1bph Citations

Conformational changes in cubic insulin crystals in the pH range 7-11.

Biophys J 63 1210-20 (1992)
Related entries: 1aph, 1cph, 1dph

Cited: 38 times
EuropePMC logo PMID: 1477273

Abstract

To determine the effect of variations in the charge distribution on the conformation of a protein molecule, we have solved the structures of bovine cubic insulin over a pH range from 7 to 11 in 0.1 M and 1 M sodium salt solutions. The x-ray data were collected beyond 2-A resolution and the R factors for the refined models ranged from 0.16 to 0.20. Whereas the positions of most protein and well-ordered solvent atoms are conserved, about 30% of residues alter their predominant conformation as the pH is changed. Conformational switching of A5 Gln and B10 His correlates with the pH dependence of monovalent cation binding to insulin in cubic crystals. Shifts in the relative positions of the A chain NH2-terminal and B chain COOH-terminal groups are probably due to titration of the A1 alpha-amino group. Two alternative positions of B25 Phe and A21 Asn observed in cubic insulin at pH 11 are similar to those found in two independent molecules of the 2Zn insulin dimer at pH 6.4. The conformational changes of the insulin amino acids appear to be only loosely coupled at distant protein sites. Shifts in the equilibrium between distinct conformational substates as the charge distribution on the protein is altered are analogous to the electrostatically triggered movements that occur in many functional protein reactions.

Articles - 1bph mentioned but not cited (10)

  1. Classification and energetics of the base-phosphate interactions in RNA. Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. Nucleic Acids Res. 37 4898-4918 (2009)
  2. Enhancing the activity of a protein by stereospecific unfolding: conformational life cycle of insulin and its evolutionary origins. Hua QX, Xu B, Huang K, Hu SQ, Nakagawa S, Jia W, Wang S, Whittaker J, Katsoyannis PG, Weiss MA. J. Biol. Chem. 284 14586-14596 (2009)
  3. Rationally selected basis proteins: a new approach to selecting proteins for spectroscopic secondary structure analysis. Oberg KA, Ruysschaert JM, Goormaghtigh E. Protein Sci 12 2015-2031 (2003)
  4. An Achilles' heel in an amyloidogenic protein and its repair: insulin fibrillation and therapeutic design. Yang Y, Petkova A, Huang K, Xu B, Hua QX, Ye IJ, Chu YC, Hu SQ, Phillips NB, Whittaker J, Ismail-Beigi F, Mackin RB, Katsoyannis PG, Tycko R, Weiss MA. J. Biol. Chem. 285 10806-10821 (2010)
  5. Contribution of TyrB26 to the Function and Stability of Insulin: STRUCTURE-ACTIVITY RELATIONSHIPS AT A CONSERVED HORMONE-RECEPTOR INTERFACE. Pandyarajan V, Phillips NB, Rege N, Lawrence MC, Whittaker J, Weiss MA. J. Biol. Chem. 291 12978-12990 (2016)
  6. Deciphering the hidden informational content of protein sequences: foldability of proinsulin hinges on a flexible arm that is dispensable in the mature hormone. Liu M, Hua QX, Hu SQ, Jia W, Yang Y, Saith SE, Whittaker J, Arvan P, Weiss MA. J. Biol. Chem. 285 30989-31001 (2010)
  7. The structure and function of insulin: decoding the TR transition. Weiss MA. Vitam. Horm. 80 33-49 (2009)
  8. Conformational dynamics of insulin. Hua QX, Jia W, Weiss MA. Front Endocrinol (Lausanne) 2 48 (2011)
  9. p3d--Python module for structural bioinformatics. Fufezan C, Specht M. BMC Bioinformatics 10 258 (2009)
  10. Mechanistic Insights into the DABCO-Catalyzed Cloke-Wilson Rearrangement: A DFT Perspective. Gallardo-Fuentes S, Lodeiro L, Matute R, Fernández I. J Org Chem 88 15902-15912 (2023)


Reviews citing this publication (5)

  1. Intracellular pH sensors: design principles and functional significance. Srivastava J, Barber DL, Jacobson MP. Physiology (Bethesda) 22 30-39 (2007)
  2. Protein conformational substates from X-ray crystallography. Rejto PA, Freer ST. Prog. Biophys. Mol. Biol. 66 167-196 (1996)
  3. Advances and opportunities in delivery of therapeutic proteins and peptides. Banakar UV. J Biomater Appl 11 377-429 (1997)
  4. In Quest for Improved Drugs against Diabetes: The Added Value of X-ray Powder Diffraction Methods. Karavassili F, Valmas A, Fili S, Georgiou CD, Margiolaki I. Biomolecules 7 (2017)
  5. A thing of beauty: Structure and function of insulin's "aromatic triplet". Weiss MA, Lawrence MC. Diabetes Obes Metab 20 Suppl 2 51-63 (2018)

Articles citing this publication (23)

