1bpy Citations

Crystal structures of human DNA polymerase beta complexed with gapped and nicked DNA: evidence for an induced fit mechanism.

Abstract

DNA polymerase beta (pol beta) fills single nucleotide (nt) gaps in DNA produced by the base excision repair pathway of mammalian cells. Crystal structures have been determined representing intermediates in the 1 nt gap-filling reaction of pol beta: the binary complex with a gapped DNA substrate (2.4 A resolution), the ternary complex including ddCTP (2.2 A), and the binary product complex containing only nicked DNA (2.6 A). Upon binding ddCTP to the binary gap complex, the thumb subdomain rotates into the closed conformation to contact the otherwise solvent-exposed ddCTP-template base pair. Thumb movement triggers further conformational changes which poise catalytic residue Asp192, dNTP, and template for nucleotidyl transfer, effectively assembling the active site. In the product nicked DNA complex, the thumb returns to the open conformation as in the gapped binary DNA complex, facilitating dissociation of the product. These findings suggest that pol beta may enhance fidelity by an induced fit mechanism in which correct base pairing between template and incoming dNTP induces alignment of catalytic groups for catalysis (via thumb closure), but incorrect base pairing will not. The structures also reveal that pol beta binds both gapped and nicked DNA with a 90 degrees kink occurring precisely at the 5'-phosphodiester linkage of the templating residue. If the DNA were not kinked in this way, contact between the thumb and dNTP-template base pair, presumably important for the checking mechanism, would be impossible, especially when the gap is but a single nucleotide. Such a 90 degrees kink may be a mechanistic feature employed by any polymerase involved in filling gaps to completion.

Reviews - 1bpy mentioned but not cited (8)

  1. Unlocking the sugar "steric gate" of DNA polymerases. Brown JA, Suo Z. Biochemistry 50 1135-1142 (2011)
  2. The X family portrait: structural insights into biological functions of X family polymerases. Moon AF, Garcia-Diaz M, Batra VK, Beard WA, Bebenek K, Kunkel TA, Wilson SH, Pedersen LC. DNA Repair (Amst) 6 1709-1725 (2007)
  3. DNA polymerase family X: function, structure, and cellular roles. Yamtich J, Sweasy JB. Biochim Biophys Acta 1804 1136-1150 (2010)
  4. Phosphoribosyl Diphosphate (PRPP): Biosynthesis, Enzymology, Utilization, and Metabolic Significance. Hove-Jensen B, Andersen KR, Kilstrup M, Martinussen J, Switzer RL, Willemoës M. Microbiol Mol Biol Rev 81 e00040-16 (2017)
  5. History of DNA polymerase β X-ray crystallography. Whitaker AM, Freudenthal BD. DNA Repair (Amst) 93 102928 (2020)
  6. Applications of quantum mechanical/molecular mechanical methods to the chemical insertion step of DNA and RNA polymerization. Perera L, Beard WA, Pedersen LG, Wilson SH. Adv Protein Chem Struct Biol 97 83-113 (2014)
  7. DNA polymerase mu: An inflexible scaffold for substrate flexibility. Kaminski AM, Bebenek K, Pedersen LC, Kunkel TA. DNA Repair (Amst) 93 102932 (2020)
  8. Structural and Molecular Kinetic Features of Activities of DNA Polymerases. Kuznetsova AA, Fedorova OS, Kuznetsov NA. Int J Mol Sci 23 6373 (2022)

Articles - 1bpy mentioned but not cited (62)

  1. Magnesium-induced assembly of a complete DNA polymerase catalytic complex. Batra VK, Beard WA, Shock DD, Krahn JM, Pedersen LC, Wilson SH. Structure 14 757-766 (2006)
  2. Nucleic acid polymerases use a general acid for nucleotidyl transfer. Castro C, Smidansky ED, Arnold JJ, Maksimchuk KR, Moustafa I, Uchida A, Götte M, Konigsberg W, Cameron CE. Nat Struct Mol Biol 16 212-218 (2009)
  3. On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. Delarue M, Dumas P. Proc Natl Acad Sci U S A 101 6957-6962 (2004)
  4. Crystal structure of mammalian poly(A) polymerase in complex with an analog of ATP. Martin G, Keller W, Doublié S. EMBO J 19 4193-4203 (2000)
  5. Common fold in helix-hairpin-helix proteins. Shao X, Grishin NV. Nucleic Acids Res 28 2643-2650 (2000)
  6. Structure and mechanism of DNA polymerase β. Beard WA, Wilson SH. Biochemistry 53 2768-2780 (2014)
  7. Lack of sugar discrimination by human Pol mu requires a single glycine residue. Ruiz JF, Juárez R, García-Díaz M, Terrados G, Picher AJ, González-Barrera S, Fernández de Henestrosa AR, Blanco L. Nucleic Acids Res 31 4441-4449 (2003)
  8. Energy analysis of chemistry for correct insertion by DNA polymerase beta. Lin P, Pedersen LC, Batra VK, Beard WA, Wilson SH, Pedersen LG. Proc Natl Acad Sci U S A 103 13294-13299 (2006)
  9. Human POLB gene is mutated in high percentage of colorectal tumors. Donigan KA, Sun KW, Nemec AA, Murphy DL, Cong X, Northrup V, Zelterman D, Sweasy JB. J Biol Chem 287 23830-23839 (2012)
  10. Normal-modes-based prediction of protein conformational changes guided by distance constraints. Zheng W, Brooks BR. Biophys J 88 3109-3117 (2005)
  11. A specific loop in human DNA polymerase mu allows switching between creative and DNA-instructed synthesis. Juárez R, Ruiz JF, Nick McElhinny SA, Ramsden D, Blanco L. Nucleic Acids Res 34 4572-4582 (2006)
  12. The Leu22Pro tumor-associated variant of DNA polymerase beta is dRP lyase deficient. Dalal S, Chikova A, Jaeger J, Sweasy JB. Nucleic Acids Res 36 411-422 (2008)
  13. Magnesium-cationic dummy atom molecules enhance representation of DNA polymerase beta in molecular dynamics simulations: improved accuracy in studies of structural features and mutational effects. Oelschlaeger P, Klahn M, Beard WA, Wilson SH, Warshel A. J Mol Biol 366 687-701 (2007)
  14. Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine. Koag MC, Kou Y, Ouzon-Shubeita H, Lee S. Nucleic Acids Res 42 8755-8766 (2014)
  15. In silico evidence for DNA polymerase-beta's substrate-induced conformational change. Arora K, Schlick T. Biophys J 87 3088-3099 (2004)
  16. Standard atomic volumes in double-stranded DNA and packing in protein--DNA interfaces. Nadassy K, Tomás-Oliveira I, Alberts I, Janin J, Wodak SJ. Nucleic Acids Res 29 3362-3376 (2001)
  17. The spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β. Koag MC, Nam K, Lee S. Nucleic Acids Res 42 11233-11245 (2014)
  18. Yeast DNA polymerase eta makes functional contacts with the DNA minor groove only at the incoming nucleoside triphosphate. Washington MT, Wolfle WT, Spratt TE, Prakash L, Prakash S. Proc Natl Acad Sci U S A 100 5113-5118 (2003)
  19. Sequence motifs that distinguish ATP(CTP):tRNA nucleotidyl transferases from eubacterial poly(A) polymerases. Martin G, Keller W. RNA 10 899-906 (2004)
  20. Structure and mechanism of an intramembrane liponucleotide synthetase central for phospholipid biosynthesis. Liu X, Yin Y, Wu J, Liu Z. Nat Commun 5 4244 (2014)
  21. Insights into the domain and repeat architecture of target of rapamycin. Knutson BA. J Struct Biol 170 354-363 (2010)
  22. DNA-binding determinants promoting NHEJ by human Polμ. Martin MJ, Juarez R, Blanco L. Nucleic Acids Res 40 11389-11403 (2012)
  23. Exploring the role of large conformational changes in the fidelity of DNA polymerase beta. Xiang Y, Goodman MF, Beard WA, Wilson SH, Warshel A. Proteins 70 231-247 (2008)
  24. The Asp285 variant of DNA polymerase beta extends mispaired primer termini via increased nucleotide binding. Murphy DL, Kosa J, Jaeger J, Sweasy JB. Biochemistry 47 8048-8057 (2008)
  25. Distinct energetics and closing pathways for DNA polymerase beta with 8-oxoG template and different incoming nucleotides. Wang Y, Schlick T. BMC Struct Biol 7 7 (2007)
  26. A triad interaction in the fingers subdomain of DNA polymerase beta controls polymerase activity. Murphy DL, Jaeger J, Sweasy JB. J Am Chem Soc 133 6279-6287 (2011)
  27. Characterization of the active site of DNA polymerase beta by molecular dynamics and quantum chemical calculation. Rittenhouse RC, Apostoluk WK, Miller JH, Straatsma TP. Proteins 53 667-682 (2003)
  28. Differing conformational pathways before and after chemistry for insertion of dATP versus dCTP opposite 8-oxoG in DNA polymerase beta. Wang Y, Reddy S, Beard WA, Wilson SH, Schlick T. Biophys J 92 3063-3070 (2007)
  29. DNA duplex stability: the role of preorganized electrostatics. Bren U, Lah J, Bren M, Martínek V, Florián J. J Phys Chem B 114 2876-2885 (2010)
  30. Metal-dependent conformational activation explains highly promutagenic replication across O6-methylguanine by human DNA polymerase β. Koag MC, Lee S. J Am Chem Soc 136 5709-5721 (2014)
  31. A specific N-terminal extension of the 8 kDa domain is required for DNA end-bridging by human Polμ and Polλ. Martin MJ, Martin MJ, Garcia-Ortiz MV, Gomez-Bedoya A, Esteban V, Guerra S, Blanco L. Nucleic Acids Res 41 9105-9116 (2013)
  32. Sequential side-chain residue motions transform the binary into the ternary state of DNA polymerase lambda. Foley MC, Arora K, Schlick T. Biophys J 91 3182-3195 (2006)
  33. Mutagenic Replication of the Major Oxidative Adenine Lesion 7,8-Dihydro-8-oxoadenine by Human DNA Polymerases. Koag MC, Jung H, Lee S. J Am Chem Soc 141 4584-4596 (2019)
  34. Induced Fit in the Selection of Correct versus Incorrect Nucleotides by DNA Polymerase β. Moscato B, Swain M, Loria JP. Biochemistry 55 382-395 (2016)
  35. Mutagenesis mechanism of the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine. Koag MC, Jung H, Lee S. Nucleic Acids Res 48 5119-5134 (2020)
  36. Promutagenicity of 8-Chloroguanine, A Major Inflammation-Induced Halogenated DNA Lesion. Kou Y, Koag MC, Lee S. Molecules 24 E3507 (2019)
