hizi A. Arch Biochem Biophys 458 202-212 (2007)
  106. Mining the NCI antiviral compounds for HIV-1 integrase inhibitors. Deng J, Kelley JA, Barchi JJ, Sanchez T, Dayam R, Pommier Y, Neamati N. Bioorg Med Chem 14 3785-3792 (2006)
  107. Mode of inhibition of HIV-1 Integrase by a C-terminal domain-specific monoclonal antibody. Ramcharan J, Colleluori DM, Merkel G, Andrake MD, Skalka AM. Retrovirology 3 34 (2006)
  108. Novel dimeric aryldiketo containing inhibitors of HIV-1 integrase: effects of the phenyl substituent and the linker orientation. Zeng LF, Jiang XH, Sanchez T, Zhang HS, Dayam R, Neamati N, Long YQ. Bioorg Med Chem 16 7777-7787 (2008)
  109. Active site binding modes of dimeric phloroglucinols for HIV-1 reverse transcriptase, protease and integrase. Gupta P, Kumar R, Garg P, Singh IP. Bioorg Med Chem Lett 20 4427-4431 (2010)
  110. Analysis of binding parameters of HIV-1 integrase inhibitors: correlates of drug inhibition and resistance. Loizidou EZ, Zeinalipour-Yazdi CD, Christofides T, Kostrikis LG. Bioorg Med Chem 17 4806-4818 (2009)
  111. Biochemical and random mutagenesis analysis of the region carrying the catalytic E152 amino acid of HIV-1 integrase. Calmels C, de Soultrait VR, Caumont A, Desjobert C, Faure A, Fournier M, Tarrago-Litvak L, Parissi V. Nucleic Acids Res 32 1527-1538 (2004)
  112. HIV-1 Integrase Inhibitor-Inspired Antibacterials Targeting Isoprenoid Biosynthesis. Zhang Y, Fu-Yang Lin, Li K, Zhu W, Liu YL, Cao R, Pang R, Lee E, Axelson J, Hensler M, Wang K, Molohon KJ, Wang Y, Mitchell DA, Nizet V, Oldfield E. ACS Med Chem Lett 3 402-406 (2012)
  113. Identifying amino acid residues that contribute to the cellular-DNA binding site on retroviral integrase. Nowak MG, Sudol M, Lee NE, Konsavage WM, Katzman M. Virology 389 141-148 (2009)
  114. Mapping epitopes of monoclonal antibodies against HIV-1 integrase with limited proteolysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Yi J, Skalka AM. Biopolymers 55 308-318 (2000)
  115. A single amino acid switch converts the Sleeping Beauty transposase into an efficient unidirectional excisionase with utility in stem cell reprogramming. Kesselring L, Miskey C, Zuliani C, Querques I, Kapitonov V, Laukó A, Fehér A, Palazzo A, Diem T, Lustig J, Sebe A, Wang Y, Dinnyés A, Izsvák Z, Barabas O, Ivics Z. Nucleic Acids Res 48 316-331 (2020)
  116. Comparative docking and CoMFA analysis of curcumine derivatives as HIV-1 integrase inhibitors. Gupta P, Garg P, Roy N, Roy N. Mol Divers 15 733-750 (2011)
  117. Discovery and structure-activity relationship studies of a unique class of HIV-1 integrase inhibitors. Dayam R, Sanchez T, Neamati N. ChemMedChem 1 238-244 (2006)
  118. Mutational analyses of the core domain of Avian Leukemia and Sarcoma Viruses integrase: critical residues for concerted integration and multimerization. Moreau K, Faure C, Violot S, Gouet P, Verdier G, Ronfort C. Virology 318 566-581 (2004)
  119. Study on the molecular mechanism of inhibiting HIV-1 integrase by EBR28 peptide via molecular modeling approach. Hu JP, Gong XQ, Su JG, Chen WZ, Wang CX. Biophys Chem 132 69-80 (2008)
  120. Synthesis, biological evaluation and molecular modeling studies of quinolonyl diketo acid derivatives: new structural insight into the HIV-1 integrase inhibition. Vandurm P, Guiguen A, Cauvin C, Georges B, Le Van K, Michaux C, Cardona C, Mbemba G, Mouscadet JF, Hevesi L, Van Lint C, Wouters J. Eur J Med Chem 46 1749-1756 (2011)
  121. A model of the replication fork blocking protein Fob1p based on the catalytic core domain of retroviral integrases. Dlakić M. Protein Sci 11 1274-1277 (2002)
  122. Binding modes of two novel dinucleotide inhibitors of HIV-1 integrase. Guenther S, Nair V. Bioorg Med Chem Lett 12 2233-2236 (2002)
  123. Dihydroxythiophenes are novel potent inhibitors of human immunodeficiency virus integrase with a diketo acid-like pharmacophore. Kehlenbeck S, Betz U, Birkmann A, Fast B, Göller AH, Henninger K, Lowinger T, Marrero D, Paessens A, Paulsen D, Pevzner V, Schohe-Loop R, Tsujishita H, Welker R, Kreuter J, Rübsamen-Waigmann H, Dittmer F. J Virol 80 6883-6894 (2006)
