1bpy Citations

Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism.

Abstract

DNA polymerase beta (pol beta) fills single nucleotide (nt) gaps in DNA produced by the base excision repair pathway of mammalian cells. Crystal structures have been determined representing intermediates in the 1 nt gap-filling reaction of pol beta: the binary complex with a gapped DNA substrate (2.4 A resolution), the ternary complex including ddCTP (2.2 A), and the binary product complex containing only nicked DNA (2.6 A). Upon binding ddCTP to the binary gap complex, the thumb subdomain rotates into the closed conformation to contact the otherwise solvent-exposed ddCTP-template base pair. Thumb movement triggers further conformational changes which poise catalytic residue Asp192, dNTP, and template for nucleotidyl transfer, effectively assembling the active site. In the product nicked DNA complex, the thumb returns to the open conformation as in the gapped binary DNA complex, facilitating dissociation of the product. These findings suggest that pol beta may enhance fidelity by an induced fit mechanism in which correct base pairing between template and incoming dNTP induces alignment of catalytic groups for catalysis (via thumb closure), but incorrect base pairing will not. The structures also reveal that pol beta binds both gapped and nicked DNA with a 90 degrees kink occurring precisely at the 5'-phosphodiester linkage of the templating residue. If the DNA were not kinked in this way, contact between the thumb and dNTP-template base pair, presumably important for the checking mechanism, would be impossible, especially when the gap is but a single nucleotide. Such a 90 degrees kink may be a mechanistic feature employed by any polymerase involved in filling gaps to completion.

Reviews - 1bpy mentioned but not cited (8)

  1. Unlocking the sugar "steric gate" of DNA polymerases. Brown JA, Suo Z. Biochemistry 50 1135-1142 (2011)
  2. The X family portrait: structural insights into biological functions of X family polymerases. Moon AF, Garcia-Diaz M, Batra VK, Beard WA, Bebenek K, Kunkel TA, Wilson SH, Pedersen LC. DNA Repair (Amst) 6 1709-1725 (2007)
  3. DNA polymerase family X: function, structure, and cellular roles. Yamtich J, Sweasy JB. Biochim Biophys Acta 1804 1136-1150 (2010)
  4. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Hove-Jensen B, Andersen KR, Kilstrup M, Martinussen J, Switzer RL, Willemoës M. Microbiol Mol Biol Rev 81 e00040-16 (2017)
  5. History of DNA polymerase β X-ray crystallography. Whitaker AM, Freudenthal BD. DNA Repair (Amst) 93 102928 (2020)
  6. Applications of quantum mechanical/molecular mechanical methods to the chemical insertion step of DNA and RNA polymerization. Perera L, Beard WA, Pedersen LG, Wilson SH. Adv Protein Chem Struct Biol 97 83-113 (2014)
  7. DNA polymerase mu: An inflexible scaffold for substrate flexibility. Kaminski AM, Bebenek K, Pedersen LC, Kunkel TA. DNA Repair (Amst) 93 102932 (2020)
  8. Structural and Molecular Kinetic Features of Activities of DNA Polymerases. Kuznetsova AA, Fedorova OS, Kuznetsov NA. Int J Mol Sci 23 6373 (2022)

Articles - 1bpy mentioned but not cited (62)



Reviews citing this publication (61)