  37. Role of Conformational Motions in Enzyme Function: Selected Methodologies and Case Studies. Narayanan C, Bernard DN, Doucet N. Catalysts 6 81 (2016)
  38. Mismatched dNTP incorporation by DNA polymerase beta does not proceed via globally different conformational pathways. Tang KH, Niebuhr M, Tung CS, Chan HC, Chou CC, Tsai MD. Nucleic Acids Res 36 2948-2957 (2008)
  39. Unfavorable electrostatic and steric interactions in DNA polymerase β E295K mutant interfere with the enzyme's pathway. Li Y, Gridley CL, Jaeger J, Sweasy JB, Schlick T. J Am Chem Soc 134 9999-10010 (2012)
  40. In silico studies of the African swine fever virus DNA polymerase X support an induced-fit mechanism. Sampoli Benítez BA, Arora K, Schlick T. Biophys J 90 42-56 (2006)
  41. Quantum mechanical analysis of nonenzymatic nucleotidyl transfer reactions: kinetic and thermodynamic effects of β-γ bridging groups of dNTP substrates. Zhang Z, Eloge J, Florián J. Biochemistry 53 4180-4191 (2014)
  42. Unexpected behavior of DNA polymerase Mu opposite template 8-oxo-7,8-dihydro-2'-guanosine. Kaminski AM, Chiruvella KK, Ramsden DA, Kunkel TA, Bebenek K, Pedersen LC. Nucleic Acids Res 47 9410-9422 (2019)
  43. Insights into the effect of minor groove interactions and metal cofactors on mutagenic replication by human DNA polymerase β. Koag MC, Lee S. Biochem J 475 571-585 (2018)
  44. Modulation of the structure, catalytic activity, and fidelity of African swine fever virus DNA polymerase X by a reversible disulfide switch. Voehler MW, Eoff RL, McDonald WH, Guengerich FP, Stone MP. J Biol Chem 284 18434-18444 (2009)
  45. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes. Malhotra S, Sowdhamini R. BMC Bioinformatics 13 165 (2012)
  46. Dealing with structural variability in molecular replacement and crystallographic refinement through normal-mode analysis. Delarue M. Acta Crystallogr D Biol Crystallogr 64 40-48 (2008)
  47. Delineation and analysis of the conceptual data model implied by the "IUPAC Recommendations for Biochemical Nomenclature". Fox-Erlich S, Martyn TO, Ellis HJ, Gryk MR. Protein Sci 13 2559-2563 (2004)
  48. Identification of dynamical hinge points of the L1 ligase molecular switch. Giambasu GM, Lee TS, Sosa CP, Robertson MP, Scott WG, York DM. RNA 16 769-780 (2010)
  49. Structural basis for the inefficient nucleotide incorporation opposite cisplatin-DNA lesion by human DNA polymerase β. Koag MC, Lai L, Lee S. J Biol Chem 289 31341-31348 (2014)
  50. I260Q DNA polymerase β highlights precatalytic conformational rearrangements critical for fidelity. Liptak C, Mahmoud MM, Eckenroth BE, Moreno MV, East K, Alnajjar KS, Huang J, Towle-Weicksel JB, Doublié S, Loria JP, Sweasy JB. Nucleic Acids Res 46 10740-10756 (2018)
  51. Polμ tumor variants decrease the efficiency and accuracy of NHEJ. Sastre-Moreno G, Pryor JM, Díaz-Talavera A, Ruiz JF, Ramsden DA, Blanco L. Nucleic Acids Res 45 10018-10031 (2017)
  52. Relationship between conformational changes in pol lambda's active site upon binding incorrect nucleotides and mismatch incorporation rates. Foley MC, Schlick T. J Phys Chem B 113 13035-13047 (2009)
  53. Calculating distortions of short DNA duplexes with base pairing between an oxidatively damaged guanine and a guanine. Suzuki M, Kino K, Morikawa M, Kobayashi T, Miyazawa H. Molecules 19 11030-11044 (2014)
  54. MAPIYA contact map server for identification and visualization of molecular interactions in proteins and biological complexes. Badaczewska-Dawid AE, Nithin C, Wroblewski K, Kurcinski M, Kmiecik S. Nucleic Acids Res 50 W474-W482 (2022)
  55. Structural basis for promutagenicity of 8-halogenated guanine. Koag MC, Min K, Lee S. J Biol Chem 289 6289-6298 (2014)
  56. Structures of the Leishmania infantum polymerase beta. Mejia E, Burak M, Alonso A, Larraga V, Kunkel TA, Bebenek K, Garcia-Diaz M. DNA Repair (Amst) 18 1-9 (2014)
  57. Using single-molecule FRET to probe the nucleotide-dependent conformational landscape of polymerase β-DNA complexes. Fijen C, Mahmoud MM, Kronenberg M, Kaup R, Fontana M, Towle-Weicksel JB, Sweasy JB, Hohlbein J. J Biol Chem 295 9012-9020 (2020)
  58. DNA pol λ's extraordinary ability to stabilize misaligned DNA. Foley MC, Padow VA, Schlick T. J Am Chem Soc 132 13403-13416 (2010)
  59. DNA stabilization at the Bacillus subtilis PolX core--a binding model to coordinate polymerase, AP-endonuclease and 3'-5' exonuclease activities. Baños B, Villar L, Salas M, de Vega M. Nucleic Acids Res 40 9750-9762 (2012)
  60. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  61. finDr: A web server for in silico D-peptide ligand identification. Engel H, Guischard F, Krause F, Nandy J, Kaas P, Höfflin N, Köhn M, Kilb N, Voigt K, Wolf S, Aslan T, Baezner F, Hahne S, Ruckes C, Weygant J, Zinina A, Akmeriç EB, Antwi EB, Dombrovskij D, Franke P, Lesch KL, Vesper N, Weis D, Gensch N, Di Ventura B, Öztürk MA. Synth Syst Biotechnol 6 402-413 (2021)
  62. Noncanonical prokaryotic X family DNA polymerases lack polymerase activity and act as exonucleases. Prostova M, Shilkin E, Kulikova AA, Makarova A, Ryazansky S, Kulbachinskiy A. Nucleic Acids Res 50 6398-6413 (2022)


Reviews citing this publication (61)

  1. Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Prakash S, Johnson RE, Prakash L. Annu Rev Biochem 74 317-353 (2005)
  2. DNA replication fidelity. Kunkel TA, Bebenek K. Annu Rev Biochem 69 497-529 (2000)
  3. XRCC1 keeps DNA from getting stranded. Thompson LH, West MG. Mutat Res 459 1-18 (2000)
  4. An open and closed case for all polymerases. Doublié S, Sawaya MR, Ellenberger T. Structure 7 R31-5 (1999)
  5. Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Cihlar T, Ray AS. Antiviral Res 85 39-58 (2010)
  6. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Chaney SG, Campbell SL, Bassett E, Wu Y. Crit Rev Oncol Hematol 53 3-11 (2005)
  7. Multisubunit RNA polymerases. Cramer P. Curr Opin Struct Biol 12 89-97 (2002)
  8. RNA-specific ribonucleotidyl transferases. Martin G, Keller W. RNA 13 1834-1849 (2007)
  9. Structure-function relationships among RNA-dependent RNA polymerases. Ng KK, Arnold JJ, Cameron CE. Curr Top Microbiol Immunol 320 137-156 (2008)
  10. The mechanism of action of T7 DNA polymerase. Doublié S, Ellenberger T. Curr Opin Struct Biol 8 704-712 (1998)
  11. Why nature really chose phosphate. Kamerlin SC, Sharma PK, Prasad RB, Warshel A. Q Rev Biophys 46 1-132 (2013)
  12. Mammalian DNA single-strand break repair: an X-ra(y)ted affair. Caldecott KW. Bioessays 23 447-455 (2001)
  13. Damage repair DNA polymerases Y. Yang W. Curr Opin Struct Biol 13 23-30 (2003)
  14. Structural insights into the origins of DNA polymerase fidelity. Beard WA, Wilson SH. Structure 11 489-496 (2003)
  15. Base excision repair of oxidative DNA damage: from mechanism to disease. Whitaker AM, Schaich MA, Smith MR, Flynn TS, Freudenthal BD. Front Biosci (Landmark Ed) 22 1493-1522 (2017)
  16. Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Motea EA, Berdis AJ. Biochim Biophys Acta 1804 1151-1166 (2010)
  17. Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site. Sarafianos SG, Das K, Ding J, Boyer PL, Hughes SH, Arnold E. Chem Biol 6 R137-46 (1999)
  18. Covalent trapping of protein-DNA complexes. Verdine GL, Norman DP. Annu Rev Biochem 72 337-366 (2003)
  19. Envisioning the molecular choreography of DNA base excision repair. Parikh SS, Mol CD, Hosfield DJ, Tainer JA. Curr Opin Struct Biol 9 37-47 (1999)
  20. Base excision repair enzyme family portrait: integrating the structure and chemistry of an entire DNA repair pathway. Parikh SS, Mol CD, Tainer JA. Structure 5 1543-1550 (1997)
  21. The structural basis of XRCC1-mediated DNA repair. London RE. DNA Repair (Amst) 30 90-103 (2015)
  22. Structure-function studies of DNA polymerase lambda. Garcia-Diaz M, Bebenek K, Gao G, Pedersen LC, London RE, Kunkel TA. DNA Repair (Amst) 4 1358-1367 (2005)
  23. The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Kumar N, Raja S, Van Houten B. Nucleic Acids Res 48 11227-11243 (2020)
  24. Regulation of DNA repair fidelity by molecular checkpoints: "gates" in DNA polymerase beta's substrate selection. Radhakrishnan R, Arora K, Wang Y, Beard WA, Wilson SH, Schlick T. Biochemistry 45 15142-15156 (2006)
  25. Structure and function of the double-strand break repair machinery. Shin DS, Chahwan C, Huffman JL, Tainer JA. DNA Repair (Amst) 3 863-873 (2004)
  26. In search of an RNA replicase ribozyme. McGinness KE, Joyce GF. Chem Biol 10 5-14 (2003)
  27. The adenylyl and guanylyl cyclase superfamily. Hurley JH. Curr Opin Struct Biol 8 770-777 (1998)
  28. DNA polymerase mu, a candidate hypermutase? Ruiz JF, Domínguez O, Laín de Lera T, Garcia-Díaz M, Bernad A, Blanco L. Philos Trans R Soc Lond B Biol Sci 356 99-109 (2001)
  29. Structure-function studies of DNA polymerase λ. Bebenek K, Pedersen LC, Kunkel TA. Biochemistry 53 2781-2792 (2014)
  30. Getting a grip: polymerases and their substrate complexes. Jäger J, Pata JD. Curr Opin Struct Biol 9 21-28 (1999)
  31. DNA polymerase beta. Idriss HT, Al-Assar O, Wilson SH. Int J Biochem Cell Biol 34 321-324 (2002)
  32. Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins. Herrera-Marschitz M, Morales P, Leyton L, Bustamante D, Klawitter V, Espina-Marchant P, Allende C, Lisboa F, Cunich G, Jara-Cavieres A, Neira T, Gutierrez-Hernandez MA, Gonzalez-Lira V, Simola N, Schmitt A, Morelli M, Andrew Tasker R, Gebicke-Haerter PJ. Neurotox Res 19 603-627 (2011)
  33. Structural comparison of DNA polymerase architecture suggests a nucleotide gateway to the polymerase active site. Wu S, Beard WA, Pedersen LG, Wilson SH. Chem Rev 114 2759-2774 (2014)
