1bk8 Citations

The three-dimensional solution structure of Aesculus hippocastanum antimicrobial protein 1 determined by 1H nuclear magnetic resonance.

Abstract

Aesculus hippocastanum antimicrobial protein 1 (Ah-AMP1) is a plant defensin isolated from horse chestnuts. The plant defensins have been divided in several subfamilies according to their amino acid sequence homology. Ah-AMP1, belonging to subfamily A2, inhibits growth of a broad range of fungi. So far, a three-dimensional structure has been determined only for members of subfamilies A3 and B2. In order to understand activity and specificity of these plant defensins, the structure of a protein belonging to subfamily A2 is needed. We report the three-dimensional solution structure of Ah-AMP1 as determined from two-dimensional 1H nuclear magnetic resonance data. The structure features all the characteristics of the "cysteine-stabilized alpha beta-motif." A comparison of the structure, the electrostatic potential surface and regions important for interaction with the fungal receptor, is made with Rs-AFP1 (plant defensin of subfamily A3). Thus, residues important for activity and specificity have been assigned.

Reviews - 1bk8 mentioned but not cited (4)

  1. Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field. Nielsen JT, Eghbalnia HR, Nielsen NC. Prog Nucl Magn Reson Spectrosc 60 1-28 (2012)
  2. Plant antimicrobial peptides: structures, functions, and applications. Li J, Hu S, Jian W, Xie C, Yang X. Bot Stud 62 5 (2021)
  3. Plant Defensins from a Structural Perspective. Kovaleva V, Bukhteeva I, Kit OY, Nesmelova IV. Int J Mol Sci 21 (2020)
  4. The Role of Defensins as Pollen and Food Allergens. Cosi V, Gadermaier G. Curr Allergy Asthma Rep 23 277-285 (2023)

Articles - 1bk8 mentioned but not cited (7)

  1. Multidimensional signatures in antimicrobial peptides. Yount NY, Yeaman MR. Proc. Natl. Acad. Sci. U.S.A. 101 7363-7368 (2004)
  2. Specificity determinants and diversification of the Brassica self-incompatibility pollen ligand. Chookajorn T, Kachroo A, Ripoll DR, Clark AG, Nasrallah JB. Proc. Natl. Acad. Sci. U.S.A. 101 911-917 (2004)
  3. Antibacterial peptides from plants: what they are and how they probably work. Barbosa Pelegrini P, Del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF. Biochem Res Int 2011 250349 (2011)
  4. Motions and structural variability within toxins: implication for their use as scaffolds for protein engineering. Gilquin B, Bourgoin M, Ménez R, Le Du MH, Servent D, Zinn-Justin S, Ménez A. Protein Sci. 12 266-277 (2003)
  5. Functional structure and antimicrobial activity of persulcatusin, an antimicrobial peptide from the hard tick Ixodes persulcatus. Miyoshi N, Saito T, Ohmura T, Kuroda K, Suita K, Ihara K, Isogai E. Parasit Vectors 9 85 (2016)
  6. Predicting Designability of Small Proteins from Graph Features of Contact Maps. Leelananda SP, Jernigan RL, Kloczkowski A. J Comput Biol 23 400-411 (2016)
  7. Rinmaker: a fast, versatile and reliable tool to determine residue interaction networks in proteins. Spanò A, Fanton L, Pizzolato D, Moi J, Vinci F, Pesce A, Dongmo Foumthuim CJ, Giacometti A, Simeoni M. BMC Bioinformatics 24 336 (2023)


Reviews citing this publication (7)

  1. The relationship between peptide structure and antibacterial activity. Powers JP, Hancock RE. Peptides 24 1681-1691 (2003)
  2. Properties and mechanisms of action of naturally occurring antifungal peptides. van der Weerden NL, Bleackley MR, Anderson MA. Cell. Mol. Life Sci. 70 3545-3570 (2013)
  3. Antifungal plant defensins: mechanisms of action and production. Vriens K, Cammue BP, Thevissen K. Molecules 19 12280-12303 (2014)
  4. Antimicrobial Peptides from Plants. Tam JP, Wang S, Wong KH, Tan WL. Pharmaceuticals (Basel) 8 711-757 (2015)
  5. Structural, biological, and pharmacological strategies for the inhibition of nerve growth factor. Eibl JK, Strasser BC, Ross GM. Neurochem. Int. 61 1266-1275 (2012)
  6. Plant defensins: types, mechanism of action and prospects of genetic engineering for enhanced disease resistance in plants. Sher Khan R, Iqbal A, Malak R, Shehryar K, Attia S, Ahmed T, Ali Khan M, Arif M, Mii M. 3 Biotech 9 192 (2019)
  7. Antimicrobial Peptides from Fruits and Their Potential Use as Biotechnological Tools-A Review and Outlook. Meneguetti BT, Machado LD, Oshiro KG, Nogueira ML, Carvalho CM, Franco OL. Front Microbiol 7 2136 (2016)

Articles citing this publication (23)

