1c1y Citations

The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue.

Nature 375 554-60 (1995)
Cited: 405 times
EuropePMC logo PMID: 7791872

Abstract

The X-ray crystal structure of the complex between the Ras-related protein Rap1A in the GTP-analogue (GppNHp) form and the Ras-binding domain (RBD) of the Ras effector molecule c-Raf1, a Ser/Thr-specific protein kinase, has been solved to a resolution of 2.2 A. It shows that RBD has the ubiquitin superfold and that the structure of Rap1A is very similar to that of Ras. The interaction between the two proteins is mediated by an apparent central antiparallel beta-sheet formed by strands B1-B2 from RBD and strands beta 2-beta 3 from Rap1A. Complex formation is mediated by main-chain and side-chain interactions of the so-called effector residues in the switch I region of Rap1A.

Reviews - 1c1y mentioned but not cited (4)

  1. The natural history of ubiquitin and ubiquitin-related domains. Burroughs AM, Iyer LM, Aravind L. Front Biosci (Landmark Ed) 17 1433-1460 (2012)
  2. Targeting the MAPK Pathway in RAS Mutant Cancers. Hymowitz SG, Malek S. Cold Spring Harb Perspect Med 8 a031492 (2018)
  3. Structure-based inhibitor design of mutant RAS proteins-a paradigm shift. Nyíri K, Koppány G, Vértessy BG. Cancer Metastasis Rev 39 1091-1105 (2020)
  4. Targeting Ras with protein engineering. Tomazini A, Shifman JM. Oncotarget 14 672-687 (2023)

Articles - 1c1y mentioned but not cited (43)

  1. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. Nature 503 548-551 (2013)
  2. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Lim SM, Westover KD, Ficarro SB, Harrison RA, Choi HG, Pacold ME, Carrasco M, Hunter J, Kim ND, Xie T, Sim T, Jänne PA, Meyerson M, Marto JA, Engen JR, Gray NS. Angew Chem Int Ed Engl 53 199-204 (2014)
  3. GTP-Dependent K-Ras Dimerization. Muratcioglu S, Chavan TS, Freed BC, Jang H, Khavrutskii L, Freed RN, Dyba MA, Stefanisko K, Tarasov SG, Gursoy A, Keskin O, Tarasova NI, Gaponenko V, Nussinov R. Structure 23 1325-1335 (2015)
  4. Glucocorticoid-induced leucine zipper inhibits the Raf-extracellular signal-regulated kinase pathway by binding to Raf-1. Ayroldi E, Zollo O, Macchiarulo A, Di Marco B, Marchetti C, Riccardi C. Mol Cell Biol 22 7929-7941 (2002)
  5. Human cancer protein-protein interaction network: a structural perspective. Kar G, Gursoy A, Keskin O. PLoS Comput Biol 5 e1000601 (2009)
  6. Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Burroughs AM, Balaji S, Iyer LM, Aravind L. Biol Direct 2 18 (2007)
  7. Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders. Gremer L, Merbitz-Zahradnik T, Dvorsky R, Cirstea IC, Kratz CP, Zenker M, Wittinghofer A, Ahmadian MR. Hum Mutat 32 33-43 (2011)
  8. Prediction of protein-protein interaction sites in sequences and 3D structures by random forests. Sikić M, Tomić S, Vlahovicek K. PLoS Comput Biol 5 e1000278 (2009)
  9. Predicting new indications for approved drugs using a proteochemometric method. Dakshanamurthy S, Issa NT, Assefnia S, Seshasayee A, Peters OJ, Madhavan S, Uren A, Brown ML, Byers SW. J Med Chem 55 6832-6848 (2012)
  10. Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering. Blaževitš O, Mideksa YG, Šolman M, Ligabue A, Ariotti N, Nakhaeizadeh H, Fansa EK, Papageorgiou AC, Wittinghofer A, Ahmadian MR, Abankwa D. Sci Rep 6 24165 (2016)
  11. A mechanism of Rap1-induced stabilization of endothelial cell--cell junctions. Liu JJ, Stockton RA, Gingras AR, Ablooglu AJ, Han J, Bobkov AA, Ginsberg MH. Mol Biol Cell 22 2509-2519 (2011)
  12. A network pharmacology approach to understanding the mechanisms of action of traditional medicine: Bushenhuoxue formula for treatment of chronic kidney disease. Shi SH, Cai YP, Cai XJ, Zheng XY, Cao DS, Ye FQ, Xiang Z. PLoS One 9 e89123 (2014)
  13. Structural basis for small G protein effector interaction of Ras-related protein 1 (Rap1) and adaptor protein Krev interaction trapped 1 (KRIT1). Li X, Zhang R, Draheim KM, Liu W, Calderwood DA, Boggon TJ. J Biol Chem 287 22317-22327 (2012)
  14. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  15. The structure of the ternary complex of Krev interaction trapped 1 (KRIT1) bound to both the Rap1 GTPase and the heart of glass (HEG1) cytoplasmic tail. Gingras AR, Puzon-McLaughlin W, Ginsberg MH. J Biol Chem 288 23639-23649 (2013)
  16. Ensemble approach to predict specificity determinants: benchmarking and validation. Chakrabarti S, Panchenko AR. BMC Bioinformatics 10 207 (2009)
  17. Crystal Structure Reveals the Full Ras-Raf Interface and Advances Mechanistic Understanding of Raf Activation. Cookis T, Mattos C. Biomolecules 11 996 (2021)
  18. The ability of GAP1IP4BP to function as a Rap1 GTPase-activating protein (GAP) requires its Ras GAP-related domain and an arginine finger rather than an asparagine thumb. Kupzig S, Bouyoucef-Cherchalli D, Yarwood S, Sessions R, Cullen PJ. Mol Cell Biol 29 3929-3940 (2009)
  19. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models. Stovgaard K, Andreetta C, Ferkinghoff-Borg J, Hamelryck T. BMC Bioinformatics 11 429 (2010)
  20. Crystal structure of a sulfur carrier protein complex found in the cysteine biosynthetic pathway of Mycobacterium tuberculosis. Jurgenson CT, Burns KE, Begley TP, Ealick SE. Biochemistry 47 10354-10364 (2008)
  21. Emodin regulates neutrophil phenotypes to prevent hypercoagulation and lung carcinogenesis. Li Z, Lin Y, Zhang S, Zhou L, Yan G, Wang Y, Zhang M, Wang M, Lin H, Tong Q, Duan Y, Du G. J Transl Med 17 90 (2019)
  22. The structure of Rap1 in complex with RIAM reveals specificity determinants and recruitment mechanism. Zhang H, Chang YC, Brennan ML, Wu J. J Mol Cell Biol 6 128-139 (2014)
  23. A theoretical study on predicted protein targets of apple polyphenols and possible mechanisms of chemoprevention in colorectal cancer. Scafuri B, Marabotti A, Carbone V, Minasi P, Dotolo S, Facchiano A. Sci Rep 6 32516 (2016)
  24. Biochemical characterization of RGS14: RGS14 activity towards G-protein alpha subunits is independent of its binding to Rap2A. Mittal V, Linder ME. Biochem J 394 309-315 (2006)
  25. Recognizing protein-protein interfaces with empirical potentials and reduced amino acid alphabets. Launay G, Mendez R, Wodak S, Simonson T. BMC Bioinformatics 8 270 (2007)
  26. VASP-E: specificity annotation with a volumetric analysis of electrostatic isopotentials. Chen BY. PLoS Comput Biol 10 e1003792 (2014)
  27. The Function of Embryonic Stem Cell-expressed RAS (E-RAS), a Unique RAS Family Member, Correlates with Its Additional Motifs and Its Structural Properties. Nakhaei-Rad S, Nakhaeizadeh H, Kordes C, Cirstea IC, Schmick M, Dvorsky R, Bastiaens PIH, Häussinger D, Ahmadian MR. J Biol Chem 290 15892-15903 (2015)
  28. Bioinformatics analysis of Ras homologue enriched in the striatum, a potential target for Huntington's disease therapy. Carbo M, Brandi V, Pascarella G, Staid DS, Colotti G, Polticelli F, Ilari A, Morea V. Int J Mol Med 44 2223-2233 (2019)
  29. Modeling of RAS complexes supports roles in cancer for less studied partners. Engin HB, Carlin D, Pratt D, Carter H. BMC Biophys 10 5 (2017)
  30. Phosphorylation promotes binding affinity of Rap-Raf complex by allosteric modulation of switch loop dynamics. T D, Venkatraman P, Vemparala S. Sci Rep 8 12976 (2018)