  1. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Prakash S, Johnson RE, Prakash L. Annu Rev Biochem 74 317-353 (2005)
  2. DNA replication fidelity. Kunkel TA, Bebenek K. Annu Rev Biochem 69 497-529 (2000)
  3. XRCC1 keeps DNA from getting stranded. Thompson LH, West MG. Mutat Res 459 1-18 (2000)
  4. An open and closed case for all polymerases. Doublié S, Sawaya MR, Ellenberger T. Structure 7 R31-5 (1999)
  5. Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Cihlar T, Ray AS. Antiviral Res 85 39-58 (2010)
  6. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Chaney SG, Campbell SL, Bassett E, Wu Y. Crit Rev Oncol Hematol 53 3-11 (2005)
  7. Multisubunit RNA polymerases. Cramer P. Curr Opin Struct Biol 12 89-97 (2002)
  8. RNA-specific ribonucleotidyl transferases. Martin G, Keller W. RNA 13 1834-1849 (2007)
  9. Structure-function relationships among RNA-dependent RNA polymerases. Ng KK, Arnold JJ, Cameron CE. Curr Top Microbiol Immunol 320 137-156 (2008)
  10. The mechanism of action of T7 DNA polymerase. Doublié S, Ellenberger T. Curr Opin Struct Biol 8 704-712 (1998)
  11. Why nature really chose phosphate. Kamerlin SC, Sharma PK, Prasad RB, Warshel A. Q Rev Biophys 46 1-132 (2013)
  12. Mammalian DNA single-strand break repair: an X-ra(y)ted affair. Caldecott KW. Bioessays 23 447-455 (2001)
  13. Damage repair DNA polymerases Y. Yang W. Curr Opin Struct Biol 13 23-30 (2003)
  14. Structural insights into the origins of DNA polymerase fidelity. Beard WA, Wilson SH. Structure 11 489-496 (2003)
  15. Base excision repair of oxidative DNA damage: from mechanism to disease. Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Front Biosci (Landmark Ed) 22 1493-1522 (2017)
  16. Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Motea EA, Berdis AJ. Biochim Biophys Acta 1804 1151-1166 (2010)
  17. Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site. Sarafianos SG, Das K, Ding J, Boyer PL, Hughes SH, Arnold E. Chem Biol 6 R137-46 (1999)
  18. Covalent trapping of protein-DNA complexes. Verdine GL, Norman DP. Annu Rev Biochem 72 337-366 (2003)
  19. Envisioning the molecular choreography of DNA base excision repair. Parikh SS, Mol CD, Hosfield DJ, Tainer JA. Curr Opin Struct Biol 9 37-47 (1999)
  20. Base excision repair enzyme family portrait: integrating the structure and chemistry of an entire DNA repair pathway. Parikh SS, Mol CD, Tainer JA. Structure 5 1543-1550 (1997)
  21. The structural basis of XRCC1-mediated DNA repair. London RE. DNA Repair (Amst) 30 90-103 (2015)
  22. Structure-function studies of DNA polymerase lambda. Garcia-Diaz M, Bebenek K, Gao G, Pedersen LC, London RE, Kunkel TA. DNA Repair (Amst) 4 1358-1367 (2005)
  23. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Kumar N, Raja S, Van Houten B. Nucleic Acids Res 48 11227-11243 (2020)
  24. Regulation of DNA repair fidelity by molecular checkpoints: "gates" in DNA polymerase beta's substrate selection. Radhakrishnan R, Arora K, Wang Y, Beard WA, Wilson SH, Schlick T. Biochemistry 45 15142-15156 (2006)
  25. Structure and function of the double-strand break repair machinery. Shin DS, Chahwan C, Huffman JL, Tainer JA. DNA Repair (Amst) 3 863-873 (2004)
  26. In search of an RNA replicase ribozyme. McGinness KE, Joyce GF. Chem Biol 10 5-14 (2003)
  27. The adenylyl and guanylyl cyclase superfamily. Hurley JH. Curr Opin Struct Biol 8 770-777 (1998)
  28. DNA polymerase mu, a candidate hypermutase? Ruiz JF, Domínguez O, Laín de Lera T, Garcia-Díaz M, Bernad A, Blanco L. Philos Trans R Soc Lond B Biol Sci 356 99-109 (2001)
  29. Structure-function studies of DNA polymerase λ. Bebenek K, Pedersen LC, Kunkel TA. Biochemistry 53 2781-2792 (2014)
  30. Getting a grip: polymerases and their substrate complexes. Jäger J, Pata JD. Curr Opin Struct Biol 9 21-28 (1999)
  31. DNA polymerase beta. Idriss HT, Al-Assar O, Wilson SH. Int J Biochem Cell Biol 34 321-324 (2002)
  32. Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins. Herrera-Marschitz M, Morales P, Leyton L, Bustamante D, Klawitter V, Espina-Marchant P, Allende C, Lisboa F, Cunich G, Jara-Cavieres A, Neira T, Gutierrez-Hernandez MA, Gonzalez-Lira V, Simola N, Schmitt A, Morelli M, Andrew Tasker R, Gebicke-Haerter PJ. Neurotox Res 19 603-627 (2011)
  33. Structural comparison of DNA polymerase architecture suggests a nucleotide gateway to the polymerase active site. Wu S, Beard WA, Pedersen LG, Wilson SH. Chem Rev 114 2759-2774 (2014)