  1. Tanford-Kirkwood electrostatics for protein modeling. Havranek JJ, Harbury PB. Proc. Natl. Acad. Sci. U.S.A. 96 11145-11150 (1999)
  2. Traveling-wave ion mobility mass spectrometry of protein complexes: accurate calibrated collision cross-sections of human insulin oligomers. Salbo R, Bush MF, Naver H, Campuzano I, Robinson CV, Pettersson I, Jørgensen TJ, Haselmann KF. Rapid Commun. Mass Spectrom. 26 1181-1193 (2012)
  3. Structural basis for target protein recognition by the protein disulfide reductase thioredoxin. Maeda K, Hägglund P, Finnie C, Svensson B, Henriksen A. Structure 14 1701-1710 (2006)
  4. Atomic force microscopy of insulin single crystals: direct visualization of molecules and crystal growth. Yip CM, Ward MD. Biophys. J. 71 1071-1078 (1996)
  5. Strategy for selective chemical cross-linking of tyrosine and lysine residues. Leavell MD, Novak P, Behrens CR, Schoeniger JS, Kruppa GH. J. Am. Soc. Mass Spectrom. 15 1604-1611 (2004)
  6. A tractable genotype-phenotype map modelling the self-assembly of protein quaternary structure. Greenbury SF, Johnston IG, Louis AA, Ahnert SE. J R Soc Interface 11 20140249 (2014)
  7. Multiple hydration layers in cubic insulin crystals. Badger J. Biophys. J. 65 1656-1659 (1993)
  8. Protein purification with vapor-phase carbon dioxide. Winters MA, Frankel DZ, Debenedetti PG, Carey J, Devaney M, Przybycien TM. Biotechnol. Bioeng. 62 247-258 (1999)
  9. Stereospecific dihaloalkane binding in a pH-sensitive cavity in cubic insulin crystals. Gursky O, Fontano E, Bhyravbhatla B, Caspar DL. Proc. Natl. Acad. Sci. U.S.A. 91 12388-12392 (1994)
  10. Structure of cubic insulin crystals in glucose solutions. Yu B, Caspar DL. Biophys. J. 74 616-622 (1998)
  11. Novel covalently linked insulin dimer engineered to investigate the function of insulin dimerization. Vinther TN, Norrman M, Strauss HM, Huus K, Schlein M, Pedersen TÅ, Kjeldsen T, Jensen KJ, Hubálek F. PLoS ONE 7 e30882 (2012)
  12. Kinetics of the chemiluminescence associated to the reaction between peroxyl radicals and proteins. Aspée A, Lissi EA. J Protein Chem 20 479-485 (2001)
  13. Local compressibilities in insulin as determined from pressure tuning hole burning experiments and MD simulations. Schnell C, Reif M, Scharnagl C, Friedrich J. Phys Chem Chem Phys 7 2217-2224 (2005)
  14. Structure, Aggregation, and Activity of a Covalent Insulin Dimer Formed During Storage of Neutral Formulation of Human Insulin. Hjorth CF, Norrman M, Wahlund PO, Benie AJ, Petersen BO, Jessen CM, Pedersen TÅ, Vestergaard K, Steensgaard DB, Pedersen JS, Naver H, Hubálek F, Poulsen C, Otzen D. J Pharm Sci 105 1376-1386 (2016)
  15. Extending Halogen-based Medicinal Chemistry to Proteins: IODO-INSULIN AS A CASE STUDY. El Hage K, Pandyarajan V, Phillips NB, Smith BJ, Menting JG, Whittaker J, Lawrence MC, Meuwly M, Weiss MA. J. Biol. Chem. 291 27023-27041 (2016)
  16. Structure and selectivity of a monovalent cation binding site in cubic insulin crystals. Badger J, Kapulsky A, Gursky O, Bhyravbhatla B, Caspar DL. Biophys. J. 66 286-292 (1994)
  17. Thallium counterion distribution in cubic insulin crystals determined from anomalous x-ray diffraction data. Badger J, Li Y, Caspar DL. Proc. Natl. Acad. Sci. U.S.A. 91 1224-1228 (1994)
  18. Studies on human insulin adsorption kinetics at an organic-aqueous interface determined using a label-free electroanalytical approach. Thomsen AE, Jensen H, Jorgensen L, van de Weert M, Ostergaard J. Colloids Surf B Biointerfaces 63 243-248 (2008)
  19. Metal induced structural changes observed in hexameric insulin. Sreekanth R, Pattabhi V, Rajan SS. Int. J. Biol. Macromol. 44 29-36 (2009)
  20. Substitution of an Internal Disulfide Bridge with a Diselenide Enhances both Foldability and Stability of Human Insulin. Weil-Ktorza O, Rege N, Lansky S, Shalev DE, Shoham G, Weiss MA, Metanis N. Chemistry 25 8513-8521 (2019)
  21. Brownian dynamics of a neutral protein moving through a nanopore in an electrically biased membrane. Wells CC, Melnikov DV, Gracheva ME. J Chem Phys 150 115103 (2019)
  22. Display and interpretation of solvent electron density distributions in insulin crystals. Badger J. J Mol Graph 11 218-21, 233 (1993)
  23. The T2 structure of polycrystalline cubic human insulin. Triandafillidis DP, Karavassili F, Spiliopoulou M, Valmas A, Athanasiadou M, Nikolaras G, Fili S, Kontou P, Bowler MW, Chasapis CT, Von Dreele RB, Fitch AN, Margiolaki I. Acta Crystallogr D Struct Biol 79 374-386 (2023)


Related citations provided by authors (5)

  1. Monovalent Cation Binding in Cubic Insulin Crystals. Gursky O, Li Y, Badger J, Caspar DLD Biophys. J. 61 604- (1992)
  2. Flexibility in Crystalline Insulins. Badger J Biophys. J. 61 816- (1992)
  3. Structure of the Pig Insulin Dimer in the Cubic Crystal. Badger J, Harris MR, Reynolds CD, Evans AC, Dodson EJ, Dodson GG, North ACT Acta Crystallogr., B 47 127- (1991)
  4. Water Structure in Cubic Insulin Crystals. Badger J, Caspar DLD Proc. Natl. Acad. Sci. U.S.A. 88 622- (1991)
  5. Zinc-free cubic pig insulin: crystallization and structure determination.. Dodson EJ, Dodson GG, Lewitova A, Sabesan M J Mol Biol 125 387-96 (1978)