  31. Retrotransposition and mutation events yield Rap1 GTPases with differential signalling capacity. Zemojtel T, Duchniewicz M, Zhang Z, Paluch T, Luz H, Penzkofer T, Scheele JS, Zwartkruis FJ. BMC Evol Biol 10 55 (2010)
  32. Volume-based solvation models out-perform area-based models in combined studies of wild-type and mutated protein-protein interfaces. Bougouffa S, Warwicker J. BMC Bioinformatics 9 448 (2008)
  33. A conservation and biophysics guided stochastic approach to refining docked multimeric proteins. Akbal-Delibas B, Haspel N. BMC Struct Biol 13 Suppl 1 S7 (2013)
  34. Exploring the interactions of the RAS family in the human protein network and their potential implications in RAS-directed therapies. Bueno A, Morilla I, Diez D, Moya-Garcia AA, Lozano J, Ranea JA. Oncotarget 7 75810-75826 (2016)
  35. HopDock: a probabilistic search algorithm for decoy sampling in protein-protein docking. Hashmi I, Shehu A. Proteome Sci 11 S6 (2013)
  36. Study on the mechanisms of compound Kushen injection for the treatment of gastric cancer based on network pharmacology. Zhou W, Wu J, Zhu Y, Meng Z, Liu X, Liu S, Ni M, Jia S, Zhang J, Guo S. BMC Complement Med Ther 20 6 (2020)
  37. Prediction of Protein Interactions by Structural Matching: Prediction of PPI Networks and the Effects of Mutations on PPIs that Combines Sequence and Structural Information. Tuncbag N, Keskin O, Nussinov R, Gursoy A. Methods Mol Biol 1558 255-270 (2017)
  38. TRPM8-Rap1A Interaction Sites as Critical Determinants for Adhesion and Migration of Prostate and Other Epithelial Cancer Cells. Chinigò G, Grolez GP, Audero M, Bokhobza A, Bernardini M, Cicero J, Toillon RA, Bailleul Q, Visentin L, Ruffinatti FA, Brysbaert G, Lensink MF, De Ruyck J, Cantelmo AR, Fiorio Pla A, Gkika D. Cancers (Basel) 14 2261 (2022)
  39. Classification of heterodimer interfaces using docking models and construction of scoring functions for the complex structure prediction. Tsuchiya Y, Kanamori E, Nakamura H, Kinoshita K. Adv Appl Bioinform Chem 2 79-100 (2009)
  40. DiffBond: A Method for Predicting Intermolecular Bond Formation. Tam J, Palumbo T, Miwa JM, Chen BY. Proceedings (IEEE Int Conf Bioinformatics Biomed) 2021 2574-2586 (2021)
  41. Analysis of Protein-Protein Interactions for Intermolecular Bond Prediction. Tam JZ, Palumbo T, Miwa JM, Chen BY. Molecules 27 6178 (2022)
  42. Efficient Ru-Catalyzed Electrochemical Homo- and Heterocoupling Reaction of Terminal Alkynes: Synthesis, In Vitro Anticancer Activity, and Docking Study. Tamuli KJ, Narzary B, Saikia S, Bordoloi M. ACS Omega 8 32635-32642 (2023)
  43. Prediction of Protein Sites and Physicochemical Properties Related to Functional Specificity. Pazos F. Bioengineering (Basel) 8 201 (2021)


Reviews citing this publication (63)

  1. Small GTP-binding proteins. Takai Y, Sasaki T, Matozaki T. Physiol Rev 81 153-208 (2001)
  2. G protein mechanisms: insights from structural analysis. Sprang SR. Annu Rev Biochem 66 639-678 (1997)
  3. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Welchman RL, Gordon C, Mayer RJ. Nat Rev Mol Cell Biol 6 599-609 (2005)
  4. The structure and mechanism of protein phosphatases: insights into catalysis and regulation. Barford D, Das AK, Egloff MP. Annu Rev Biophys Biomol Struct 27 133-164 (1998)
  5. The complexity of Raf-1 regulation. Morrison DK, Cutler RE. Curr Opin Cell Biol 9 174-179 (1997)
  6. Regulation of RAF protein kinases in ERK signalling. Lavoie H, Therrien M. Nat Rev Mol Cell Biol 16 281-298 (2015)
  7. Ras effectors. Marshall CJ. Curr Opin Cell Biol 8 197-204 (1996)
  8. G-protein signaling: back to the future. McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS. Cell Mol Life Sci 62 551-577 (2005)
  9. Mechanisms of regulating the Raf kinase family. Chong H, Vikis HG, Guan KL. Cell Signal 15 463-469 (2003)
  10. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Degirmenci U, Wang M, Hu J. Cells 9 E198 (2020)
  11. Structural systems biology: modelling protein interactions. Aloy P, Russell RB, Russell RB. Nat Rev Mol Cell Biol 7 188-197 (2006)
  12. T cell anergy and costimulation. Appleman LJ, Boussiotis VA. Immunol Rev 192 161-180 (2003)
  13. Raf kinases: function, regulation and role in human cancer. Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, Tzivion G. Biochim Biophys Acta 1773 1196-1212 (2007)
  14. Switches, latches, and amplifiers: common themes of G proteins and molecular motors. Vale RD. J Cell Biol 135 291-302 (1996)
  15. Protein-protein interactions, cytoskeletal regulation and neuronal migration. Feng Y, Walsh CA. Nat Rev Neurosci 2 408-416 (2001)
  16. Why nature really chose phosphate. Kamerlin SC, Sharma PK, Prasad RB, Warshel A. Q Rev Biophys 46 1-132 (2013)
  17. GTPase activating proteins: critical regulators of intracellular signaling. Donovan S, Shannon KM, Bollag G. Biochim Biophys Acta 1602 23-45 (2002)
  18. Ras-effector interactions: after one decade. Herrmann C. Curr Opin Struct Biol 13 122-129 (2003)
  19. Peptide-surface association: the case of PDZ and PTB domains. Harrison SC. Cell 86 341-343 (1996)
  20. Regulation of membrane trafficking: structural insights from a Rab/effector complex. Gonzalez L, Scheller RH. Cell 96 755-758 (1999)
  21. GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins. Geyer M, Wittinghofer A. Curr Opin Struct Biol 7 786-792 (1997)
  22. G proteins, effectors and GAPs: structure and mechanism. Sprang SR. Curr Opin Struct Biol 7 849-856 (1997)
  23. Targeting protein-protein interactions for cancer therapy. Fry DC, Vassilev LT. J Mol Med (Berl) 83 955-963 (2005)
  24. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. Buday L. Biochim Biophys Acta 1422 187-204 (1999)
  25. Ras-like GTPases. Bos JL. Biochim Biophys Acta 1333 M19-31 (1997)
  26. Ras-Mediated Activation of the Raf Family Kinases. Terrell EM, Morrison DK. Cold Spring Harb Perspect Med 9 a033746 (2019)
  27. The interaction of Ras with GTPase-activating proteins. Wittinghofer A, Scheffzek K, Ahmadian MR. FEBS Lett 410 63-67 (1997)
  28. Structural insight into substrate specificity and regulatory mechanisms of phosphoinositide 3-kinases. Djordjevic S, Driscoll PC. Trends Biochem Sci 27 426-432 (2002)
  29. GTPases involved in vesicular trafficking: structures and mechanisms. Itzen A, Goody RS. Semin Cell Dev Biol 22 48-56 (2011)
  30. The many faces of Ras: recognition of small GTP-binding proteins. Corbett KD, Alber T. Trends Biochem Sci 26 710-716 (2001)
  31. Interactions between Ras proteins and their effectors. McCormick F, Wittinghofer A. Curr Opin Biotechnol 7 449-456 (1996)
  32. Structures of Ras superfamily effector complexes: What have we learnt in two decades? Mott HR, Owen D. Crit Rev Biochem Mol Biol 50 85-133 (2015)
  33. Ras-effector interactions, the problem of specificity. Wittinghofer A, Herrmann C. FEBS Lett 369 52-56 (1995)
  34. GTPase-activating proteins and their complexes. Gamblin SJ, Smerdon SJ. Curr Opin Struct Biol 8 195-201 (1998)
  35. Ras-A Molecular Switch Involved in Tumor Formation. Wittinghofer A, Waldmann H. Angew Chem Int Ed Engl 39 4192-4214 (2000)
  36. Ras and its effectors. Herrmann C, Nassar N. Prog Biophys Mol Biol 66 1-41 (1996)