  34. A review of recent experiments on step-to-step "hand-off" of the DNA intermediates in mammalian base excision repair pathways. Prasad R, Beard WA, Batra VK, Liu Y, Shock DD, Wilson SH. Mol Biol (Mosk) 45 586-600 (2011)
  35. Base excision repair and design of small molecule inhibitors of human DNA polymerase β. Wilson SH, Beard WA, Shock DD, Batra VK, Cavanaugh NA, Prasad R, Hou EW, Liu Y, Asagoshi K, Horton JK, Stefanick DF, Kedar PS, Carrozza MJ, Masaoka A, Heacock ML. Cell Mol Life Sci 67 3633-3647 (2010)
  36. Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases. Maxwell BA, Suo Z. Biochemistry 53 2804-2814 (2014)
  37. Perinatal asphyxia: CNS development and deficits with delayed onset. Herrera-Marschitz M, Neira-Pena T, Rojas-Mancilla E, Espina-Marchant P, Esmar D, Perez R, Muñoz V, Gutierrez-Hernandez M, Rivera B, Simola N, Bustamante D, Morales P, Gebicke-Haerter PJ. Front Neurosci 8 47 (2014)
  38. Dynamic mechanism of nick recognition by DNA ligase. Cherepanov AV, de Vries S. Eur J Biochem 269 5993-5999 (2002)
  39. DNA adduct structure-function relationships: comparing solution with polymerase structures. Broyde S, Wang L, Zhang L, Rechkoblit O, Geacintov NE, Patel DJ. Chem Res Toxicol 21 45-52 (2008)
  40. Studying protein-DNA interactions using atomic force microscopy. Beckwitt EC, Kong M, Van Houten B. Semin Cell Dev Biol 73 220-230 (2018)
  41. Antimutator variants of DNA polymerases. Herr AJ, Williams LN, Preston BD. Crit Rev Biochem Mol Biol 46 548-570 (2011)
  42. Base excision repair in nucleosome substrates. Jagannathan I, Cole HA, Hayes JJ. Chromosome Res 14 27-37 (2006)
  43. Determinants of substrate specificity in RNA-dependent nucleotidyl transferases. Martin G, Doublié S, Keller W. Biochim Biophys Acta 1779 206-216 (2008)
  44. Poly(A) tail synthesis and regulation: recent structural insights. Hall TM. Curr Opin Struct Biol 12 82-88 (2002)
  45. Directed evolution of novel polymerases. Holmberg RC, Henry AA, Romesberg FE. Biomol Eng 22 39-49 (2005)
  46. NMR and computational methods for molecular resolution of allosteric pathways in enzyme complexes. East KW, Skeens E, Cui JY, Belato HB, Mitchell B, Hsu R, Batista VS, Palermo G, Lisi GP. Biophys Rev 12 155-174 (2020)
  47. Small-molecule inhibitors of DNA damage-repair pathways: an approach to overcome tumor resistance to alkylating anticancer drugs. Srinivasan A, Gold B. Future Med Chem 4 1093-1111 (2012)
  48. Template-Independent Enzymatic Oligonucleotide Synthesis (TiEOS): Its History, Prospects, and Challenges. Jensen MA, Davis RW. Biochemistry 57 1821-1832 (2018)
  49. Base excision repair in chromatin: Insights from reconstituted systems. Balliano AJ, Hayes JJ. DNA Repair (Amst) 36 77-85 (2015)
  50. Sequence context-specific mutagenesis and base excision repair. Donigan KA, Sweasy JB. Mol Carcinog 48 362-368 (2009)
  51. Ribonucleotides in bacterial DNA. Schroeder JW, Randall JR, Matthews LA, Simmons LA. Crit Rev Biochem Mol Biol 50 181-193 (2015)
  52. DNA polymerases β and λ and their roles in cell. Belousova EA, Lavrik OI. DNA Repair (Amst) 29 112-126 (2015)
  53. DNA lesion bypass polymerases open up. Beard WA, Wilson SH. Structure 9 759-764 (2001)
  54. Exploiting the nucleotide substrate specificity of repair DNA polymerases to develop novel anticancer agents. Crespan E, Garbelli A, Amoroso A, Maga G. Molecules 16 7994-8019 (2011)
  55. Fidelity of Nucleotide Incorporation by the RNA-Dependent RNA Polymerase from Poliovirus. Cameron CE, Moustafa IM, Arnold JJ. Enzymes 39 293-323 (2016)
  56. Cryocrystallography of metalloprotein reaction intermediates. Wilmot CM, Pearson AR. Curr Opin Chem Biol 6 202-207 (2002)
  57. New structural snapshots provide molecular insights into the mechanism of high fidelity DNA synthesis. Freudenthal BD, Beard WA, Wilson SH. DNA Repair (Amst) 32 3-9 (2015)
  58. Adaptability in protein structures: structural dynamics and implications in ligand design. Maity A, Majumdar S, Priya P, De P, Saha S, Ghosh Dastidar S. J Biomol Struct Dyn 33 298-321 (2015)
  59. DNA polymerase β: Closing the gap between structure and function. Beard WA. DNA Repair (Amst) 93 102910 (2020)
  60. Structure and function of 2:1 DNA polymerase.DNA complexes. Tang KH, Tsai MD. J Cell Physiol 216 315-320 (2008)
  61. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Balint E, Unk I. Int J Mol Sci 25 363 (2023)

Articles citing this publication (270)

  1. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Doublié S, Tabor S, Long AM, Richardson CC, Ellenberger T. Nature 391 251-258 (1998)
  2. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Ling H, Boudsocq F, Woodgate R, Yang W. Cell 107 91-102 (2001)
  3. Structure of the replicating complex of a pol alpha family DNA polymerase. Franklin MC, Wang J, Steitz TA. Cell 105 657-667 (2001)
  4. XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Whitehouse CJ, Taylor RM, Thistlethwaite A, Zhang H, Karimi-Busheri F, Lasko DD, Weinfeld M, Caldecott KW. Cell 104 107-117 (2001)
  5. Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. Word JM, Lovell SC, LaBean TH, Taylor HC, Zalis ME, Presley BK, Richardson JS, Richardson DC. J Mol Biol 285 1711-1733 (1999)
  6. Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations. Johnson SJ, Taylor JS, Beese LS. Proc Natl Acad Sci U S A 100 3895-3900 (2003)
  7. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Ago H, Adachi T, Yoshida A, Yamamoto M, Habuka N, Yatsunami K, Miyano M. Structure 7 1417-1426 (1999)
  8. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response [corrected]. Hogg T, Mechold U, Malke H, Cashel M, Hilgenfeld R. Cell 117 57-68 (2004)
  9. Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. Shin DS, Pellegrini L, Daniels DS, Yelent B, Craig L, Bates D, Yu DS, Shivji MK, Hitomi C, Arvai AS, Volkmann N, Tsuruta H, Blundell TL, Venkitaraman AR, Tainer JA. EMBO J 22 4566-4576 (2003)
  10. Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Chapados BR, Hosfield DJ, Han S, Qiu J, Yelent B, Shen B, Tainer JA. Cell 116 39-50 (2004)
  11. Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Hosfield DJ, Mol CD, Shen B, Tainer JA. Cell 95 135-146 (1998)
  12. Simplified normal mode analysis of conformational transitions in DNA-dependent polymerases: the elastic network model. Delarue M, Sanejouand YH. J Mol Biol 320 1011-1024 (2002)
  13. A new paradigm for DNA polymerase specificity. Tsai YC, Johnson KA. Biochemistry 45 9675-9687 (2006)
  14. The morph server: a standardized system for analyzing and visualizing macromolecular motions in a database framework. Krebs WG, Gerstein M. Nucleic Acids Res 28 1665-1675 (2000)
  15. Structure of the DNA repair enzyme endonuclease IV and its DNA complex: double-nucleotide flipping at abasic sites and three-metal-ion catalysis. Hosfield DJ, Guan Y, Haas BJ, Cunningham RP, Tainer JA. Cell 98 397-408 (1999)
  16. Structural basis for the dual coding potential of 8-oxoguanosine by a high-fidelity DNA polymerase. Brieba LG, Eichman BF, Kokoska RJ, Doublié S, Kunkel TA, Ellenberger T. EMBO J 23 3452-3461 (2004)
  17. Keeping uracil out of DNA: physiological role, structure and catalytic mechanism of dUTPases. Vértessy BG, Tóth J. Acc Chem Res 42 97-106 (2009)
  18. Observing a DNA polymerase choose right from wrong. Freudenthal BD, Beard WA, Shock DD, Wilson SH. Cell 154 157-168 (2013)
  19. Structural basis of transcription: mismatch-specific fidelity mechanisms and paused RNA polymerase II with frayed RNA. Sydow JF, Brueckner F, Cheung AC, Damsma GE, Dengl S, Lehmann E, Vassylyev D, Cramer P. Mol Cell 34 710-721 (2009)
  20. Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. Zhou BL, Pata JD, Steitz TA. Mol Cell 8 427-437 (2001)
  21. A closed conformation for the Pol lambda catalytic cycle. Garcia-Diaz M, Bebenek K, Krahn JM, Kunkel TA, Pedersen LC. Nat Struct Mol Biol 12 97-98 (2005)
  22. Crystal structure of the catalytic alpha subunit of E. coli replicative DNA polymerase III. Lamers MH, Georgescu RE, Lee SG, O'Donnell M, Kuriyan J. Cell 126 881-892 (2006)
  23. Inhibition of hepatitis B virus polymerase by entecavir. Langley DR, Walsh AW, Baldick CJ, Eggers BJ, Rose RE, Levine SM, Kapur AJ, Colonno RJ, Tenney DJ. J Virol 81 3992-4001 (2007)
  24. Crystal structures of a template-independent DNA polymerase: murine terminal deoxynucleotidyltransferase. Delarue M, Boulé JB, Lescar J, Expert-Bezançon N, Jourdan N, Sukumar N, Rougeon F, Papanicolaou C. EMBO J 21 427-439 (2002)
  25. Structure of DNA polymerase beta with the mutagenic DNA lesion 8-oxodeoxyguanine reveals structural insights into its coding potential. Krahn JM, Beard WA, Miller H, Grollman AP, Wilson SH. Structure 11 121-127 (2003)
  26. Crystallographic snapshots of a replicative DNA polymerase encountering an abasic site. Hogg M, Wallace SS, Doublié S. EMBO J 23 1483-1493 (2004)
  27. DNA structure and aspartate 276 influence nucleotide binding to human DNA polymerase beta. Implication for the identity of the rate-limiting conformational change. Vande Berg BJ, Beard WA, Wilson SH. J Biol Chem 276 3408-3416 (2001)
  28. Structures of DNA polymerase beta with active-site mismatches suggest a transient abasic site intermediate during misincorporation. Batra VK, Beard WA, Shock DD, Pedersen LC, Wilson SH. Mol Cell 30 315-324 (2008)
  29. Stepwise translocation of Dpo4 polymerase during error-free bypass of an oxoG lesion. Rechkoblit O, Malinina L, Cheng Y, Kuryavyi V, Broyde S, Geacintov NE, Patel DJ. PLoS Biol 4 e11 (2006)