  124. Evaluation of novel N'-(3-hydroxybenzoyl)-2-oxo-2H-chromene-3-carbohydrazide derivatives as potential HIV-1 integrase inhibitors. Jesumoroti OJ, Faridoon, Mnkandhla D, Isaacs M, Hoppe HC, Klein R. Medchemcomm 10 80-88 (2019)
  125. HIV virions as nanoscopic test tubes for probing oligomerization of the integrase enzyme. Borrenberghs D, Thys W, Rocha S, Demeulemeester J, Weydert C, Dedecker P, Hofkens J, Debyser Z, Hendrix J. ACS Nano 8 3531-3545 (2014)
  126. Structural dynamics of full-length retroviral integrase: a molecular dynamics analysis. Balasubramanian S, Rajagopalan M, Ramaswamy A. J Biomol Struct Dyn 29 659-670 (2012)
  127. Synthesis and Evaluation of Aryl Quinolines as HIV-1 Integrase Multimerization Inhibitors. Jentsch NG, Hart AP, Hume JD, Sun J, McNeely KA, Lama C, Pigza JA, Donahue MG, Kessl JJ. ACS Med Chem Lett 9 1007-1012 (2018)
  128. An unusual helix turn helix motif in the catalytic core of HIV-1 integrase binds viral DNA and LEDGF. Merad H, Porumb H, Zargarian L, René B, Hobaika Z, Maroun RG, Mauffret O, Fermandjian S. PLoS One 4 e4081 (2009)
  129. Cross-packaging of human immunodeficiency virus type 1 vector RNA by spleen necrosis virus proteins: construction of a new generation of spleen necrosis virus-derived retroviral vectors. Parveen Z, Mukhtar M, Goodrich A, Acheampong E, Dornburg R, Pomerantz RJ. J Virol 78 6480-6488 (2004)
  130. Effects of varying the spacing within the D,D-35-E motif in the catalytic region of retroviral integrase. Konsavage WM, Sudol M, Katzman M. Virology 379 223-233 (2008)
  131. Inhibitors of human immunodeficiency virus type I integration. Hazuda DJ. Curr Opin HIV AIDS 1 212-217 (2006)
  132. Single amino acid substitution in HIV-1 integrase catalytic core causes a dramatic shift in inhibitor selectivity. Al-Mawsawi LQ, Sechi M, Neamati N. FEBS Lett 581 1151-1156 (2007)
  133. Stabilization of the integrase-DNA complex by Mg2+ ions and prediction of key residues for binding HIV-1 integrase inhibitors. Miri L, Bouvier G, Kettani A, Mikou A, Wakrim L, Nilges M, Malliavin TE. Proteins 82 466-478 (2014)
  134. Design, synthesis, and antiviral evaluation of some 3'-carboxymethyl-3'-deoxyadenosine derivatives. Peterson MA, Ke P, Shi H, Jones C, McDougall BR, Robinson WE. Nucleosides Nucleotides Nucleic Acids 26 499-519 (2007)
  135. HIV-1 integrase can process a 3'-end crosslinked substrate. Agapkina J, Smolov M, Zubin E, Mouscadet JF, Gottikh M. Eur J Biochem 271 205-211 (2004)
  136. Hybrid quantum mechanical/molecular mechanical molecular dynamics simulations of HIV-1 integrase/inhibitor complexes. Nunthaboot N, Pianwanit S, Parasuk V, Ebalunode JO, Briggs JM, Kokpol S. Biophys J 93 3613-3626 (2007)
  137. Stimulation of human flap endonuclease 1 by human immunodeficiency virus type 1 integrase: possible role for flap endonuclease 1 in 5'-end processing of human immunodeficiency virus type 1 integration intermediates. Faust EA, Triller H. J Biomed Sci 9 273-287 (2002)
  138. Structure-based design of a novel peptide inhibitor of HIV-1 integrase: a computer modeling approach. Rao GS, Bhatnagar S, Ahuja V. J Biomol Struct Dyn 20 31-38 (2002)
  139. C-Terminal Domain of Integrase Binds between the Two Active Sites. Roberts VA. J Chem Theory Comput 11 4500-4511 (2015)
  140. Non-Cryogenic Structure and Dynamics of HIV-1 Integrase Catalytic Core Domain by X-ray Free-Electron Lasers. Park JH, Yun JH, Shi Y, Han J, Li X, Jin Z, Kim T, Park J, Park S, Liu H, Lee W. Int J Mol Sci 20 E1943 (2019)
  141. Soluble expression, purification and characterization of the full length IS2 Transposase. Lewis LA, Astatke M, Umekubo PT, Alvi S, Saby R, Afrose J. Mob DNA 2 14 (2011)
  142. Structural dynamics of native and V260E mutant C-terminal domain of HIV-1 integrase. Sangeetha B, Muthukumaran R, Amutha R. J Comput Aided Mol Des 29 371-385 (2015)