  37. c-Cbl: a regulator of T cell receptor-mediated signalling. Thien CB, Langdon WY. Immunol Cell Biol 76 473-482 (1998)
  38. Structural determinants and significance of regulation of electrogenic Na(+)-HCO(3)(-) cotransporter stoichiometry. Gross E, Kurtz I. Am J Physiol Renal Physiol 283 F876-87 (2002)
  39. Structural Determinants of Isoform Selectivity in PI3K Inhibitors. Miller MS, Thompson PE, Gabelli SB. Biomolecules 9 E82 (2019)
  40. Cell polarity during motile processes: keeping on track with the exocyst complex. Hertzog M, Chavrier P. Biochem J 433 403-409 (2011)
  41. The p21-Ras signal transduction pathway and growth regulation in human high-grade gliomas. Bredel M, Pollack IF. Brain Res Brain Res Rev 29 232-249 (1999)
  42. Regulatory GTPases. Hilgenfeld R. Curr Opin Struct Biol 5 810-817 (1995)
  43. The Ras-Raf relationship: an unfinished puzzle. Kerkhoff E, Rapp UR. Adv Enzyme Regul 41 261-267 (2001)
  44. Peptides with anticancer use or potential. Janin YL. Amino Acids 25 1-40 (2003)
  45. The RAF family: an expanding network of post-translational controls and protein-protein interactions. Yuryev A, Wennogle LP. Cell Res 8 81-98 (1998)
  46. GABARAP: lessons for synaptogenesis. Coyle JE, Nikolov DB. Neuroscientist 9 205-216 (2003)
  47. Choose your own path: specificity in Ras GTPase signaling. Goldfinger LE. Mol Biosyst 4 293-299 (2008)
  48. Small-molecule inhibitors of cell signaling. McCormick F. Curr Opin Biotechnol 11 593-597 (2000)
  49. ras-p21-induced cell transformation: unique signal transduction pathways and implications for the design of new chemotherapeutic agents. Pincus MR, Brandt-Rauf PW, Michl J, Carty RP, Friedman FK. Cancer Invest 18 39-50 (2000)
  50. The adaptor molecule RIAM integrates signaling events critical for integrin-mediated control of immune function and cancer progression. Patsoukis N, Bardhan K, Weaver JD, Sari D, Torres-Gomez A, Li L, Strauss L, Lafuente EM, Boussiotis VA. Sci Signal 10 eaam8298 (2017)
  51. Current status of the development of Ras inhibitors. Shima F, Matsumoto S, Yoshikawa Y, Kawamura T, Isa M, Kataoka T. J Biochem 158 91-99 (2015)
  52. The significance of the free energy of hydrolysis of GTP for signal-transducing and regulatory GTPases. Goody RS. Biophys Chem 100 535-544 (2003)
  53. How Ras works: structure of a Rap-Raf complex. Sprang SR. Structure 3 641-643 (1995)
  54. Ubiquitin superfolds: intrinsic and attachable regulators of cellular activities? Mayer RJ, Landon M, Layfield R. Fold Des 3 R97-9 (1998)
  55. Therapeutic Approaches to RAS Mutation. Scott AJ, Lieu CH, Messersmith WA. Cancer J 22 165-174 (2016)
  56. Structural flexibility of small GTPases. Can it explain their functional versatility? Helmreich EJ. Biol Chem 385 1121-1136 (2004)
  57. Conformational display: a role for switch polymorphism in the superfamily of regulatory GTPases. Sprang SR. Sci STKE 2000 pe1 (2000)
  58. Deciphering the alphabet of G proteins: the structure of the alpha, beta, gamma heterotrimer. Wittinghofer A. Structure 4 357-361 (1996)
  59. New weapons to penetrate the armor: Novel reagents and assays developed at the NCI RAS Initiative to enable discovery of RAS therapeutics. Esposito D, Stephen AG, Turbyville TJ, Holderfield M. Semin Cancer Biol 54 174-182 (2019)
  60. Switching to Rac and Rho. Block C, Wittinghofer A. Structure 3 1281-1284 (1995)
  61. Protein-protein interactions. Putting the pieces together. Bax B, Jhoti H. Curr Biol 5 1119-1121 (1995)
  62. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Bahar ME, Kim HJ, Kim DR. Signal Transduct Target Ther 8 455 (2023)
  63. Therapeutic Targeting the Allosteric Cysteinome of RAS and Kinase Families. Li L, Meyer C, Zhou ZW, Elmezayen A, Westover K. J Mol Biol 434 167626 (2022)

Articles citing this publication (295)

  1. The atomic structure of protein-protein recognition sites. Lo Conte L, Chothia C, Janin J. J Mol Biol 285 2177-2198 (1999)
  2. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Wall MA, Coleman DE, Lee E, Iñiguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR. Cell 83 1047-1058 (1995)
  3. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. Gohlke H, Kiel C, Case DA. J Mol Biol 330 891-913 (2003)
  4. Evolution of the Rab family of small GTP-binding proteins. Pereira-Leal JB, Seabra MC. J Mol Biol 313 889-901 (2001)
  5. RAS Interaction with PI3K: More Than Just Another Effector Pathway. Castellano E, Downward J. Genes Cancer 2 261-274 (2011)
  6. Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf. Gohlke H, Case DA. J Comput Chem 25 238-250 (2004)
  7. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. Egloff MP, Johnson DF, Moorhead G, Cohen PT, Cohen P, Barford D. EMBO J 16 1876-1887 (1997)
  8. Ras history: The saga continues. Cox AD, Der CJ. Small GTPases 1 2-27 (2010)
  9. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Pearson MA, Reczek D, Bretscher A, Karplus PA. Cell 101 259-270 (2000)
  10. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. Pacold ME, Suire S, Perisic O, Lara-Gonzalez S, Davis CT, Walker EH, Hawkins PT, Stephens L, Eccleston JF, Williams RL. Cell 103 931-943 (2000)
  11. Structural characterisation and functional significance of transient protein-protein interactions. Nooren IM, Thornton JM. J Mol Biol 325 991-1018 (2003)
  12. Rapid, electrostatically assisted association of proteins. Schreiber G, Fersht AR. Nat Struct Biol 3 427-431 (1996)
  13. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Katagiri K, Maeda A, Shimonaka M, Kinashi T. Nat Immunol 4 741-748 (2003)
  14. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, Fauber BP, Pan B, Malek S, Stokoe D, Ludlam MJ, Bowman KK, Wu J, Giannetti AM, Starovasnik MA, Mellman I, Jackson PK, Rudolph J, Wang W, Fang G. Proc Natl Acad Sci U S A 109 5299-5304 (2012)
  15. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Jin J, Smith FD, Stark C, Wells CD, Fawcett JP, Kulkarni S, Metalnikov P, O'Donnell P, Taylor P, Taylor L, Zougman A, Woodgett JR, Langeberg LK, Scott JD, Pawson T. Curr Biol 14 1436-1450 (2004)
  16. The mammalian Rab family of small GTPases: definition of family and subfamily sequence motifs suggests a mechanism for functional specificity in the Ras superfamily. Pereira-Leal JB, Seabra MC. J Mol Biol 301 1077-1087 (2000)
  17. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Walker EH, Perisic O, Ried C, Stephens L, Williams RL. Nature 402 313-320 (1999)
  18. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Boussiotis VA, Freeman GJ, Berezovskaya A, Barber DL, Nadler LM. Science 278 124-128 (1997)
  19. KSR, a novel protein kinase required for RAS signal transduction. Therrien M, Chang HC, Solomon NM, Karim FD, Wassarman DA, Rubin GM. Cell 83 879-888 (1995)
  20. Rapid Ca2+-mediated activation of Rap1 in human platelets. Franke B, Akkerman JW, Bos JL. EMBO J 16 252-259 (1997)
  21. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. Hamada K, Shimizu T, Matsui T, Tsukita S, Hakoshima T. EMBO J 19 4449-4462 (2000)
  22. Structure determination of the small ubiquitin-related modifier SUMO-1. Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R, Becker J. J Mol Biol 280 275-286 (1998)
  23. Introduction of p130cas signaling complex formation upon integrin-mediated cell adhesion: a role for Src family kinases. Vuori K, Hirai H, Aizawa S, Ruoslahti E. Mol Cell Biol 16 2606-2613 (1996)