  30. The structure of T. aquaticus DNA polymerase III is distinct from eukaryotic replicative DNA polymerases. Bailey S, Wing RA, Steitz TA. Cell 126 893-904 (2006)
  31. Motions of the fingers subdomain of klentaq1 are fast and not rate limiting: implications for the molecular basis of fidelity in DNA polymerases. Rothwell PJ, Mitaksov V, Waksman G. Mol Cell 19 345-355 (2005)
  32. Substrate complexes of hepatitis C virus RNA polymerase (HC-J4): structural evidence for nucleotide import and de-novo initiation. O'Farrell D, Trowbridge R, Rowlands D, Jäger J. J Mol Biol 326 1025-1035 (2003)
  33. Suppressed catalytic activity of base excision repair enzymes on rotationally positioned uracil in nucleosomes. Beard BC, Wilson SH, Smerdon MJ. Proc Natl Acad Sci U S A 100 7465-7470 (2003)
  34. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Freudenthal BD, Beard WA, Perera L, Shock DD, Kim T, Schlick T, Wilson SH. Nature 517 635-639 (2015)
  35. Structural basis for proofreading during replication of the Escherichia coli chromosome. Hamdan S, Carr PD, Brown SE, Ollis DL, Dixon NE. Structure 10 535-546 (2002)
  36. A structural solution for the DNA polymerase lambda-dependent repair of DNA gaps with minimal homology. Garcia-Diaz M, Bebenek K, Krahn JM, Blanco L, Kunkel TA, Pedersen LC. Mol Cell 13 561-572 (2004)
  37. Orchestration of cooperative events in DNA synthesis and repair mechanism unraveled by transition path sampling of DNA polymerase beta's closing. Radhakrishnan R, Schlick T. Proc Natl Acad Sci U S A 101 5970-5975 (2004)
  38. Acetylation regulates the DNA end-trimming activity of DNA polymerase beta. Hasan S, El-Andaloussi N, Hardeland U, Hassa PO, Bürki C, Imhof R, Schär P, Hottiger MO. Mol Cell 10 1213-1222 (2002)
  39. Domain specific interaction in the XRCC1-DNA polymerase beta complex. Marintchev A, Robertson A, Dimitriadis EK, Prasad R, Wilson SH, Mullen GP. Nucleic Acids Res 28 2049-2059 (2000)
  40. Structure of a bifunctional DNA primase-polymerase. Lipps G, Weinzierl AO, von Scheven G, Buchen C, Cramer P. Nat Struct Mol Biol 11 157-162 (2004)
  41. The three-dimensional structure of the HRDC domain and implications for the Werner and Bloom syndrome proteins. Liu Z, Macias MJ, Bottomley MJ, Stier G, Linge JP, Nilges M, Bork P, Sattler M. Structure 7 1557-1566 (1999)
  42. Structural basis for the specificity of the initiation of HIV-1 reverse transcription. Isel C, Westhof E, Massire C, Le Grice SF, Ehresmann B, Ehresmann C, Marquet R. EMBO J 18 1038-1048 (1999)
  43. A water-mediated and substrate-assisted catalytic mechanism for Sulfolobus solfataricus DNA polymerase IV. Wang L, Yu X, Hu P, Broyde S, Zhang Y. J Am Chem Soc 129 4731-4737 (2007)
  44. DNA base excision repair of uracil residues in reconstituted nucleosome core particles. Nilsen H, Lindahl T, Verreault A. EMBO J 21 5943-5952 (2002)
  45. Comparative analysis of editosome proteins in trypanosomatids. Worthey EA, Schnaufer A, Mian IS, Stuart K, Salavati R. Nucleic Acids Res 31 6392-6408 (2003)
  46. Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. Akbari M, Otterlei M, Peña-Diaz J, Aas PA, Kavli B, Liabakk NB, Hagen L, Imai K, Durandy A, Slupphaug G, Krokan HE. Nucleic Acids Res 32 5486-5498 (2004)
  47. Structural insight into the substrate specificity of DNA Polymerase mu. Moon AF, Garcia-Diaz M, Bebenek K, Davis BJ, Zhong X, Ramsden DA, Kunkel TA, Pedersen LC. Nat Struct Mol Biol 14 45-53 (2007)
  48. A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. Sun D, Lee G, Lee JH, Kim HY, Rhee HW, Park SY, Kim KJ, Kim Y, Kim BY, Hong JI, Park C, Choy HE, Kim JH, Jeon YH, Chung J. Nat Struct Mol Biol 17 1188-1194 (2010)
  49. Identifying DNA-binding proteins using structural motifs and the electrostatic potential. Shanahan HP, Garcia MA, Jones S, Thornton JM. Nucleic Acids Res 32 4732-4741 (2004)
  50. DNA polymerase beta: effects of gapped DNA substrates on dNTP specificity, fidelity, processivity and conformational changes. Ahn J, Kraynov VS, Zhong X, Werneburg BG, Tsai MD. Biochem J 331 ( Pt 1) 79-87 (1998)
  51. The SMX DNA Repair Tri-nuclease. Wyatt HD, Laister RC, Martin SR, Arrowsmith CH, West SC. Mol Cell 65 848-860.e11 (2017)
  52. Crystal structures of clinically relevant Lys103Asn/Tyr181Cys double mutant HIV-1 reverse transcriptase in complexes with ATP and non-nucleoside inhibitor HBY 097. Das K, Sarafianos SG, Clark AD, Boyer PL, Hughes SH, Arnold E. J Mol Biol 365 77-89 (2007)
  53. Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis. Balbo PB, Bohm A. Structure 15 1117-1131 (2007)
  54. Structural basis for UTP specificity of RNA editing TUTases from Trypanosoma brucei. Deng J, Ernst NL, Turley S, Stuart KD, Hol WG. EMBO J 24 4007-4017 (2005)
  55. Structural insights into DNA polymerase beta deterrents for misincorporation support an induced-fit mechanism for fidelity. Krahn JM, Beard WA, Wilson SH. Structure 12 1823-1832 (2004)
  56. Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit. Wing RA, Bailey S, Steitz TA. J Mol Biol 382 859-869 (2008)
  57. A germline polymorphism of DNA polymerase beta induces genomic instability and cellular transformation. Yamtich J, Nemec AA, Keh A, Sweasy JB. PLoS Genet 8 e1003052 (2012)
  58. Inhibition of reverse transcription in vivo by elevated manganese ion concentration. Bolton EC, Mildvan AS, Boeke JD. Mol Cell 9 879-889 (2002)
  59. Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition. Savir Y, Tlusty T. PLoS One 2 e468 (2007)
  60. Crystal structure of the human CCA-adding enzyme: insights into template-independent polymerization. Augustin MA, Reichert AS, Betat H, Huber R, Mörl M, Steegborn C. J Mol Biol 328 985-994 (2003)
  61. Multiple functions of DNA polymerases. Garcia-Diaz M, Bebenek K. CRC Crit Rev Plant Sci 26 105-122 (2007)
  62. Atomic structure and nonhomologous end-joining function of the polymerase component of bacterial DNA ligase D. Zhu H, Nandakumar J, Aniukwu J, Wang LK, Glickman MS, Lima CD, Shuman S. Proc Natl Acad Sci U S A 103 1711-1716 (2006)
  63. Crystal structure of the Mycobacterium tuberculosis dUTPase: insights into the catalytic mechanism. Chan S, Segelke B, Lekin T, Krupka H, Cho US, Kim MY, So M, Kim CY, Naranjo CM, Rogers YC, Park MS, Waldo GS, Pashkov I, Cascio D, Perry JL, Sawaya MR. J Mol Biol 341 503-517 (2004)
  64. Polymerase beta simulations suggest that Arg258 rotation is a slow step rather than large subdomain motions per se. Yang L, Beard WA, Wilson SH, Broyde S, Schlick T. J Mol Biol 317 651-671 (2002)
  65. DNA polymerase beta substrate specificity: side chain modulation of the "A-rule". Beard WA, Shock DD, Batra VK, Pedersen LC, Wilson SH. J Biol Chem 284 31680-31689 (2009)
  66. Modeling, analysis, and validation of a novel HIV integrase structure provide insights into the binding modes of potent integrase inhibitors. Chen X, Tsiang M, Yu F, Hung M, Jones GS, Zeynalzadegan A, Qi X, Jin H, Kim CU, Swaminathan S, Chen JM. J Mol Biol 380 504-519 (2008)
  67. Backbone dynamics and refined solution structure of the N-terminal domain of DNA polymerase beta. Correlation with DNA binding and dRP lyase activity. Maciejewski MW, Liu D, Prasad R, Wilson SH, Mullen GP. J Mol Biol 296 229-253 (2000)
  68. Protein interactions with platinum-DNA adducts: from structure to function. Chaney SG, Campbell SL, Temple B, Bassett E, Wu Y, Faldu M. J Inorg Biochem 98 1551-1559 (2004)
  69. Structural insight into the DNA polymerase beta deoxyribose phosphate lyase mechanism. Prasad R, Batra VK, Yang XP, Krahn JM, Pedersen LC, Beard WA, Wilson SH. DNA Repair (Amst) 4 1347-1357 (2005)
  70. Structural insights into DNA polymerase beta fidelity: hold tight if you want it right. Beard WA, Wilson SH. Chem Biol 5 R7-13 (1998)
  71. DNA structure and polymerase fidelity. Timsit Y. J Mol Biol 293 835-853 (1999)
  72. Single-turnover kinetic analysis of the mutagenic potential of 8-oxo-7,8-dihydro-2'-deoxyguanosine during gap-filling synthesis catalyzed by human DNA polymerases lambda and beta. Brown JA, Duym WW, Fowler JD, Suo Z. J Mol Biol 367 1258-1269 (2007)
  73. Methylation of DNA polymerase beta by protein arginine methyltransferase 1 regulates its binding to proliferating cell nuclear antigen. El-Andaloussi N, Valovka T, Toueille M, Hassa PO, Gehrig P, Covic M, Hübscher U, Hottiger MO. FASEB J 21 26-34 (2007)
  74. Template strand scrunching during DNA gap repair synthesis by human polymerase lambda. Garcia-Diaz M, Bebenek K, Larrea AA, Havener JM, Perera L, Krahn JM, Pedersen LC, Ramsden DA, Kunkel TA. Nat Struct Mol Biol 16 967-972 (2009)
  75. Structure-based combinatorial protein engineering (SCOPE). O'Maille PE, Bakhtina M, Tsai MD. J Mol Biol 321 677-691 (2002)
  76. Varied Molecular Interactions at the Active Sites of Several DNA Polymerases: Nonpolar Nucleoside Isosteres as Probes. Morales JC, Kool ET. J Am Chem Soc 122 1001-1007 (2000)
  77. Biochemical and structural insights into substrate binding and catalytic mechanism of mammalian poly(A) polymerase. Martin G, Möglich A, Keller W, Doublié S. J Mol Biol 341 911-925 (2004)
  78. Different structural states in oligonucleosomes are required for early versus late steps of base excision repair. Nakanishi S, Prasad R, Wilson SH, Smerdon M. Nucleic Acids Res 35 4313-4321 (2007)
  79. Fidelity discrimination in DNA polymerase beta: differing closing profiles for a mismatched (G:A) versus matched (G:C) base pair. Radhakrishnan R, Schlick T. J Am Chem Soc 127 13245-13252 (2005)
  80. Protein and drug interactions in the minor groove of DNA. Morávek Z, Neidle S, Schneider B. Nucleic Acids Res 30 1182-1191 (2002)