  34. A review of recent experiments on step-to-step "hand-off" of the DNA intermediates in mammalian base excision repair pathways. Prasad R, Beard WA, Batra VK, Liu Y, Shock DD, Wilson SH. Mol Biol (Mosk) 45 586-600 (2011)
  35. Base excision repair and design of small molecule inhibitors of human DNA polymerase β. Wilson SH, Beard WA, Shock DD, Batra VK, Cavanaugh NA, Prasad R, Hou EW, Liu Y, Asagoshi K, Horton JK, Stefanick DF, Kedar PS, Carrozza MJ, Masaoka A, Heacock ML. Cell Mol Life Sci 67 3633-3647 (2010)
  36. Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases. Maxwell BA, Suo Z. Biochemistry 53 2804-2814 (2014)
  37. Perinatal asphyxia: CNS development and deficits with delayed onset. Herrera-Marschitz M, Neira-Pena T, Rojas-Mancilla E, Espina-Marchant P, Esmar D, Perez R, Muñoz V, Gutierrez-Hernandez M, Rivera B, Simola N, Bustamante D, Morales P, Gebicke-Haerter PJ. Front Neurosci 8 47 (2014)
  38. Dynamic mechanism of nick recognition by DNA ligase. Cherepanov AV, de Vries S. Eur J Biochem 269 5993-5999 (2002)
  39. DNA adduct structure-function relationships: comparing solution with polymerase structures. Broyde S, Wang L, Zhang L, Rechkoblit O, Geacintov NE, Patel DJ. Chem Res Toxicol 21 45-52 (2008)
  40. Studying protein-DNA interactions using atomic force microscopy. Beckwitt EC, Kong M, Van Houten B. Semin Cell Dev Biol 73 220-230 (2018)
  41. Antimutator variants of DNA polymerases. Herr AJ, Williams LN, Preston BD. Crit Rev Biochem Mol Biol 46 548-570 (2011)
  42. Base excision repair in nucleosome substrates. Jagannathan I, Cole HA, Hayes JJ. Chromosome Res 14 27-37 (2006)
  43. Determinants of substrate specificity in RNA-dependent nucleotidyl transferases. Martin G, Doublié S, Keller W. Biochim Biophys Acta 1779 206-216 (2008)
  44. Poly(A) tail synthesis and regulation: recent structural insights. Hall TM. Curr Opin Struct Biol 12 82-88 (2002)
  45. Directed evolution of novel polymerases. Holmberg RC, Henry AA, Romesberg FE. Biomol Eng 22 39-49 (2005)
  46. NMR and computational methods for molecular resolution of allosteric pathways in enzyme complexes. East KW, Skeens E, Cui JY, Belato HB, Mitchell B, Hsu R, Batista VS, Palermo G, Lisi GP. Biophys Rev 12 155-174 (2020)
  47. Small-molecule inhibitors of DNA damage-repair pathways: an approach to overcome tumor resistance to alkylating anticancer drugs. Srinivasan A, Gold B. Future Med Chem 4 1093-1111 (2012)
  48. Template-Independent Enzymatic Oligonucleotide Synthesis (TiEOS): Its History, Prospects, and Challenges. Jensen MA, Davis RW. Biochemistry 57 1821-1832 (2018)
  49. Base excision repair in chromatin: Insights from reconstituted systems. Balliano AJ, Hayes JJ. DNA Repair (Amst) 36 77-85 (2015)
  50. Sequence context-specific mutagenesis and base excision repair. Donigan KA, Sweasy JB. Mol Carcinog 48 362-368 (2009)
  51. Ribonucleotides in bacterial DNA. Schroeder JW, Randall JR, Matthews LA, Simmons LA. Crit Rev Biochem Mol Biol 50 181-193 (2015)
  52. DNA polymerases β and λ and their roles in cell. Belousova EA, Lavrik OI. DNA Repair (Amst) 29 112-126 (2015)
  53. DNA lesion bypass polymerases open up. Beard WA, Wilson SH. Structure 9 759-764 (2001)
  54. Exploiting the nucleotide substrate specificity of repair DNA polymerases to develop novel anticancer agents. Crespan E, Garbelli A, Amoroso A, Maga G. Molecules 16 7994-8019 (2011)
  55. Fidelity of Nucleotide Incorporation by the RNA-Dependent RNA Polymerase from Poliovirus. Cameron CE, Moustafa IM, Arnold JJ. Enzymes 39 293-323 (2016)
  56. Cryocrystallography of metalloprotein reaction intermediates. Wilmot CM, Pearson AR. Curr Opin Chem Biol 6 202-207 (2002)
  57. New structural snapshots provide molecular insights into the mechanism of high fidelity DNA synthesis. Freudenthal BD, Beard WA, Wilson SH. DNA Repair (Amst) 32 3-9 (2015)
  58. Adaptability in protein structures: structural dynamics and implications in ligand design. Maity A, Majumdar S, Priya P, De P, Saha S, Ghosh Dastidar S. J Biomol Struct Dyn 33 298-321 (2015)
  59. DNA polymerase β: Closing the gap between structure and function. Beard WA. DNA Repair (Amst) 93 102910 (2020)
  60. Structure and function of 2:1 DNA polymerase.DNA complexes. Tang KH, Tsai MD. J Cell Physiol 216 315-320 (2008)
  61. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Balint E, Unk I. Int J Mol Sci 25 363 (2023)

Articles citing this publication (270)



Related citations provided by authors (5)