  24. Cell cycle-dependent activation of Ras. Taylor SJ, Shalloway D. Curr Biol 6 1621-1627 (1996)
  25. Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Ostermeier C, Brunger AT. Cell 96 363-374 (1999)
  26. Structural view of the Ran-Importin beta interaction at 2.3 A resolution. Vetter IR, Arndt A, Kutay U, Görlich D, Wittinghofer A. Cell 97 635-646 (1999)
  27. Raf family kinases: old dogs have learned new tricks. Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Genes Cancer 2 232-260 (2011)
  28. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein. Abdul-Manan N, Aghazadeh B, Liu GA, Majumdar A, Ouerfelli O, Siminovitch KA, Rosen MK. Nature 399 379-383 (1999)
  29. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Pelletier JN, Campbell-Valois FX, Michnick SW. Proc Natl Acad Sci U S A 95 12141-12146 (1998)
  30. Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Lambert JM, Lambert QT, Reuther GW, Malliri A, Siderovski DP, Sondek J, Collard JG, Der CJ. Nat Cell Biol 4 621-625 (2002)
  31. Therapeutic strategies for targeting ras proteins. Gysin S, Salt M, Young A, McCormick F. Genes Cancer 2 359-372 (2011)
  32. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Gotoh T, Hattori S, Nakamura S, Kitayama H, Noda M, Takai Y, Kaibuchi K, Matsui H, Hatase O, Takahashi H. Mol Cell Biol 15 6746-6753 (1995)
  33. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Vetter IR, Nowak C, Nishimoto T, Kuhlmann J, Wittinghofer A. Nature 398 39-46 (1999)
  34. Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Goldberg J. Cell 96 893-902 (1999)
  35. Structure of the TPR domain of p67phox in complex with Rac.GTP. Lapouge K, Smith SJ, Walker PA, Gamblin SJ, Smerdon SJ, Rittinger K. Mol Cell 6 899-907 (2000)
  36. HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. Bardelli A, Longati P, Albero D, Goruppi S, Schneider C, Ponzetto C, Comoglio PM. EMBO J 15 6205-6212 (1996)
  37. Dynamic properties of the Ras switch I region and its importance for binding to effectors. Spoerner M, Herrmann C, Vetter IR, Kalbitzer HR, Wittinghofer A. Proc Natl Acad Sci U S A 98 4944-4949 (2001)
  38. In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Shima F, Yoshikawa Y, Ye M, Araki M, Matsumoto S, Liao J, Hu L, Sugimoto T, Ijiri Y, Takeda A, Nishiyama Y, Sato C, Muraoka S, Tamura A, Osoda T, Tsuda K, Miyakawa T, Fukunishi H, Shimada J, Kumasaka T, Yamamoto M, Kataoka T. Proc Natl Acad Sci U S A 110 8182-8187 (2013)
  39. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Puertollano R, Randazzo PA, Presley JF, Hartnell LM, Bonifacino JS. Cell 105 93-102 (2001)
  40. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. Zhang BH, Guan KL. EMBO J 19 5429-5439 (2000)
  41. The complex of Arl2-GTP and PDE delta: from structure to function. Hanzal-Bayer M, Renault L, Roversi P, Wittinghofer A, Hillig RC. EMBO J 21 2095-2106 (2002)
  42. Positive and negative regulation of Raf kinase activity and function by phosphorylation. Chong H, Lee J, Guan KL. EMBO J 20 3716-3727 (2001)
  43. Structural basis for the interaction of Ras with RalGDS. Huang L, Hofer F, Martin GS, Kim SH. Nat Struct Biol 5 422-426 (1998)
  44. The putative tumor suppressor RASSF1A homodimerizes and heterodimerizes with the Ras-GTP binding protein Nore1. Ortiz-Vega S, Khokhlatchev A, Nedwidek M, Zhang XF, Dammann R, Pfeifer GP, Avruch J. Oncogene 21 1381-1390 (2002)
  45. A Small Molecule RAS-Mimetic Disrupts RAS Association with Effector Proteins to Block Signaling. Athuluri-Divakar SK, Vasquez-Del Carpio R, Dutta K, Baker SJ, Cosenza SC, Basu I, Gupta YK, Reddy MV, Ueno L, Hart JR, Vogt PK, Mulholland D, Guha C, Aggarwal AK, Reddy EP. Cell 165 643-655 (2016)
  46. Mapping the nucleotide and isoform-dependent structural and dynamical features of Ras proteins. Gorfe AA, Grant BJ, McCammon JA. Structure 16 885-896 (2008)
  47. Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Montoya G, Svensson C, Luirink J, Sinning I. Nature 385 365-368 (1997)
  48. Ras membrane orientation and nanodomain localization generate isoform diversity. Abankwa D, Gorfe AA, Inder K, Hancock JF. Proc Natl Acad Sci U S A 107 1130-1135 (2010)
  49. Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. Zwartkruis FJ, Wolthuis RM, Nabben NM, Franke B, Bos JL. EMBO J 17 5905-5912 (1998)
  50. Combined chemical shift changes and amino acid specific chemical shift mapping of protein-protein interactions. Schumann FH, Riepl H, Maurer T, Gronwald W, Neidig KP, Kalbitzer HR. J Biomol NMR 39 275-289 (2007)
  51. Ras/Rap effector specificity determined by charge reversal. Nassar N, Horn G, Herrmann C, Block C, Janknecht R, Wittinghofer A. Nat Struct Biol 3 723-729 (1996)
  52. PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62. Wilson MI, Gill DJ, Perisic O, Quinn MT, Williams RL. Mol Cell 12 39-50 (2003)
  53. Recognizing and defining true Ras binding domains I: biochemical analysis. Wohlgemuth S, Kiel C, Krämer A, Serrano L, Wittinghofer F, Herrmann C. J Mol Biol 348 741-758 (2005)
  54. Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Park E, Rawson S, Li K, Kim BW, Ficarro SB, Pino GG, Sharif H, Marto JA, Jeon H, Eck MJ. Nature 575 545-550 (2019)
  55. Cooperative activation of PI3K by Ras and Rho family small GTPases. Yang HW, Shin MG, Lee S, Kim JR, Park WS, Cho KH, Meyer T, Heo WD. Mol Cell 47 281-290 (2012)
  56. A novel family of Ras-binding domains. Ponting CP, Benjamin DR. Trends Biochem Sci 21 422-425 (1996)
  57. Structural basis for molecular recognition between nuclear transport factor 2 (NTF2) and the GDP-bound form of the Ras-family GTPase Ran. Stewart M, Kent HM, McCoy AJ. J Mol Biol 277 635-646 (1998)
  58. The crystal structure of microtubule-associated protein light chain 3, a mammalian homologue of Saccharomyces cerevisiae Atg8. Sugawara K, Suzuki NN, Fujioka Y, Mizushima N, Ohsumi Y, Inagaki F. Genes Cells 9 611-618 (2004)
  59. Structure and mutational analysis of Rab GDP-dissociation inhibitor. Schalk I, Zeng K, Wu SK, Stura EA, Matteson J, Huang M, Tandon A, Wilson IA, Balch WE. Nature 381 42-48 (1996)
  60. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Mott HR, Owen D, Nietlispach D, Lowe PN, Manser E, Lim L, Laue ED. Nature 399 384-388 (1999)
  61. Ras conformational switching: simulating nucleotide-dependent conformational transitions with accelerated molecular dynamics. Grant BJ, Gorfe AA, McCammon JA. PLoS Comput Biol 5 e1000325 (2009)
  62. The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site. Mott HR, Carpenter JW, Zhong S, Ghosh S, Bell RM, Campbell SL. Proc Natl Acad Sci U S A 93 8312-8317 (1996)
  63. Autoregulation of the Raf-1 serine/threonine kinase. Cutler RE, Stephens RM, Saracino MR, Morrison DK. Proc Natl Acad Sci U S A 95 9214-9219 (1998)
  64. Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras. Scheffzek K, Lautwein A, Kabsch W, Ahmadian MR, Wittinghofer A. Nature 384 591-596 (1996)
  65. The structural basis of Rho effector recognition revealed by the crystal structure of human RhoA complexed with the effector domain of PKN/PRK1. Maesaki R, Ihara K, Shimizu T, Kuroda S, Kaibuchi K, Hakoshima T. Mol Cell 4 793-803 (1999)