  81. Structural insights into the generation of single-base deletions by the Y family DNA polymerase dbh. Wilson RC, Pata JD. Mol Cell 29 767-779 (2008)
  82. Correct and incorrect nucleotide incorporation pathways in DNA polymerase beta. Radhakrishnan R, Schlick T. Biochem Biophys Res Commun 350 521-529 (2006)
  83. Molecular insights into DNA polymerase deterrents for ribonucleotide insertion. Cavanaugh NA, Beard WA, Batra VK, Perera L, Pedersen LG, Wilson SH. J Biol Chem 286 31650-31660 (2011)
  84. The ribonuclease H activity of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2 is affected by the thumb subdomain of the small protein subunits. Sevilya Z, Loya S, Hughes SH, Hizi A. J Mol Biol 311 957-971 (2001)
  85. Insights into base selectivity from the 1.8 Å resolution structure of an RB69 DNA polymerase ternary complex. Wang M, Xia S, Blaha G, Steitz TA, Konigsberg WH, Wang J. Biochemistry 50 581-590 (2011)
  86. Analysis of protein sequence/structure similarity relationships. Gan HH, Perlow RA, Roy S, Ko J, Wu M, Huang J, Yan S, Nicoletta A, Vafai J, Sun D, Wang L, Noah JE, Pasquali S, Schlick T. Biophys J 83 2781-2791 (2002)
  87. Structures of dNTP intermediate states during DNA polymerase active site assembly. Freudenthal BD, Beard WA, Wilson SH. Structure 20 1829-1837 (2012)
  88. The catalytic cycle for ribonucleotide incorporation by human DNA Pol λ. Gosavi RA, Moon AF, Kunkel TA, Pedersen LC, Bebenek K. Nucleic Acids Res 40 7518-7527 (2012)
  89. Local deformations revealed by dynamics simulations of DNA polymerase Beta with DNA mismatches at the primer terminus. Yang L, Beard W, Wilson S, Roux B, Broyde S, Schlick T. J Mol Biol 321 459-478 (2002)
  90. DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. Freudenthal BD, Beard WA, Wilson SH. Nucleic Acids Res 41 1848-1858 (2013)
  91. Up-regulation of the fidelity of human DNA polymerase lambda by its non-enzymatic proline-rich domain. Fiala KA, Duym WW, Zhang J, Suo Z. J Biol Chem 281 19038-19044 (2006)
  92. DNA polymerase catalysis in the absence of Watson-Crick hydrogen bonds: analysis by single-turnover kinetics. Potapova O, Chan C, DeLucia AM, Helquist SA, Kool ET, Grindley ND, Joyce CM. Biochemistry 45 890-898 (2006)
  93. Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse. Perera L, Freudenthal BD, Beard WA, Shock DD, Pedersen LG, Wilson SH. Proc Natl Acad Sci U S A 112 E5228-36 (2015)
  94. A novel inhibitor of DNA polymerase beta enhances the ability of temozolomide to impair the growth of colon cancer cells. Jaiswal AS, Banerjee S, Panda H, Bulkin CD, Izumi T, Sarkar FH, Ostrov DA, Narayan S. Mol Cancer Res 7 1973-1983 (2009)
  95. Direct electrical detection of DNA synthesis. Pourmand N, Karhanek M, Persson HH, Webb CD, Lee TH, Zahradníková A, Davis RW. Proc Natl Acad Sci U S A 103 6466-6470 (2006)
  96. Efficiency and fidelity of human DNA polymerases λ and β during gap-filling DNA synthesis. Brown JA, Pack LR, Sanman LE, Suo Z. DNA Repair (Amst) 10 24-33 (2011)
  97. Halogenated beta,gamma-methylene- and ethylidene-dGTP-DNA ternary complexes with DNA polymerase beta: structural evidence for stereospecific binding of the fluoromethylene analogues. Batra VK, Pedersen LC, Beard WA, Wilson SH, Kashemirov BA, Upton TG, Goodman MF, McKenna CE. J Am Chem Soc 132 7617-7625 (2010)
  98. Modulation of cellular response to cisplatin by a novel inhibitor of DNA polymerase beta. Boudsocq F, Benaim P, Canitrot Y, Knibiehler M, Ausseil F, Capp JP, Bieth A, Long C, David B, Shevelev I, Frierich-Heinecken E, Hübscher U, Amalric F, Massiot G, Hoffmann JS, Cazaux C. Mol Pharmacol 67 1485-1492 (2005)
  99. Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications. Stamos JL, Lentzsch AM, Lambowitz AM. Mol Cell 68 926-939.e4 (2017)
  100. Substitutions at Phe61 in the beta3-beta4 hairpin of HIV-1 reverse transcriptase reveal a role for the Fingers subdomain in strand displacement DNA synthesis. Fisher TS, Darden T, Prasad VR. J Mol Biol 325 443-459 (2003)
  101. Computer simulation studies of the fidelity of DNA polymerases. Florián J, Goodman MF, Warshel A. Biopolymers 68 286-299 (2003)
  102. Kinetic analysis of correct nucleotide insertion by a Y-family DNA polymerase reveals conformational changes both prior to and following phosphodiester bond formation as detected by tryptophan fluorescence. Beckman JW, Wang Q, Guengerich FP. J Biol Chem 283 36711-36723 (2008)
  103. Mapping of the interaction interface of DNA polymerase beta with XRCC1. Gryk MR, Marintchev A, Maciejewski MW, Robertson A, Wilson SH, Mullen GP. Structure 10 1709-1720 (2002)
  104. Molecular dynamic simulations of cisplatin- and oxaliplatin-d(GG) intrastand cross-links reveal differences in their conformational dynamics. Sharma S, Gong P, Temple B, Bhattacharyya D, Dokholyan NV, Chaney SG. J Mol Biol 373 1123-1140 (2007)
  105. Solution structures of a DNA dodecamer duplex with and without a cisplatin 1,2-d(GG) intrastrand cross-link: comparison with the same DNA duplex containing an oxaliplatin 1,2-d(GG) intrastrand cross-link. Wu Y, Bhattacharyya D, King CL, Baskerville-Abraham I, Huh SH, Boysen G, Swenberg JA, Temple B, Campbell SL, Chaney SG. Biochemistry 46 6477-6487 (2007)
  106. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action. Jamsen JA, Beard WA, Pedersen LC, Shock DD, Moon AF, Krahn JM, Bebenek K, Kunkel TA, Wilson SH. Nat Commun 8 253 (2017)
  107. A mutation in the primer grip region of HIV-1 reverse transcriptase that confers reduced fidelity of DNA synthesis. Gutiérrez-Rivas M, Menéndez-Arias L. Nucleic Acids Res 29 4963-4972 (2001)
  108. Dissecting chemical interactions governing RNA polymerase II transcriptional fidelity. Kellinger MW, Ulrich S, Chong J, Kool ET, Wang D. J Am Chem Soc 134 8231-8240 (2012)
  109. Highly organized but pliant active site of DNA polymerase beta: compensatory mechanisms in mutant enzymes revealed by dynamics simulations and energy analyses. Yang L, Beard WA, Wilson SH, Broyde S, Schlick T. Biophys J 86 3392-3408 (2004)
  110. Identification of the acidic residues in the active site of DNA polymerase III. Pritchard AE, McHenry CS. J Mol Biol 285 1067-1080 (1999)
  111. NMR solution structure of an oxaliplatin 1,2-d(GG) intrastrand cross-link in a DNA dodecamer duplex. Wu Y, Pradhan P, Havener J, Boysen G, Swenberg JA, Campbell SL, Chaney SG. J Mol Biol 341 1251-1269 (2004)
  112. Common structural features of nucleic acid polymerases. Cramer P. Bioessays 24 724-729 (2002)
  113. Metal-induced DNA translocation leads to DNA polymerase conformational activation. Kirby TW, DeRose EF, Cavanaugh NA, Beard WA, Shock DD, Mueller GA, Wilson SH, London RE. Nucleic Acids Res 40 2974-2983 (2012)
  114. Progress towards single-molecule sequencing: enzymatic synthesis of nucleotide-specifically labeled DNA. Augustin MA, Ankenbauer W, Angerer B. J Biotechnol 86 289-301 (2001)
  115. Quantum mechanics/molecular mechanics investigation of the chemical reaction in Dpo4 reveals water-dependent pathways and requirements for active site reorganization. Wang Y, Schlick T. J Am Chem Soc 130 13240-13250 (2008)
  116. News DNA polymerases on the move. Kunkel TA, Wilson SH. Nat Struct Biol 5 95-99 (1998)
  117. Editing of misaligned 3'-termini by an intrinsic 3'-5' exonuclease activity residing in the PHP domain of a family X DNA polymerase. Baños B, Lázaro JM, Villar L, Salas M, de Vega M. Nucleic Acids Res 36 5736-5749 (2008)
  118. Mutagenesis and functional characterization of the four domains of GlnD, a bifunctional nitrogen sensor protein. Zhang Y, Pohlmann EL, Serate J, Conrad MC, Roberts GP. J Bacteriol 192 2711-2721 (2010)
  119. Nucleotide-induced DNA polymerase active site motions accommodating a mutagenic DNA intermediate. Batra VK, Beard WA, Shock DD, Pedersen LC, Wilson SH. Structure 13 1225-1233 (2005)
  120. Participation of the fingers subdomain of Escherichia coli DNA polymerase I in the strand displacement synthesis of DNA. Singh K, Srivastava A, Patel SS, Modak MJ. J Biol Chem 282 10594-10604 (2007)
  121. Nuclear DNA polymerase beta from Leishmania infantum. Cloning, molecular analysis and developmental regulation. Taladriz S, Hanke T, Ramiro MJ, García-Díaz M, García De Lacoba M, Blanco L, Larraga V. Nucleic Acids Res 29 3822-3834 (2001)
  122. DNA polymerase β as a novel target for chemotherapeutic intervention of colorectal cancer. Jaiswal AS, Banerjee S, Aneja R, Sarkar FH, Ostrov DA, Narayan S. PLoS One 6 e16691 (2011)
  123. Unnatural substrate repertoire of A, B, and X family DNA polymerases. Hwang GT, Romesberg FE. J Am Chem Soc 130 14872-14882 (2008)
  124. Conferring a template-dependent polymerase activity to terminal deoxynucleotidyltransferase by mutations in the Loop1 region. Romain F, Barbosa I, Gouge J, Rougeon F, Delarue M. Nucleic Acids Res 37 4642-4656 (2009)
  125. Mutagenesis of human DNA polymerase lambda: essential roles of Tyr505 and Phe506 for both DNA polymerase and terminal transferase activities. Shevelev I, Blanca G, Villani G, Ramadan K, Spadari S, Hübscher U, Maga G. Nucleic Acids Res 31 6916-6925 (2003)
  126. Nucleophilic substitution at phosphorus centers (SN2@p). van Bochove MA, Swart M, Bickelhaupt FM. Chemphyschem 8 2452-2463 (2007)
  127. Prechemistry versus preorganization in DNA replication fidelity. Ram Prasad B, Warshel A. Proteins 79 2900-2919 (2011)
  128. Structure of the N-terminal domain of Escherichia coli glutamine synthetase adenylyltransferase. Xu Y, Zhang R, Joachimiak A, Carr PD, Huber T, Vasudevan SG, Ollis DL. Structure 12 861-869 (2004)