  143. Structure of a HIV-1 IN-Allosteric inhibitor complex at 2.93 Å resolution: Routes to inhibitor optimization. Eilers G, Gupta K, Allen A, Montermoso S, Murali H, Sharp R, Hwang Y, Bushman FD, Van Duyne G. PLoS Pathog 19 e1011097 (2023)
  144. Targeting HIV-1 integrase. Sayasith K, Sauvé G, Yelle J. Expert Opin Ther Targets 5 443-464 (2001)
  145. A quiet life with proteins. Davies D. Annu Rev Biophys Biomol Struct 34 1-20 (2005)
  146. Crystal structures of catalytic core domain of BIV integrase: implications for the interaction between integrase and target DNA. Yao X, Fang S, Qiao W, Geng Y, Shen Y. Protein Cell 1 363-370 (2010)
  147. Ile178 of HIV-1 reverse transcriptase is critical for inhibiting the viral integrase. Oz Gleenberg I, Goldgur Y, Hizi A. Biochem Biophys Res Commun 364 48-52 (2007)
  148. A targeted DNA substrate mechanism for the inhibition of HIV-1 integrase by inhibitors with antiretroviral activity. Ammar FF, Hobaika Z, Abdel-Azeim S, Zargarian L, Maroun RG, Fermandjian S. FEBS Open Bio 6 234-250 (2016)
  149. Biochemical characteristics of functional domains using feline foamy virus integrase mutants. Yoo GW, Shin CG. BMB Rep 46 53-58 (2013)
  150. Molecular features related to HIV integrase inhibition obtained from structure- and ligand-based approaches. de Carvalho LL, Maltarollo VG, de Lima EF, Weber KC, Honorio KM, da Silva AB. PLoS One 9 e81301 (2014)
  151. Structural and dynamical properties of a full-length HIV-1 integrase: molecular dynamics simulations. Wijitkosoom A, Tonmunphean S, Truong TN, Hannongbua S. J Biomol Struct Dyn 23 613-624 (2006)
  152. Synthesis and structures of soluble magnesium and zinc carboxylates containing intramolecular NH···O hydrogen bonds in nonpolar solvents. Okamura TA, Furuya R, Onitsuka K. Dalton Trans 44 7512-7523 (2015)
  153. The strand transfer oligonucleotide inhibitors of HIV-integrase. Snásel J, Rosenberg I, Paces O, Pichová I. J Enzyme Inhib Med Chem 24 241-246 (2009)
  154. Computational design of a full-length model of HIV-1 integrase: modeling of new inhibitors and comparison of their calculated binding energies with those previously studied. Ercan S, Pirinccioglu N. J Mol Model 19 4349-4368 (2013)
  155. Molecular Modeling of the Anti-HIV Activity Mechanism of Iodine-Containing Drugs Armenicum and FS-1. Yuldasheva GA, Argirova R, Ilin AI. ACS Omega 8 8617-8624 (2023)
  156. Naphthoxazepine inhibitors of HIV-1 integrase: synthesis and biological evaluation. Garofalo A, Grande F, Brizzi A, Aiello F, Dayam R, Neamati N. ChemMedChem 3 986-990 (2008)
  157. Rapid activity prediction of HIV-1 integrase inhibitors: harnessing docking energetic components for empirical scoring by chemometric and artificial neural network approaches. Thangsunan P, Kittiwachana S, Meepowpan P, Kungwan N, Prangkio P, Hannongbua S, Suree N. J Comput Aided Mol Des 30 471-488 (2016)
  158. Rigidity and flexibility characteristics of DD[E/D]-transposases Mos1 and Sleeping Beauty. Singer CM, Joy D, Jacobs DJ, Nesmelova IV. Proteins 87 313-325 (2019)
  159. Computer aided study of ligand binding with catalytic domain of Avian sarcoma virus integrase and its ligand binding loops. Kumar A, Shankar S, Kothekar V. J Biomol Struct Dyn 19 449-458 (2001)
  160. Influence of Mg2+ on the binding modes of HIV-1 integrase with thiazolothiazepine inhibitor studied by molecular simulation. Wang L. Comput Biol Med 39 355-360 (2009)
  161. Synthesis, Biological Evaluation, and Molecular Modeling Studies of New 8-methyl-4-oxo-1,4-dihydroquinoline-3-carbohydrazides as Potential Anti-HIV Agents. Alemi M, Kamali F, Vahabpour Roudsari R, Hajimahdi Z, Zarghi A. Iran J Pharm Res 21 e123962 (2022)


Related citations provided by authors (1)

  1. Crystal Structure of the Catalytic Domain of HIV-1 Integrase: Similarity to Other Polynucleotidyl Transferases. Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR Science 266 1981- (1994)