  66. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Panic B, Perisic O, Veprintsev DB, Williams RL, Munro S. Mol Cell 12 863-874 (2003)
  67. Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Coyle JE, Qamar S, Rajashankar KR, Nikolov DB. Neuron 33 63-74 (2002)
  68. The UBX domain: a widespread ubiquitin-like module. Buchberger A, Howard MJ, Proctor M, Bycroft M. J Mol Biol 307 17-24 (2001)
  69. Quantitative structure-activity analysis correlating Ras/Raf interaction in vitro to Raf activation in vivo. Block C, Janknecht R, Herrmann C, Nassar N, Wittinghofer A. Nat Struct Biol 3 244-251 (1996)
  70. The RAS effector RIN1 directly competes with RAF and is regulated by 14-3-3 proteins. Wang Y, Waldron RT, Dhaka A, Patel A, Riley MM, Rozengurt E, Colicelli J. Mol Cell Biol 22 916-926 (2002)
  71. Single cell Ras-GTP analysis reveals altered Ras activity in a subpopulation of neurofibroma Schwann cells but not fibroblasts. Sherman LS, Atit R, Rosenbaum T, Cox AD, Ratner N. J Biol Chem 275 30740-30745 (2000)
  72. Ras interaction with two distinct binding domains in Raf-1 may be required for Ras transformation. Drugan JK, Khosravi-Far R, White MA, Der CJ, Sung YJ, Hwang YW, Campbell SL. J Biol Chem 271 233-237 (1996)
  73. Mapping the transition state for ATP hydrolysis: implications for enzymatic catalysis. Admiraal SJ, Herschlag D. Chem Biol 2 729-739 (1995)
  74. Recognizing and defining true Ras binding domains II: in silico prediction based on homology modelling and energy calculations. Kiel C, Wohlgemuth S, Rousseau F, Schymkowitz J, Ferkinghoff-Borg J, Wittinghofer F, Serrano L. J Mol Biol 348 759-775 (2005)
  75. Rab3 reversibly recruits rabphilin to synaptic vesicles by a mechanism analogous to raf recruitment by ras. Stahl B, Chou JH, Li C, Südhof TC, Jahn R. EMBO J 15 1799-1809 (1996)
  76. Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex. Fukai S, Matern HT, Jagath JR, Scheller RH, Brunger AT. EMBO J 22 3267-3278 (2003)
  77. Craf-1 protein kinase is essential for mouse development. Wojnowski L, Stancato LF, Zimmer AM, Hahn H, Beck TW, Larner AC, Rapp UR, Zimmer A. Mech Dev 76 141-149 (1998)
  78. Structural differences between valine-12 and aspartate-12 Ras proteins may modify carcinoma aggression. Al-Mulla F, Milner-White EJ, Going JJ, Birnie GD. J Pathol 187 433-438 (1999)
  79. The RAP1 guanine nucleotide exchange factor Epac2 couples cyclic AMP and Ras signals at the plasma membrane. Li Y, Asuri S, Rebhun JF, Castro AF, Paranavitana NC, Quilliam LA. J Biol Chem 281 2506-2514 (2006)
  80. Human Sin1 contains Ras-binding and pleckstrin homology domains and suppresses Ras signalling. Schroder WA, Buck M, Cloonan N, Hancock JF, Suhrbier A, Sculley T, Bushell G. Cell Signal 19 1279-1289 (2007)
  81. Solution structure of the CIDE-N domain of CIDE-B and a model for CIDE-N/CIDE-N interactions in the DNA fragmentation pathway of apoptosis. Lugovskoy AA, Zhou P, Chou JJ, McCarty JS, Li P, Wagner G. Cell 99 747-755 (1999)
  82. NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation. Thapar R, Williams JG, Campbell SL. J Mol Biol 343 1391-1408 (2004)
  83. The crystal structure of rna1p: a new fold for a GTPase-activating protein. Hillig RC, Renault L, Vetter IR, Drell T, Wittinghofer A, Becker J. Mol Cell 3 781-791 (1999)
  84. ARHI is a Ras-related small G-protein with a novel N-terminal extension that inhibits growth of ovarian and breast cancers. Luo RZ, Fang X, Marquez R, Liu SY, Mills GB, Liao WS, Yu Y, Bast RC. Oncogene 22 2897-2909 (2003)
  85. An intact Raf zinc finger is required for optimal binding to processed Ras and for ras-dependent Raf activation in situ. Luo Z, Diaz B, Marshall MS, Avruch J. Mol Cell Biol 17 46-53 (1997)
  86. Structural basis of activation and GTP hydrolysis in Rab proteins. Dumas JJ, Zhu Z, Connolly JL, Lambright DG. Structure 7 413-423 (1999)
  87. Dual amino acid-selective and site-directed stable-isotope labeling of the human c-Ha-Ras protein by cell-free synthesis. Yabuki T, Kigawa T, Dohmae N, Takio K, Terada T, Ito Y, Laue ED, Cooper JA, Kainosho M, Yokoyama S. J Biomol NMR 11 295-306 (1998)
  88. RUN domains: a new family of domains involved in Ras-like GTPase signaling. Callebaut I, de Gunzburg J, Goud B, Mornon JP. Trends Biochem Sci 26 79-83 (2001)
  89. Atomic-level characterization of protein-protein association. Pan AC, Jacobson D, Yatsenko K, Sritharan D, Weinreich TM, Shaw DE. Proc Natl Acad Sci U S A 116 4244-4249 (2019)
  90. Protein binding and signaling properties of RIN1 suggest a unique effector function. Han L, Wong D, Dhaka A, Afar D, White M, Xie W, Herschman H, Witte O, Colicelli J. Proc Natl Acad Sci U S A 94 4954-4959 (1997)
  91. RGS14 is a novel Rap effector that preferentially regulates the GTPase activity of galphao. Traver S, Bidot C, Spassky N, Baltauss T, De Tand MF, Thomas JL, Zalc B, Janoueix-Lerosey I, Gunzburg JD. Biochem J 350 Pt 1 19-29 (2000)
  92. Transformation efficiency of RasQ61 mutants linked to structural features of the switch regions in the presence of Raf. Buhrman G, Wink G, Mattos C. Structure 15 1618-1629 (2007)
  93. Change in protein flexibility upon complex formation: analysis of Ras-Raf using molecular dynamics and a molecular framework approach. Gohlke H, Kuhn LA, Case DA. Proteins 56 322-337 (2004)
  94. Conformational switch and role of phosphorylation in PAK activation. Buchwald G, Hostinova E, Rudolph MG, Kraemer A, Sickmann A, Meyer HE, Scheffzek K, Wittinghofer A. Mol Cell Biol 21 5179-5189 (2001)
  95. Local motions in a benchmark of allosteric proteins. Daily MD, Gray JJ. Proteins 67 385-399 (2007)
  96. Structural and biochemical analysis of Ras-effector signaling via RalGDS. Vetter IR, Linnemann T, Wohlgemuth S, Geyer M, Kalbitzer HR, Herrmann C, Wittinghofer A. FEBS Lett 451 175-180 (1999)
  97. The RA domain of Ste50 adaptor protein is required for delivery of Ste11 to the plasma membrane in the filamentous growth signaling pathway of the yeast Saccharomyces cerevisiae. Truckses DM, Bloomekatz JE, Thorner J. Mol Cell Biol 26 912-928 (2006)
  98. A modulator of rho family G proteins, rhoGDI, binds these G proteins via an immunoglobulin-like domain and a flexible N-terminal arm. Keep NH, Barnes M, Barsukov I, Badii R, Lian LY, Segal AW, Moody PC, Roberts GC. Structure 5 623-633 (1997)
  99. Letter Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. Geyer M, Herrmann C, Wohlgemuth S, Wittinghofer A, Kalbitzer HR. Nat Struct Biol 4 694-699 (1997)
  100. Rheb interacts with Raf-1 kinase and may function to integrate growth factor- and protein kinase A-dependent signals. Yee WM, Worley PF. Mol Cell Biol 17 921-933 (1997)
  101. Structural and biochemical studies of p21Ras S-nitrosylation and nitric oxide-mediated guanine nucleotide exchange. Williams JG, Pappu K, Campbell SL. Proc Natl Acad Sci U S A 100 6376-6381 (2003)
  102. Solution structure and interaction surface of the C-terminal domain from p47: a major p97-cofactor involved in SNARE disassembly. Yuan X, Shaw A, Zhang X, Kondo H, Lally J, Freemont PS, Matthews S. J Mol Biol 311 255-263 (2001)
  103. Structural determinants of Ras-Raf interaction analyzed in live cells. Bondeva T, Balla A, Várnai P, Balla T. Mol Biol Cell 13 2323-2333 (2002)
  104. Electrostatic contributions to protein-protein binding affinities: application to Rap/Raf interaction. Muegge I, Schweins T, Warshel A. Proteins 30 407-423 (1998)