  1. Isolation and properties of floral defensins from ornamental tobacco and petunia. Lay FT, Brugliera F, Anderson MA. Plant Physiol. 131 1283-1293 (2003)
  2. The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP. Lay FT, Schirra HJ, Scanlon MJ, Anderson MA, Craik DJ. J. Mol. Biol. 325 175-188 (2003)
  3. Solution structure of Pisum sativum defensin 1 by high resolution NMR: plant defensins, identical backbone with different mechanisms of action. Almeida MS, Cabral KM, Kurtenbach E, Almeida FC, Valente AP. J. Mol. Biol. 315 749-757 (2002)
  4. Discovery of six families of fungal defensin-like peptides provides insights into origin and evolution of the CSalphabeta defensins. Zhu S. Mol. Immunol. 45 828-838 (2008)
  5. Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. Sagaram US, Pandurangi R, Kaur J, Kaur J, Smith TJ, Shah DM. PLoS ONE 6 e18550 (2011)
  6. The solution structure of gomesin, an antimicrobial cysteine-rich peptide from the spider. Mandard N, Bulet P, Caille A, Daffre S, Vovelle F. Eur. J. Biochem. 269 1190-1198 (2002)
  7. Structural and functional studies of a phosphatidic acid-binding antifungal plant defensin MtDef4: identification of an RGFRRR motif governing fungal cell entry. Sagaram US, El-Mounadi K, Buchko GW, Berg HR, Kaur J, Pandurangi RS, Smith TJ, Shah DM. PLoS ONE 8 e82485 (2013)
  8. Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Liu YJ, Cheng CS, Lai SM, Hsu MP, Chen CS, Lyu PC. Proteins 63 777-786 (2006)
  9. Dimerization of plant defensin NaD1 enhances its antifungal activity. Lay FT, Mills GD, Poon IK, Cowieson NP, Kirby N, Baxter AA, van der Weerden NL, Dogovski C, Perugini MA, Anderson MA, Kvansakul M, Hulett MD. J. Biol. Chem. 287 19961-19972 (2012)
  10. Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensin. Lin KF, Lee TR, Tsai PH, Hsu MP, Chen CS, Lyu PC. Proteins 68 530-540 (2007)
  11. Comparison of the nodule vs. root transcriptome of the actinorhizal plant Datisca glomerata: actinorhizal nodules contain a specific class of defensins. Demina IV, Persson T, Santos P, Plaszczyca M, Pawlowski K. PLoS ONE 8 e72442 (2013)
  12. Alnus peptides modify membrane porosity and induce the release of nitrogen-rich metabolites from nitrogen-fixing Frankia. Carro L, Pujic P, Alloisio N, Fournier P, Boubakri H, Hay AE, Poly F, François P, Hocher V, Mergaert P, Balmand S, Rey M, Heddi A, Normand P. ISME J 9 1723-1733 (2015)
  13. Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures. Vriens K, Cools TL, Harvey PJ, Craik DJ, Spincemaille P, Cassiman D, Braem A, Vleugels J, Nibbering PH, Drijfhout JW, De Coninck B, Cammue BP, Thevissen K. PLoS ONE 10 e0132701 (2015)
  14. Cysteine-stabilized αβ defensins: From a common fold to antibacterial activity. Dias Rde O, Franco OL. Peptides 72 64-72 (2015)
  15. Ultra-high resolution crystal structure of a dimeric defensin SPE10. Song X, Zhang M, Zhou Z, Gong W. FEBS Lett. 585 300-306 (2011)
  16. Antimicrobial peptides from plants: stabilization of the γ core of a tomato defensin by intramolecular disulfide bond. Avitabile C, Capparelli R, Rigano MM, Fulgione A, Barone A, Pedone C, Romanelli A. J. Pept. Sci. 19 240-245 (2013)
  17. Psd1 binding affinity toward fungal membrane components as assessed by SPR: The role of glucosylceramide in fungal recognition and entry. de Medeiros LN, Domitrovic T, de Andrade PC, Faria J, Bergter EB, Weissmüller G, Kurtenbach E. Biopolymers 102 456-464 (2014)
  18. Alanine substitutions of noncysteine residues in the cysteine-stabilized alphabeta motif. Yang YF, Cheng KC, Tsai PH, Liu CC, Lee TR, Lyu PC. Protein Sci. 18 1498-1506 (2009)
  19. Physiological effects of major up-regulated Alnus glutinosa peptides on Frankia sp. ACN14a. Carro L, Pujic P, Alloisio N, Fournier P, Boubakri H, Poly F, Rey M, Heddi A, Normand P. Microbiology (Reading, Engl.) 162 1173-1184 (2016)
  20. Activity of recombinant and natural defensins from Vigna unguiculata seeds against Leishmania amazonensis. Souza GS, do Nascimento VV, de Carvalho LP, de Melo EJ, Fernandes KV, Machado OL, Retamal CA, Gomes VM, Carvalho Ade O. Exp. Parasitol. 135 116-125 (2013)
  21. Heterologous expression and solution structure of defensin from lentil Lens culinaris. Shenkarev ZO, Gizatullina AK, Finkina EI, Alekseeva EA, Balandin SV, Mineev KS, Arseniev AS, Ovchinnikova TV. Biochem. Biophys. Res. Commun. 451 252-257 (2014)
  22. Characterization of Defensin-like Protein 1 for Its Anti-Biofilm and Anti-Virulence Properties for the Development of Novel Antifungal Drug against Candida auris. Kamli MR, Sabir JSM, Malik MA, Ahmad A. J Fungi (Basel) 8 1298 (2022)
  23. Polar characterization of antifungal peptides from APD2 Database. Polanco C, Samaniego-Mendoza JL, Buhse T, Castañón-González JA, Leopold-Sordo M. Cell Biochem. Biophys. 70 1479-1488 (2014)