  129. Substrate-induced DNA polymerase β activation. Beard WA, Shock DD, Batra VK, Prasad R, Wilson SH. J Biol Chem 289 31411-31422 (2014)
  130. Exonuclease of human DNA polymerase gamma disengages its strand displacement function. He Q, Shumate CK, White MA, Molineux IJ, Yin YW. Mitochondrion 13 592-601 (2013)
  131. Hinge residue I174 is critical for proper dNTP selection by DNA polymerase beta. Yamtich J, Starcevic D, Lauper J, Smith E, Shi I, Rangarajan S, Jaeger J, Sweasy JB. Biochemistry 49 2326-2334 (2010)
  132. The family X DNA polymerase from Deinococcus radiodurans adopts a non-standard extended conformation. Leulliot N, Cladière L, Lecointe F, Durand D, Hübscher U, van Tilbeurgh H. J Biol Chem 284 11992-11999 (2009)
  133. Characterization of a Bacillus subtilis 64-kDa DNA polymerase X potentially involved in DNA repair. Baños B, Lázaro JM, Villar L, Salas M, de Vega M. J Mol Biol 384 1019-1028 (2008)
  134. Mapping of ATP binding regions in poly(A) polymerases by photoaffinity labeling and by mutational analysis identifies a domain conserved in many nucleotidyltransferases. Martin G, Jenö P, Keller W. Protein Sci 8 2380-2391 (1999)
  135. Modeling of flap endonuclease interactions with DNA substrate. Allawi HT, Kaiser MW, Onufriev AV, Ma WP, Brogaard AE, Case DA, Neri BP, Lyamichev VI. J Mol Biol 328 537-554 (2003)
  136. Structure of DNA polymerase beta with a benzo[c]phenanthrene diol epoxide-adducted template exhibits mutagenic features. Batra VK, Shock DD, Prasad R, Beard WA, Hou EW, Pedersen LC, Sayer JM, Yagi H, Kumar S, Jerina DM, Wilson SH. Proc Natl Acad Sci U S A 103 17231-17236 (2006)
  137. Structures of intermediates along the catalytic cycle of terminal deoxynucleotidyltransferase: dynamical aspects of the two-metal ion mechanism. Gouge J, Rosario S, Romain F, Beguin P, Delarue M. J Mol Biol 425 4334-4352 (2013)
  138. Crystal structures of the vaccinia virus polyadenylate polymerase heterodimer: insights into ATP selectivity and processivity. Moure CM, Bowman BR, Gershon PD, Quiocho FA. Mol Cell 22 339-349 (2006)
  139. Evading the proofreading machinery of a replicative DNA polymerase: induction of a mutation by an environmental carcinogen. Perlow RA, Broyde S. J Mol Biol 309 519-536 (2001)
  140. Structural and Kinetic Studies of the Effect of Guanine N7 Alkylation and Metal Cofactors on DNA Replication. Kou Y, Koag MC, Lee S. Biochemistry 57 5105-5116 (2018)
  141. Fluorescence resonance energy transfer studies of DNA polymerase β: the critical role of fingers domain movements and a novel non-covalent step during nucleotide selection. Towle-Weicksel JB, Dalal S, Sohl CD, Doublié S, Anderson KS, Sweasy JB. J Biol Chem 289 16541-16550 (2014)
  142. Gapped DNA is anisotropically bent. Guo H, Tullius TD. Proc Natl Acad Sci U S A 100 3743-3747 (2003)
  143. In vitro selection of sequence contexts which enhance bypass of abasic sites and tetrahydrofuran by T4 DNA polymerase holoenzyme. Hatahet Z, Zhou M, Reha-Krantz LJ, Ide H, Morrical SW, Wallace SS. J Mol Biol 286 1045-1057 (1999)
  144. Perspective: pre-chemistry conformational changes in DNA polymerase mechanisms. Schlick T, Arora K, Beard WA, Wilson SH. Theor Chem Acc 131 1287 (2012)
  145. Site-directed mutagenesis in the fingers subdomain of HIV-1 reverse transcriptase reveals a specific role for the beta3-beta4 hairpin loop in dNTP selection. Garforth SJ, Kim TW, Parniak MA, Kool ET, Prasad VR. J Mol Biol 365 38-49 (2007)
  146. Stable complexes formed by HIV-1 reverse transcriptase at distinct positions on the primer-template controlled by binding deoxynucleoside triphosphates or foscarnet. Meyer PR, Rutvisuttinunt W, Matsuura SE, So AG, Scott WA. J Mol Biol 369 41-54 (2007)
  147. Structures of DNA Polymerase Mispaired DNA Termini Transitioning to Pre-catalytic Complexes Support an Induced-Fit Fidelity Mechanism. Batra VK, Beard WA, Pedersen LC, Wilson SH. Structure 24 1863-1875 (2016)
  148. Substrate-dependent millisecond domain motions in DNA polymerase β. Berlow RB, Swain M, Dalal S, Sweasy JB, Loria JP. J Mol Biol 419 171-182 (2012)
  149. Transition state in DNA polymerase β catalysis: rate-limiting chemistry altered by base-pair configuration. Oertell K, Chamberlain BT, Wu Y, Ferri E, Kashemirov BA, Beard WA, Wilson SH, McKenna CE, Goodman MF. Biochemistry 53 1842-1848 (2014)
  150. X-ray crystallographic and steady state fluorescence characterization of the protein dynamics of yeast polyadenylate polymerase. Balbo PB, Toth J, Bohm A. J Mol Biol 366 1401-1415 (2007)
  151. A novel main chain motif in proteins bridged by cationic groups: the niche. Torrance GM, Leader DP, Gilbert DR, Milner-White EJ. J Mol Biol 385 1076-1086 (2009)
  152. Comment Hold tight (but not too tight) to get it right: accurate bypass of an 8-oxoguanine lesion by DNA polymerase beta. Brieba LG, Ellenberger T. Structure 11 1-2 (2003)
  153. Processive proofreading and the spatial relationship between polymerase and exonuclease active sites of bacteriophage phi29 DNA polymerase. de Vega M, Blanco L, Salas M. J Mol Biol 292 39-51 (1999)
  154. Stepwise walden inversion in nucleophilic substitution at phosphorus. van Bochove MA, Swart M, Bickelhaupt FM. Phys Chem Chem Phys 11 259-267 (2009)
  155. Substrate conformational dynamics facilitate structure-specific recognition of gapped DNA by DNA polymerase. Craggs TD, Sustarsic M, Plochowietz A, Mosayebi M, Kaju H, Cuthbert A, Hohlbein J, Domicevica L, Biggin PC, Doye JPK, Kapanidis AN. Nucleic Acids Res 47 10788-10800 (2019)
  156. Toward understanding the mutagenicity of an environmental carcinogen: structural insights into nucleotide incorporation preferences. Perlow RA, Broyde S. J Mol Biol 322 291-309 (2002)
  157. A fidelity mechanism in DNA polymerase lambda promotes error-free bypass of 8-oxo-dG. Burak MJ, Guja KE, Hambardjieva E, Derkunt B, Garcia-Diaz M. EMBO J 35 2045-2059 (2016)
  158. Dissection, residue conservation, and structural classification of protein-DNA interfaces. Biswas S, Guharoy M, Chakrabarti P. Proteins 74 643-654 (2009)
  159. Extending the understanding of mutagenicity: structural insights into primer-extension past a benzo[a]pyrene diol epoxide-DNA adduct. Perlow RA, Broyde S. J Mol Biol 327 797-818 (2003)
  160. Kinetic effect of a downstream strand and its 5'-terminal moieties on single nucleotide gap-filling synthesis catalyzed by human DNA polymerase lambda. Duym WW, Fiala KA, Bhatt N, Suo Z. J Biol Chem 281 35649-35655 (2006)
  161. Mutational analysis of terminal deoxynucleotidyltransferase-mediated N-nucleotide addition in V(D)J recombination. Repasky JA, Corbett E, Boboila C, Schatz DG. J Immunol 172 5478-5488 (2004)
  162. Role of the first aspartate residue of the "YxDTDS" motif of phi29 DNA polymerase as a metal ligand during both TP-primed and DNA-primed DNA synthesis. Saturno J, Lázaro JM, Blanco L, Salas M. J Mol Biol 283 633-642 (1998)
  163. DNA lesion alters global conformational dynamics of Y-family DNA polymerase during catalysis. Maxwell BA, Xu C, Suo Z. J Biol Chem 287 13040-13047 (2012)
  164. RNA aptamers selected against DNA polymerase beta inhibit the polymerase activities of DNA polymerases beta and kappa. Gening LV, Klincheva SA, Reshetnjak A, Grollman AP, Miller H. Nucleic Acids Res 34 2579-2586 (2006)
  165. Structural basis for a novel mechanism of DNA bridging and alignment in eukaryotic DSB DNA repair. Gouge J, Rosario S, Romain F, Poitevin F, Béguin P, Delarue M. EMBO J 34 1126-1142 (2015)
  166. Structural homology between DNA binding sites of DNA polymerase beta and DNA topoisomerase II. Mizushina Y, Sugawara F, Iida A, Sakaguchi K. J Mol Biol 304 385-395 (2000)
  167. Subtle but variable conformational rearrangements in the replication cycle of Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) may accommodate lesion bypass. Wang Y, Arora K, Schlick T. Protein Sci 15 135-151 (2006)
  168. Systematic biochemical analysis of somatic missense mutations in DNA polymerase β found in prostate cancer reveal alteration of enzymatic function. An CL, Chen D, Makridakis NM. Hum Mutat 32 415-423 (2011)
  169. A unified DNA- and dNTP-binding mode for DNA polymerases. Singh K, Modak MJ. Trends Biochem Sci 23 277-281 (1998)
  170. Genomic analysis of cancer tissue reveals that somatic mutations commonly occur in a specific motif. Makridakis NM, Caldas Ferraz LF, Reichardt JK. Hum Mutat 30 39-48 (2009)
  171. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation. Sampoli Benítez BA, Arora K, Balistreri L, Schlick T. J Mol Biol 384 1086-1097 (2008)
  172. Modeling DNA polymerase μ motions: subtle transitions before chemistry. Li Y, Schlick T. Biophys J 99 3463-3472 (2010)
  173. Solution structures of 2 : 1 and 1 : 1 DNA polymerase-DNA complexes probed by ultracentrifugation and small-angle X-ray scattering. Tang KH, Niebuhr M, Aulabaugh A, Tsai MD. Nucleic Acids Res 36 849-860 (2008)
  174. The E295K cancer variant of human polymerase β favors the mismatch conformational pathway during nucleotide selection. Eckenroth BE, Towle-Weicksel JB, Sweasy JB, Doublié S. J Biol Chem 288 34850-34860 (2013)
  175. Effect of N2-guanyl modifications on early steps in catalysis of polymerization by Sulfolobus solfataricus P2 DNA polymerase Dpo4 T239W. Zhang H, Guengerich FP. J Mol Biol 395 1007-1018 (2010)
  176. HMGB1 Stimulates Activity of Polymerase β on Nucleosome Substrates. Balliano A, Hao F, Njeri C, Balakrishnan L, Hayes JJ. Biochemistry 56 647-656 (2017)