  105. Src promotes GTPase activity of Ras via tyrosine 32 phosphorylation. Bunda S, Heir P, Srikumar T, Cook JD, Burrell K, Kano Y, Lee JE, Zadeh G, Raught B, Ohh M. Proc Natl Acad Sci U S A 111 E3785-94 (2014)
  106. Structure and function of plant-type ferredoxins. Fukuyama K. Photosynth Res 81 289-301 (2004)
  107. Insulin regulates the dynamic balance between Ras and Rap1 signaling by coordinating the assembly states of the Grb2-SOS and CrkII-C3G complexes. Okada S, Matsuda M, Anafi M, Pawson T, Pessin JE. EMBO J 17 2554-2565 (1998)
  108. RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Fang HM, Wang Y. Mol Microbiol 61 484-496 (2006)
  109. Structural and functional studies of the Ras-associating and pleckstrin-homology domains of Grb10 and Grb14. Depetris RS, Wu J, Hubbard SR. Nat Struct Mol Biol 16 833-839 (2009)
  110. The ubiquitin domain superfold: structure-based sequence alignments and characterization of binding epitopes. Kiel C, Serrano L. J Mol Biol 355 821-844 (2006)
  111. A detailed thermodynamic analysis of ras/effector complex interfaces. Kiel C, Serrano L, Herrmann C. J Mol Biol 340 1039-1058 (2004)
  112. Rit contributes to nerve growth factor-induced neuronal differentiation via activation of B-Raf-extracellular signal-regulated kinase and p38 mitogen-activated protein kinase cascades. Shi GX, Andres DA. Mol Cell Biol 25 830-846 (2005)
  113. B- and C-RAF display essential differences in their binding to Ras: the isotype-specific N terminus of B-RAF facilitates Ras binding. Fischer A, Hekman M, Kuhlmann J, Rubio I, Wiese S, Rapp UR. J Biol Chem 282 26503-26516 (2007)
  114. Inducible gene deletion reveals different roles for B-Raf and Raf-1 in B-cell antigen receptor signalling. Brummer T, Shaw PE, Reth M, Misawa Y. EMBO J 21 5611-5622 (2002)
  115. Raf inhibitors target ras spatiotemporal dynamics. Cho KJ, Kasai RS, Park JH, Chigurupati S, Heidorn SJ, van der Hoeven D, Plowman SJ, Kusumi A, Marais R, Hancock JF. Curr Biol 22 945-955 (2012)
  116. Diacylglycerol kinase iota regulates Ras guanyl-releasing protein 3 and inhibits Rap1 signaling. Regier DS, Higbee J, Lund KM, Sakane F, Prescott SM, Topham MK. Proc Natl Acad Sci U S A 102 7595-7600 (2005)
  117. The signal recognition particle receptor of Escherichia coli (FtsY) has a nucleotide exchange factor built into the GTPase domain. Moser C, Mol O, Goody RS, Sinning I. Proc Natl Acad Sci U S A 94 11339-11344 (1997)
  118. Activation of the Raf/MAP kinase cascade by the Ras-related protein TC21 is required for the TC21-mediated transformation of NIH 3T3 cells. Rosário M, Paterson HF, Marshall CJ. EMBO J 18 1270-1279 (1999)
  119. Structural basis for the unique biological function of small GTPase RHEB. Yu Y, Li S, Xu X, Li Y, Guan K, Arnold E, Ding J. J Biol Chem 280 17093-17100 (2005)
  120. Structural insights into formation of an active signaling complex between Rac and phospholipase C gamma 2. Bunney TD, Opaleye O, Roe SM, Vatter P, Baxendale RW, Walliser C, Everett KL, Josephs MB, Christow C, Rodrigues-Lima F, Gierschik P, Pearl LH, Katan M. Mol Cell 34 223-233 (2009)
  121. Structure and ligand recognition of the PB1 domain: a novel protein module binding to the PC motif. Terasawa H, Noda Y, Ito T, Hatanaka H, Ichikawa S, Ogura K, Sumimoto H, Inagaki F. EMBO J 20 3947-3956 (2001)
  122. Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK. Mace PD, Wallez Y, Egger MF, Dobaczewska MK, Robinson H, Pasquale EB, Riedl SJ. Nat Commun 4 1681 (2013)
  123. The strength of interaction at the Raf cysteine-rich domain is a critical determinant of response of Raf to Ras family small GTPases. Okada T, Hu CD, Jin TG, Kariya K, Yamawaki-Kataoka Y, Kataoka T. Mol Cell Biol 19 6057-6064 (1999)
  124. Crystal structures of the small G protein Rap2A in complex with its substrate GTP, with GDP and with GTPgammaS. Cherfils J, Ménétrey J, Le Bras G, Janoueix-Lerosey I, de Gunzburg J, Garel JR, Auzat I. EMBO J 16 5582-5591 (1997)
  125. Electrostatic contribution to the binding stability of protein-protein complexes. Dong F, Zhou HX. Proteins 65 87-102 (2006)
  126. Mechanism of free radical nitric oxide-mediated Ras guanine nucleotide dissociation. Heo J, Prutzman KC, Mocanu V, Campbell SL. J Mol Biol 346 1423-1440 (2005)
  127. On the mitogenic properties of Rap1b: cAMP-induced G(1)/S entry requires activated and phosphorylated Rap1b. Ribeiro-Neto F, Urbani J, Lemee N, Lou L, Altschuler DL. Proc Natl Acad Sci U S A 99 5418-5423 (2002)
  128. Letter Three-dimensional structure of the Ras-interacting domain of RalGDS. Huang L, Weng X, Hofer F, Martin GS, Kim SH. Nat Struct Biol 4 609-615 (1997)
  129. Diverting a protein from its cellular location by intracellular antibodies. The case of p21Ras. Lener M, Horn IR, Cardinale A, Messina S, Nielsen UB, Rybak SM, Hoogenboom HR, Cattaneo A, Biocca S. Eur J Biochem 267 1196-1205 (2000)
  130. Farnesylated and methylated KRAS4b: high yield production of protein suitable for biophysical studies of prenylated protein-lipid interactions. Gillette WK, Esposito D, Abreu Blanco M, Alexander P, Bindu L, Bittner C, Chertov O, Frank PH, Grose C, Jones JE, Meng Z, Perkins S, Van Q, Ghirlando R, Fivash M, Nissley DV, McCormick F, Holderfield M, Stephen AG. Sci Rep 5 15916 (2015)
  131. Integrated RAS signaling defined by parallel NMR detection of effectors and regulators. Smith MJ, Ikura M. Nat Chem Biol 10 223-230 (2014)
  132. Interfering with RAS-effector protein interactions prevent RAS-dependent tumour initiation and causes stop-start control of cancer growth. Tanaka T, Rabbitts TH. Oncogene 29 6064-6070 (2010)
  133. Macrocyclic beta-sheet peptides that mimic protein quaternary structure through intermolecular beta-sheet interactions. Khakshoor O, Demeler B, Nowick JS. J Am Chem Soc 129 5558-5569 (2007)
  134. Peptides containing a consensus Ras binding sequence from Raf-1 and theGTPase activating protein NF1 inhibit Ras function. Clark GJ, Drugan JK, Terrell RS, Bradham C, Der CJ, Bell RM, Campbell S. Proc Natl Acad Sci U S A 93 1577-1581 (1996)
  135. Ras is required for the cyclic AMP-dependent activation of Rap1 via Epac2. Liu C, Takahashi M, Li Y, Song S, Dillon TJ, Shinde U, Stork PJ. Mol Cell Biol 28 7109-7125 (2008)
  136. Real-time single-molecule co-immunoprecipitation analyses reveal cancer-specific Ras signalling dynamics. Lee HW, Kyung T, Yoo J, Kim T, Chung C, Ryu JY, Lee H, Park K, Lee S, Jones WD, Lim DS, Hyeon C, Heo WD, Yoon TY. Nat Commun 4 1505 (2013)
  137. The human formin FHOD1 contains a bipartite structure of FH3 and GTPase-binding domains required for activation. Schulte A, Stolp B, Schönichen A, Pylypenko O, Rak A, Fackler OT, Geyer M. Structure 16 1313-1323 (2008)
  138. Angiogenic sprouting requires the fine tuning of endothelial cell cohesion by the Raf-1/Rok-α complex. Wimmer R, Cseh B, Maier B, Scherrer K, Baccarini M. Dev Cell 22 158-171 (2012)
  139. Rap1-interacting adapter molecule (RIAM) associates with the plasma membrane via a proximity detector. Wynne JP, Wu J, Su W, Mor A, Patsoukis N, Boussiotis VA, Hubbard SR, Philips MR. J Cell Biol 199 317-330 (2012)