  177. Mechanism of inhibition of human immunodeficiency virus type 1 reverse transcriptase by a stavudine analogue, 4'-ethynyl stavudine triphosphate. Yang G, Wang J, Cheng Y, Dutschman GE, Tanaka H, Baba M, Cheng YC. Antimicrob Agents Chemother 52 2035-2042 (2008)
  178. Modulating the DNA polymerase β reaction equilibrium to dissect the reverse reaction. Shock DD, Freudenthal BD, Beard WA, Wilson SH. Nat Chem Biol 13 1074-1080 (2017)
  179. AP-endonuclease 1 sculpts DNA through an anchoring tyrosine residue on the DNA intercalating loop. Hoitsma NM, Whitaker AM, Beckwitt EC, Jang S, Agarwal PK, Van Houten B, Freudenthal BD. Nucleic Acids Res 48 7345-7355 (2020)
  180. DNA polymerase β gap-filling translesion DNA synthesis. Chary P, Beard WA, Wilson SH, Lloyd RS. Chem Res Toxicol 25 2744-2754 (2012)
  181. Initiation of DNA replication by DNA polymerases from primers forming a triple helix. Rocher C, Dalibart R, Letellier T, Précigoux G, Lestienne P. Nucleic Acids Res 29 3320-3326 (2001)
  182. Nick sealing by T4 DNA ligase on a modified DNA template: tethering a functional molecule on D-threoninol. Liang X, Fujioka K, Asanuma H. Chemistry 17 10388-10396 (2011)
  183. Structural Insights into the Post-Chemistry Steps of Nucleotide Incorporation Catalyzed by a DNA Polymerase. Reed AJ, Vyas R, Raper AT, Suo Z. J Am Chem Soc 139 465-471 (2017)
  184. The inhibitory action of kohamaic acid A derivatives on mammalian DNA polymerase beta. Mizushina Y, Manita D, Takeuchi T, Sugawara F, Kumamoto-Yonezawa Y, Matsui Y, Takemura M, Sasaki M, Yoshida H, Takikawa H. Molecules 14 102-121 (2008)
  185. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex. Rungrotmongkol T, Mulholland AJ, Hannongbua S. J Mol Graph Model 26 1-13 (2007)
  186. Catalytic effects of mutations of distant protein residues in human DNA polymerase β: theory and experiment. Klvaňa M, Murphy DL, Jeřábek P, Goodman MF, Warshel A, Sweasy JB, Florián J. Biochemistry 51 8829-8843 (2012)
  187. Rapid self-healable poly(ethylene glycol) hydrogels formed by selective metal-phosphate interactions. Sato T, Ebara M, Tanaka S, Asoh TA, Kikuchi A, Aoyagi T. Phys Chem Chem Phys 15 10628-10635 (2013)
  188. Site-specific labeling of T7 DNA polymerase with a conformationally sensitive fluorophore and its use in detecting single-nucleotide polymorphisms. Tsai YC, Jin Z, Johnson KA. Anal Biochem 384 136-144 (2009)
  189. Ultrafast water dynamics at the interface of the polymerase-DNA binding complex. Yang Y, Qin Y, Ding Q, Bakhtina M, Wang L, Tsai MD, Zhong D. Biochemistry 53 5405-5413 (2014)
  190. Following an environmental carcinogen N2-dG adduct through replication: elucidating blockage and bypass in a high-fidelity DNA polymerase. Xu P, Oum L, Beese LS, Geacintov NE, Broyde S. Nucleic Acids Res 35 4275-4288 (2007)
  191. Human DNA polymerase beta mutations allowing efficient abasic site bypass. Gieseking S, Bergen K, Di Pasquale F, Diederichs K, Welte W, Marx A. J Biol Chem 286 4011-4020 (2011)
  192. Loop II of DNA polymerase beta is important for polymerization activity and fidelity. Lin GC, Jaeger J, Sweasy JB. Nucleic Acids Res 35 2924-2935 (2007)
  193. Mode of inhibition of HIV-1 reverse transcriptase by polyacetylenetriol, a novel inhibitor of RNA- and DNA-directed DNA polymerases. Loya S, Rudi A, Kashman Y, Hizi A. Biochem J 362 685-692 (2002)
  194. A Change in the Rate-Determining Step of Polymerization by the K289M DNA Polymerase β Cancer-Associated Variant. Alnajjar KS, Garcia-Barboza B, Negahbani A, Nakhjiri M, Kashemirov B, McKenna C, Goodman MF, Sweasy JB. Biochemistry 56 2096-2105 (2017)
  195. Characterization of terminal deoxynucleotidyl transferase and polymerase mu in zebrafish. Beetz S, Diekhoff D, Steiner LA. Immunogenetics 59 735-744 (2007)
  196. Identification of critical residues for the tight binding of both correct and incorrect nucleotides to human DNA polymerase λ. Brown JA, Pack LR, Sherrer SM, Kshetry AK, Newmister SA, Fowler JD, Taylor JS, Suo Z. J Mol Biol 403 505-515 (2010)
  197. Prechemistry nucleotide selection checkpoints in the reaction pathway of DNA polymerase I and roles of glu710 and tyr766. Bermek O, Grindley ND, Joyce CM. Biochemistry 52 6258-6274 (2013)
  198. Solution structures of a duplex containing an adenine opposite a gap (absence of one nucleotide). An NMR study and molecular dynamic simulations with explicit water molecules. Roll C, Ketterl C, Fazakerley GV, Boulard Y. Eur J Biochem 264 120-131 (1999)
  199. Structure of HI0073 from Haemophilus influenzae, the nucleotide-binding domain of a two-protein nucleotidyl transferase. Lehmann C, Pullalarevu S, Krajewski W, Willis MA, Galkin A, Howard A, Herzberg O. Proteins 60 807-811 (2005)
  200. The ligation of pol β mismatch insertion products governs the formation of promutagenic base excision DNA repair intermediates. Çağlayan M. Nucleic Acids Res 48 3708-3721 (2020)
  201. Enzymatic properties of rat DNA polymerase beta mutants obtained by randomized mutagenesis. Skandalis A, Loeb LA. Nucleic Acids Res 29 2418-2426 (2001)
  202. Probing conformational changes of human DNA polymerase lambda using mass spectrometry-based protein footprinting. Fowler JD, Brown JA, Kvaratskhelia M, Suo Z. J Mol Biol 390 368-379 (2009)
  203. Uniform Free-Energy Profiles of the P-O Bond Formation and Cleavage Reactions Catalyzed by DNA Polymerases β and λ. Klvaňa M, Bren U, Florián J. J Phys Chem B 120 13017-13030 (2016)
  204. Insertion of oxidized nucleotide triggers rapid DNA polymerase opening. Kim T, Freudenthal BD, Beard WA, Wilson SH, Schlick T. Nucleic Acids Res 44 4409-4424 (2016)
  205. Molecular flexibility in protein-DNA interactions. Günther S, Rother K, Frömmel C. Biosystems 85 126-136 (2006)
  206. Mutation of the little finger domain in human DNA polymerase η alters fidelity when copying undamaged DNA. Beardslee RA, Suarez SC, Toffton SM, McCulloch SD. Environ Mol Mutagen 54 638-651 (2013)
  207. Structural changes in the hydrophobic hinge region adversely affect the activity and fidelity of the I260Q mutator DNA polymerase β. Gridley CL, Rangarajan S, Firbank S, Dalal S, Sweasy JB, Jaeger J. Biochemistry 52 4422-4432 (2013)
  208. An AP endonuclease 1-DNA polymerase beta complex: theoretical prediction of interacting surfaces. Abyzov A, Uzun A, Strauss PR, Ilyin VA. PLoS Comput Biol 4 e1000066 (2008)
  209. Effects of a high-affinity antibody fragment on DNA polymerase reactions near a (6-4) photoproduct site. Kobayashi H, Sato K, Komatsu Y, Morioka H, Stewart JD, Tsurimoto T, Ohtsuka E. Photochem Photobiol 69 226-230 (1999)
  210. How DNA polymerase X preferentially accommodates incoming dATP opposite 8-oxoguanine on the template. Sampoli Benítez B, Barbati ZR, Arora K, Bogdanovic J, Schlick T. Biophys J 105 2559-2568 (2013)
  211. Mapping Functional Substrate-Enzyme Interactions in the pol β Active Site through Chemical Biology: Structural Responses to Acidity Modification of Incoming dNTPs. Batra VK, Oertell K, Beard WA, Kashemirov BA, McKenna CE, Goodman MF, Wilson SH. Biochemistry 57 3934-3944 (2018)
  212. Structural evidence for an in trans base selection mechanism involving Loop1 in polymerase μ at an NHEJ double-strand break junction. Loc'h J, Gerodimos CA, Rosario S, Tekpinar M, Lieber MR, Delarue M. J Biol Chem 294 10579-10595 (2019)
  213. Sulfoquinovosylmonoacylglycerol inhibitory mode analysis of rat DNA polymerase beta. Kasai N, Mizushina Y, Murata H, Yamazaki T, Ohkubo T, Sakaguchi K, Sugawara F. FEBS J 272 4349-4361 (2005)
  214. The active site of TthPolX is adapted to prevent 8-oxo-dGTP misincorporation. Garrido P, Mejia E, Garcia-Diaz M, Blanco L, Picher AJ. Nucleic Acids Res 42 534-543 (2014)
  215. The deoxyribose phosphate lyase of DNA polymerase β suppresses a processive DNA synthesis to prevent trinucleotide repeat instability. Lai Y, Weizmann Y, Liu Y. Nucleic Acids Res 46 8940-8952 (2018)
  216. The nature of the DNA substrate influences pre-catalytic conformational changes of DNA polymerase β. Huang J, Alnajjar KS, Mahmoud MM, Eckenroth B, Doublié S, Sweasy JB. J Biol Chem 293 15084-15094 (2018)
  217. An active site rearrangement within the Tetrahymena group I ribozyme releases nonproductive interactions and allows formation of catalytic interactions. Sengupta RN, Van Schie SN, Giambaşu G, Dai Q, Yesselman JD, York D, Piccirilli JA, Herschlag D. RNA 22 32-48 (2016)
  218. DNA expansions generated by human Polμ on iterative sequences. Aza A, Martin MJ, Martin MJ, Juarez R, Blanco L, Terrados G. Nucleic Acids Res 41 253-263 (2013)
  219. DNA ligase I fidelity mediates the mutagenic ligation of pol β oxidized and mismatch nucleotide insertion products in base excision repair. Kamble P, Hall K, Chandak M, Tang Q, Çağlayan M. J Biol Chem 296 100427 (2021)
  220. Insights into the conformation of aminofluorene-deoxyguanine adduct in a DNA polymerase active site. Vaidyanathan VG, Liang F, Beard WA, Shock DD, Wilson SH, Cho BP. J Biol Chem 288 23573-23585 (2013)
  221. On the inhibitory affect of some dementia drugs on DNA polymerase Beta activity. Vyjayanti VN, Chary NS, Rao KS. Neurochem Res 33 2187-2196 (2008)
  222. Selective Inhibition of DNA Polymerase β by a Covalent Inhibitor. Yuhas SC, Laverty DJ, Lee H, Majumdar A, Greenberg MM. J Am Chem Soc 143 8099-8107 (2021)
  223. Structural basis for the D-stereoselectivity of human DNA polymerase β. Vyas R, Reed AJ, Raper AT, Zahurancik WJ, Wallenmeyer PC, Suo Z. Nucleic Acids Res 45 6228-6237 (2017)
  224. A Transition-State Perspective on Y-Family DNA Polymerase η Fidelity in Comparison with X-Family DNA Polymerases λ and β. Oertell K, Florián J, Haratipour P, Crans DC, Kashemirov BA, Wilson SH, McKenna CE, Goodman MF. Biochemistry 58 1764-1773 (2019)
  225. A model for the dynamics of mammalian family X DNA polymerases. Xie P. J Theor Biol 277 111-122 (2011)
  226. BRCT domain of DNA polymerase μ has DNA-binding activity and promotes the DNA polymerization activity. Matsumoto T, Go K, Hyodo M, Koiwai K, Maezawa S, Hayano T, Suzuki M, Koiwai O. Genes Cells 17 790-806 (2012)
  227. Finding evolutionary relations beyond superfamilies: fold-based superfamilies. Matsuda K, Nishioka T, Kinoshita K, Kawabata T, Go N. Protein Sci 12 2239-2251 (2003)
  228. Impact of template overhang-binding region of HIV-1 RT on the binding and orientation of the duplex region of the template-primer. Upadhyay AK, Talele TT, Pandey VN. Mol Cell Biochem 338 19-33 (2010)
  229. Insights into DNA polymerase δ's mechanism for accurate DNA replication. Foley MC, Couto L, Rauf S, Boyke A. J Mol Model 25 80 (2019)
  230. Interlocking activities of DNA polymerase β in the base excision repair pathway. Kumar A, Reed AJ, Zahurancik WJ, Daskalova SM, Hecht SM, Suo Z. Proc Natl Acad Sci U S A 119 e2118940119 (2022)
  231. Lys66 residue as a determinant of high mismatch extension and misinsertion rates of HIV-1 reverse transcriptase. Lwatula C, Garforth SJ, Prasad VR. FEBS J 279 4010-4024 (2012)
  232. Microsatellites grant more stable flanking genes. Joukhadar R, Jighly A. BMC Res Notes 5 556 (2012)
  233. N-terminal domains of human DNA polymerase lambda promote primer realignment during translesion DNA synthesis. Taggart DJ, Dayeh DM, Fredrickson SW, Suo Z. DNA Repair (Amst) 22 41-52 (2014)
  234. Phaeocystis globosa Virus DNA Polymerase X: a "Swiss Army knife", Multifunctional DNA polymerase-lyase-ligase for Base Excision Repair. Fernández-García JL, de Ory A, Brussaard CPD, de Vega M. Sci Rep 7 6907 (2017)
  235. Site-directed mutational analysis of structural interactions of low molecule compounds binding to the N-terminal 8 kDa domain of DNA polymerase beta. Murakami S, Kamisuki S, Takata K, Kasai N, Kimura S, Mizushina Y, Ohta K, Sugawara F, Sakaguchi K. Biochem Biophys Res Commun 350 7-16 (2006)
  236. (5'S) 5',8-Cyclo-2'-Deoxyadenosine Cannot Stop BER. Clustered DNA Lesion Studies. Karwowski BT. Int J Mol Sci 22 5934 (2021)
  237. A new, but old, nucleoside analog: the first synthesis of 1-deaza-2'-deoxyguanosine and its properties as a nucleoside and as oligodeoxynucleotides. Kojima N, Inoue K, Nakajima-Shibata R, Kawahara S, Ohtsuka E. Nucleic Acids Res 31 7175-7188 (2003)
  238. A pre-catalytic non-covalent step governs DNA polymerase β fidelity. Alnajjar KS, Krylov IS, Negahbani A, Haratipour P, Kashemirov BA, Huang J, Mahmoud M, McKenna CE, Goodman MF, Sweasy JB. Nucleic Acids Res 47 11839-11849 (2019)
  239. Accomodation of S-cis-tamoxifen-N(2)-guanine adduct within a bent and widened DNA minor groove. Shimotakahara S, Gorin A, Kolbanovskiy A, Kettani A, Hingerty BE, Amin S, Broyde S, Geacintov N, Patel DJ. J Mol Biol 302 377-393 (2000)
  240. Characterization of the RNA binding energetics of the Candida albicans poly(A) polymerase. Bougie I, Bisaillon M. Yeast 24 431-446 (2007)
  241. Detection of YAP1 and AR-V7 mRNA for Prostate Cancer Prognosis Using an ISFET Lab-On-Chip Platform. Broomfield J, Kalofonou M, Pataillot-Meakin T, Powell SM, Fernandes RC, Moser N, Bevan CL, Georgiou P. ACS Sens 7 3389-3398 (2022)
  242. Effects of vinylphosphonate internucleotide linkages on the cleavage specificity of exonuclease III and on the activity of DNA polymerase I. Doddridge ZA, Bertram RD, Hayes CJ, Soultanas P. Biochemistry 42 3239-3246 (2003)
  243. Expanded Substrate Scope of DNA Polymerase θ and DNA Polymerase β: Lyase Activity on 5'-Overhangs and Clustered Lesions. Laverty DJ, Greenberg MM. Biochemistry 57 6119-6127 (2018)
  244. Modeling translocation dynamics of strand displacement DNA synthesis by DNA polymerase I. Xie P. J Mol Model 18 1951-1960 (2012)
  245. The Pol β variant containing exon α is deficient in DNA polymerase but has full dRP lyase activity. Dai DP, Prasad R, Strauss PR, Wilson SH. Sci Rep 9 9928 (2019)
  246. Watching right and wrong nucleotide insertion captures hidden polymerase fidelity checkpoints. Jamsen JA, Shock DD, Wilson SH. Nat Commun 13 3193 (2022)
  247. Base excision repair in a glucocorticoid response element: effect of glucocorticoid receptor binding. Hinz AK, Wang Y, Smerdon MJ. J Biol Chem 285 28683-28690 (2010)
  248. C(α) torsion angles as a flexible criterion to extract secrets from a molecular dynamics simulation. Victor Paul Raj FR, Exner TE. J Mol Model 20 2196 (2014)
  249. DNA polymerase β nucleotide-stabilized template misalignment fidelity depends on local sequence context. Howard MJ, Cavanaugh NA, Batra VK, Shock DD, Beard WA, Wilson SH. J Biol Chem 295 529-538 (2020)
  250. Identification of key sites controlling protein functional motions by using elastic network model combined with internal coordinates. Zhang PF, Su JG. J Chem Phys 151 045101 (2019)
  251. Structural insights into the promutagenic bypass of the major cisplatin-induced DNA lesion. Ouzon-Shubeita H, Vilas CK, Lee S. Biochem J 477 937-951 (2020)
  252. Synthesis, structure, and biological evaluation of a platinum-carbazole conjugate. Cheun Y, Koag MC, Naguib YW, Ouzon-Shubeita H, Cui Z, Pakotiprapha D, Lee S. Chem Biol Drug Des 91 116-125 (2018)
  253. Transitions in DNA polymerase β μs-ms dynamics related to substrate binding and catalysis. DeRose EF, Kirby TW, Mueller GA, Beard WA, Wilson SH, London RE. Nucleic Acids Res 46 7309-7322 (2018)
  254. Understanding the loss-of-function in a triple missense mutant of DNA polymerase β found in prostate cancer. An C, Beard WA, Chen D, Wilson SH, Makridakis NM. Int J Oncol 43 1131-1140 (2013)
  255. Chimeric Phi29 DNA polymerase with helix-hairpin-helix motifs shows enhanced salt tolerance and replication performance. Gao Y, He Y, Chen L, Liu X, Ivanov I, Yang X, Tian H. Microb Biotechnol 14 1642-1656 (2021)
  256. Classification of nucleic acid amplification on ISFET arrays using spectrogram-based neural networks. Tripathi P, Gulli C, Broomfield J, Alexandrou G, Kalofonou M, Bevan C, Moser N, Georgiou P. Comput Biol Med 161 107027 (2023)
  257. DNA Polymerase Fidelity: Beyond Right and Wrong. Washington MT. Structure 24 1855-1856 (2016)
  258. Handheld ISFET Lab-on-Chip detection of TMPRSS2-ERG and AR mRNA for prostate cancer prognostics. Broomfield J, Kalofonou M, Franklin S, Powell SM, Pataillot-Meakin T, Moser N, Bevan CL, Georgiou P. IEEE Sens Lett 7 1-4 (2023)
  259. Human Polβ Natural Polymorphic Variants G118V and R149I Affects Substate Binding and Catalysis. Kladova OA, Tyugashev TE, Mikushina ES, Soloviev NO, Kuznetsov NA, Novopashina DS, Kuznetsova AA. Int J Mol Sci 24 5892 (2023)
  260. Comment Infidelity out in the open. Doublié S. Structure 12 1749-1750 (2004)
  261. Inhibition of HIV-1 reverse transcriptase-catalyzed synthesis by intercalated DNA Benzo[a]Pyrene 7,8-Dihydrodiol-9,10-Epoxide adducts. Chary P, Beard WA, Wilson SH, Lloyd RS. PLoS One 8 e72131 (2013)
  262. Mechanism of Deoxyguanosine Diphosphate Insertion by Human DNA Polymerase β. Varela FA, Freudenthal BD. Biochemistry 60 373-380 (2021)
  263. Multifactor dimensionality reduction analysis identifies specific nucleotide patterns promoting genetic polymorphisms. Arehart E, Gleim S, White B, Hwa J, Moore JH. BioData Min 2 2 (2009)
  264. Polβ/XRCC1 heterodimerization dictates DNA damage recognition and basal Polβ protein levels without interfering with mouse viability or fertility. Koczor CA, Thompson MK, Sharma N, Prakash A, Sobol RW. DNA Repair (Amst) 123 103452 (2023)
  265. Proton transfer in the mechanism of polyadenylate polymerase. Balbo PB, Bohm A. Biochem J 420 229-238 (2009)
  266. Structural Insights into Phosphorylation-Mediated Polymerase Function Loss for DNA Polymerase β Bound to Gapped DNA. Srivastava A, Idriss H, Homouz D. Int J Mol Sci 24 8988 (2023)
  267. Structural and mechanistic insights into the DNA glycosylase AAG-mediated base excision in nucleosome. Zheng L, Tsai B, Gao N. Cell Discov 9 62 (2023)
  268. The Activity of Natural Polymorphic Variants of Human DNA Polymerase β Having an Amino Acid Substitution in the Transferase Domain. Kladova OA, Tyugashev TE, Mikushina ES, Kuznetsov NA, Novopashina DS, Kuznetsova AA. Cells 12 1300 (2023)
  269. The Impact of Human DNA Glycosylases on the Activity of DNA Polymerase β toward Various Base Excision Repair Intermediates. Bakman AS, Boichenko SS, Kuznetsova AA, Ishchenko AA, Saparbaev M, Kuznetsov NA. Int J Mol Sci 24 9594 (2023)
  270. The origin of genetic and metabolic systems: Evolutionary structuralinsights. Deng S. Heliyon 9 e14466 (2023)


Related citations provided by authors (5)

  1. Characterization of the metal ion binding helix-hairpin-helix motifs in human DNA polymerase beta by X-ray structural analysis.. Pelletier H, Sawaya MR Biochemistry 35 12778-87 (1996)
  2. A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta.. Pelletier H, Sawaya MR, Wolfle W, Wilson SH, Kraut J Biochemistry 35 12762-77 (1996)
  3. Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity.. Pelletier H, Sawaya MR, Wolfle W, Wilson SH, Kraut J Biochemistry 35 12742-61 (1996)
  4. Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism.. Sawaya MR, Pelletier H, Kumar A, Wilson SH, Kraut J Science 264 1930-5 (1994)
  5. Structures of Ternary Complexes of Rat DNA Polymerase Beta, a DNA Template- Primer, and ddCTP. Pelletier H, Sawaya MR, Kumar A, Wilson SH, Kraut J Science 264 1891- (1994)