  140. Curvature recognition and force generation in phagocytosis. Clarke M, Engel U, Giorgione J, Müller-Taubenberger A, Prassler J, Veltman D, Gerisch G. BMC Biol 8 154 (2010)
  141. A proposed architecture for the central domain of the bacterial enhancer-binding proteins based on secondary structure prediction and fold recognition. Osuna J, Soberón X, Morett E. Protein Sci 6 543-555 (1997)
  142. Characterization of a novel Ras-binding protein Ce-FLI-1 comprising leucine-rich repeats and gelsolin-like domains. Goshima M, Kariya K, Yamawaki-Kataoka Y, Okada T, Shibatohge M, Shima F, Fujimoto E, Kataoka T. Biochem Biophys Res Commun 257 111-116 (1999)
  143. The Ras-Byr2RBD complex: structural basis for Ras effector recognition in yeast. Scheffzek K, Grünewald P, Wohlgemuth S, Kabsch W, Tu H, Wigler M, Wittinghofer A, Herrmann C. Structure 9 1043-1050 (2001)
  144. Crystal structures of the state 1 conformations of the GTP-bound H-Ras protein and its oncogenic G12V and Q61L mutants. Muraoka S, Shima F, Araki M, Inoue T, Yoshimoto A, Ijiri Y, Seki N, Tamura A, Kumasaka T, Yamamoto M, Kataoka T. FEBS Lett 586 1715-1718 (2012)
  145. Mitogenic signaling of Ras is regulated by differential interaction with Raf isozymes. Weber CK, Slupsky JR, Herrmann C, Schuler M, Rapp UR, Block C. Oncogene 19 169-176 (2000)
  146. Ras homolog enriched in brain (Rheb) enhances apoptotic signaling. Karassek S, Berghaus C, Schwarten M, Goemans CG, Ohse N, Kock G, Jockers K, Neumann S, Gottfried S, Herrmann C, Heumann R, Stoll R. J Biol Chem 285 33979-33991 (2010)
  147. The RAS-Effector Interface: Isoform-Specific Differences in the Effector Binding Regions. Nakhaeizadeh H, Amin E, Nakhaei-Rad S, Dvorsky R, Ahmadian MR. PLoS One 11 e0167145 (2016)
  148. The conformation of bound GMPPNP suggests a mechanism for gating the active site of the SRP GTPase. Padmanabhan S, Freymann DM. Structure 9 859-867 (2001)
  149. Two conformational states of Ras GTPase exhibit differential GTP-binding kinetics. Liao J, Shima F, Araki M, Ye M, Muraoka S, Sugimoto T, Kawamura M, Yamamoto N, Tamura A, Kataoka T. Biochem Biophys Res Commun 369 327-332 (2008)
  150. Caenorhabditis elegans lin-45 raf is essential for larval viability, fertility and the induction of vulval cell fates. Hsu V, Zobel CL, Lambie EJ, Schedl T, Kornfeld K. Genetics 160 481-492 (2002)
  151. Structural consequences of mono-glucosylation of Ha-Ras by Clostridium sordellii lethal toxin. Vetter IR, Hofmann F, Wohlgemuth S, Herrmann C, Just I. J Mol Biol 301 1091-1095 (2000)
  152. Structure of a transient intermediate for GTP hydrolysis by ras. Ford B, Hornak V, Kleinman H, Nassar N. Structure 14 427-436 (2006)
  153. What makes Ras an efficient molecular switch: a computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf. Filchtinski D, Sharabi O, Rüppel A, Vetter IR, Herrmann C, Shifman JM. J Mol Biol 399 422-435 (2010)
  154. A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies. Michnick SW, Shakhnovich E. Fold Des 3 239-251 (1998)
  155. Development of small molecules designed to modulate protein-protein interactions. Che Y, Brooks BR, Marshall GR. J Comput Aided Mol Des 20 109-130 (2006)
  156. Molecular dynamics analysis of structural factors influencing back door pi release in myosin. Lawson JD, Pate E, Rayment I, Yount RG. Biophys J 86 3794-3803 (2004)
  157. Stability and dynamics of G-actin: back-door water diffusion and behavior of a subdomain 3/4 loop. Wriggers W, Schulten K. Biophys J 73 624-639 (1997)
  158. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation. Daub M, Jöckel J, Quack T, Weber CK, Schmitz F, Rapp UR, Wittinghofer A, Block C. Mol Cell Biol 18 6698-6710 (1998)
  159. The role of the metal ion in the p21ras catalysed GTP-hydrolysis: Mn2+ versus Mg2+. Schweins T, Scheffzek K, Assheuer R, Wittinghofer A. J Mol Biol 266 847-856 (1997)
  160. Assessment of mutation probabilities of KRAS G12 missense mutants and their long-timescale dynamics by atomistic molecular simulations and Markov state modeling. Pantsar T, Rissanen S, Dauch D, Laitinen T, Vattulainen I, Poso A. PLoS Comput Biol 14 e1006458 (2018)
  161. Fluoride complexes of oncogenic Ras mutants to study the Ras-RasGap interaction. Gremer L, Gilsbach B, Ahmadian MR, Wittinghofer A. Biol Chem 389 1163-1171 (2008)
  162. Phosphoinositide 3-kinase-dependent Ras activation by tauroursodesoxycholate in rat liver. Kurz AK, Block C, Graf D, Dahl SV, Schliess F, Häussinger D. Biochem J 350 Pt 1 207-213 (2000)
  163. A "Tug of War" Maintains a Dynamic Protein-Membrane Complex: Molecular Dynamics Simulations of C-Raf RBD-CRD Bound to K-Ras4B at an Anionic Membrane. Li ZL, Prakash P, Buck M. ACS Cent Sci 4 298-305 (2018)
  164. Crystal structure of the ARL2-GTP-BART complex reveals a novel recognition and binding mode of small GTPase with effector. Zhang T, Li S, Zhang Y, Zhong C, Lai Z, Ding J. Structure 17 602-610 (2009)
  165. Crystal structure of the RUN domain of the RAP2-interacting protein x. Kukimoto-Niino M, Takagi T, Akasaka R, Murayama K, Uchikubo-Kamo T, Terada T, Inoue M, Watanabe S, Tanaka A, Hayashizaki Y, Kigawa T, Shirouzu M, Yokoyama S. J Biol Chem 281 31843-31853 (2006)
  166. Sequence analysis identifies a ras-associating (RA)-like domain in the N-termini of band 4.1/JEF domains and in the Grb7/10/14 adapter family. Wojcik J, Girault JA, Labesse G, Chomilier J, Mornon JP, Callebaut I. Biochem Biophys Res Commun 259 113-120 (1999)
  167. The crystal structure of the conserved GTPase of SRP54 from the archaeon Acidianus ambivalens and its comparison with related structures suggests a model for the SRP-SRP receptor complex. Montoya G, Kaat K, Moll R, Schäfer G, Sinning I. Structure 8 515-525 (2000)
  168. Insights into oncogenic mutations of plexin-B1 based on the solution structure of the Rho GTPase binding domain. Tong Y, Hota PK, Hamaneh MB, Buck M. Structure 16 246-258 (2008)
  169. Molecular cloning and characterization of Ras- and Raf-homologues from the fox-tapeworm Echinococcus multilocularis. Spiliotis M, Tappe D, Brückner S, Mösch HU, Brehm K. Mol Biochem Parasitol 139 225-237 (2005)
  170. Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding. Martinez Fiesco JA, Durrant DE, Morrison DK, Zhang P. Nat Commun 13 486 (2022)
  171. Total chemical synthesis of a functional interacting protein pair: the protooncogene H-Ras and the Ras-binding domain of its effector c-Raf1. Becker CF, Hunter CL, Seidel R, Kent SB, Goody RS, Engelhard M. Proc Natl Acad Sci U S A 100 5075-5080 (2003)
  172. Farnesylation of Ras is important for the interaction with phosphoinositide 3-kinase gamma. Rubio I, Wittig U, Meyer C, Heinze R, Kadereit D, Waldmann H, Downward J, Wetzker R. Eur J Biochem 266 70-82 (1999)
  173. Rap1-GTP is a negative regulator of Th cell function and promotes the generation of CD4+CD103+ regulatory T cells in vivo. Li L, Greenwald RJ, Lafuente EM, Tzachanis D, Berezovskaya A, Freeman GJ, Sharpe AH, Boussiotis VA. J Immunol 175 3133-3139 (2005)
  174. Saccharomyces cerevisiae cdc42p GTPase is involved in preventing the recurrence of bud emergence during the cell cycle. Richman TJ, Johnson DI. Mol Cell Biol 20 8548-8559 (2000)
  175. Activation of Ras requires the ERM-dependent link of actin to the plasma membrane. Sperka T, Geissler KJ, Merkel U, Scholl I, Rubio I, Herrlich P, Morrison HL. PLoS One 6 e27511 (2011)
  176. Diverging gain-of-function mechanisms of two novel KRAS mutations associated with Noonan and cardio-facio-cutaneous syndromes. Cirstea IC, Gremer L, Dvorsky R, Zhang SC, Piekorz RP, Zenker M, Ahmadian MR. Hum Mol Genet 22 262-270 (2013)
  177. In vitro inhibition of Ras-Raf association by short peptides. Barnard D, Sun H, Baker L, Marshall MS. Biochem Biophys Res Commun 247 176-180 (1998)
  178. Phosphorylation of Rap1 by cAMP-dependent Protein Kinase (PKA) Creates a Binding Site for KSR to Sustain ERK Activation by cAMP. Takahashi M, Li Y, Dillon TJ, Stork PJ. J Biol Chem 292 1449-1461 (2017)
  179. Self-association mediated by the Ras association 1 domain of AF6 activates the oncogenic potential of MLL-AF6. Liedtke M, Ayton PM, Somervaille TC, Smith KS, Cleary ML. Blood 116 63-70 (2010)
  180. A genome-wide Ras-effector interaction network. Kiel C, Foglierini M, Kuemmerer N, Beltrao P, Serrano L. J Mol Biol 370 1020-1032 (2007)
  181. ADP-ribosylation of oncogenic Ras proteins by pseudomonas aeruginosa exoenzyme S in vivo. Vincent TS, Fraylick JE, McGuffie EM, Olson JC. Mol Microbiol 32 1054-1064 (1999)
  182. Phosphorylation-induced conformational changes in Rap1b: allosteric effects on switch domains and effector loop. Edreira MM, Li S, Hochbaum D, Wong S, Gorfe AA, Ribeiro-Neto F, Woods VL, Altschuler DL. J Biol Chem 284 27480-27486 (2009)
  183. Crystal structures of Ral-GppNHp and Ral-GDP reveal two binding sites that are also present in Ras and Rap. Nicely NI, Kosak J, de Serrano V, Mattos C. Structure 12 2025-2036 (2004)
  184. Improved binding of raf to Ras.GDP is correlated with biological activity. Kiel C, Filchtinski D, Spoerner M, Schreiber G, Kalbitzer HR, Herrmann C. J Biol Chem 284 31893-31902 (2009)
  185. Molecular Mechanism for Conformational Dynamics of Ras·GTP Elucidated from In-Situ Structural Transition in Crystal. Matsumoto S, Miyano N, Baba S, Liao J, Kawamura T, Tsuda C, Takeda A, Yamamoto M, Kumasaka T, Kataoka T, Shima F. Sci Rep 6 25931 (2016)
  186. Nuclear magnetic resonance and molecular dynamics studies on the interactions of the Ras-binding domain of Raf-1 with wild-type and mutant Ras proteins. Terada T, Ito Y, Shirouzu M, Tateno M, Hashimoto K, Kigawa T, Ebisuzaki T, Takio K, Shibata T, Yokoyama S, Smith BO, Laue ED, Cooper JA. J Mol Biol 286 219-232 (1999)
  187. Structure of the CAD domain of caspase-activated DNase and interaction with the CAD domain of its inhibitor. Uegaki K, Otomo T, Sakahira H, Shimizu M, Yumoto N, Kyogoku Y, Nagata S, Yamazaki T. J Mol Biol 297 1121-1128 (2000)
  188. Conserved inhibitory mechanism and competent ATP binding mode for adenylyltransferases with Fic fold. Goepfert A, Stanger FV, Dehio C, Schirmer T. PLoS One 8 e64901 (2013)
  189. NSP-Cas protein structures reveal a promiscuous interaction module in cell signaling. Mace PD, Wallez Y, Dobaczewska MK, Lee JJ, Robinson H, Pasquale EB, Riedl SJ. Nat Struct Mol Biol 18 1381-1387 (2011)
  190. Exceptionally high-affinity Ras binders that remodel its effector domain. McGee JH, Shim SY, Lee SJ, Swanson PK, Jiang SY, Durney MA, Verdine GL. J Biol Chem 293 3265-3280 (2018)
  191. The structure of the MAP2K MEK6 reveals an autoinhibitory dimer. Min X, Akella R, He H, Humphreys JM, Tsutakawa SE, Lee SJ, Tainer JA, Cobb MH, Goldsmith EJ. Structure 17 96-104 (2009)
  192. Vertebrate-type and plant-type ferredoxins: crystal structure comparison and electron transfer pathway modelling. Müller JJ, Müller A, Rottmann M, Bernhardt R, Heinemann U. J Mol Biol 294 501-513 (1999)
  193. Defective K-Ras oncoproteins overcome impaired effector activation to initiate leukemia in vivo. Shieh A, Ward AF, Donlan KL, Harding-Theobald ER, Xu J, Mullighan CG, Zhang C, Chen SC, Su X, Downing JR, Bollag GE, Shannon KM. Blood 121 4884-4893 (2013)
  194. Mapping the Conformation Space of Wildtype and Mutant H-Ras with a Memetic, Cellular, and Multiscale Evolutionary Algorithm. Clausen R, Ma B, Nussinov R, Shehu A. PLoS Comput Biol 11 e1004470 (2015)
  195. Mixed self-assembled monolayers (SAMs) consisting of methoxy-tri(ethylene glycol)-terminated and alkyl-terminated dimethylchlorosilanes control the non-specific adsorption of proteins at oxidic surfaces. Hoffmann C, Tovar GE. J Colloid Interface Sci 295 427-435 (2006)
  196. Oncogenic KRAS is dependent upon an EFR3A-PI4KA signaling axis for potent tumorigenic activity. Adhikari H, Kattan WE, Kumar S, Zhou P, Hancock JF, Counter CM. Nat Commun 12 5248 (2021)
  197. A numerically stable restrained electrostatic potential charge fitting method. Zeng J, Duan L, Zhang JZ, Mei Y. J Comput Chem 34 847-853 (2013)
  198. Manumycin inhibits ras signal transduction pathway and induces apoptosis in COLO320-DM human colon tumour cells. Di Paolo A, Danesi R, Nardini D, Bocci G, Innocenti F, Fogli S, Barachini S, Marchetti A, Bevilacqua G, Del Tacca M. Br J Cancer 82 905-912 (2000)
  199. Nucleotide binding to the G12V-mutant of Cdc42 investigated by X-ray diffraction and fluorescence spectroscopy: two different nucleotide states in one crystal. Rudolph MG, Wittinghofer A, Vetter IR. Protein Sci 8 778-787 (1999)
  200. Protein-protein recognition: an experimental and computational study of the R89K mutation in Raf and its effect on Ras binding. Zeng J, Fridman M, Maruta H, Treutlein HR, Simonson T. Protein Sci 8 50-64 (1999)
  201. The RhoA GEF Syx is a target of Rnd3 and regulated via a Raf1-like ubiquitin-related domain. Goh LL, Manser E. PLoS One 5 e12409 (2010)
  202. The differential effects of the Gly-60 to Ala mutation on the interaction of H-Ras p21 with different downstream targets. Hwang MC, Sung YJ, Hwang YW. J Biol Chem 271 8196-8202 (1996)
  203. Crystal structure of the ubiquitin-like domain of human TBK1. Li J, Li J, Miyahira A, Sun J, Liu Y, Cheng G, Liang H. Protein Cell 3 383-391 (2012)
  204. Depolarization-induced signaling to Ras, Rap1 and MAPKs in cortical neurons. Baldassa S, Zippel R, Sturani E. Brain Res Mol Brain Res 119 111-122 (2003)
  205. Real-time single-molecule coimmunoprecipitation of weak protein-protein interactions. Lee HW, Ryu JY, Yoo J, Choi B, Kim K, Yoon TY. Nat Protoc 8 2045-2060 (2013)
  206. Ablation of BRaf impairs neuronal differentiation in the postnatal hippocampus and cerebellum. Pfeiffer V, Götz R, Xiang C, Camarero G, Braun A, Zhang Y, Blum R, Heinsen H, Nieswandt B, Rapp UR. PLoS One 8 e58259 (2013)
  207. Identification of a novel domain of Ras and Rap1 that directs their differential subcellular localizations. Nomura K, Kanemura H, Satoh T, Kataoka T. J Biol Chem 279 22664-22673 (2004)
  208. Novel Rap1 dominant-negative mutants interfere selectively with C3G and Epac. Dupuy AG, L'Hoste S, Cherfils J, Camonis J, Gaudriault G, de Gunzburg J. Oncogene 24 4509-4520 (2005)
  209. Structural basis for the interaction of the adaptor protein grb14 with activated ras. Qamra R, Hubbard SR. PLoS One 8 e72473 (2013)
  210. The RAS-Binding Domain of Human BRAF Protein Serine/Threonine Kinase Exhibits Allosteric Conformational Changes upon Binding HRAS. Aramini JM, Vorobiev SM, Tuberty LM, Janjua H, Campbell ET, Seetharaman J, Su M, Huang YJ, Acton TB, Xiao R, Tong L, Montelione GT. Structure 23 1382-1393 (2015)
  211. Interaction of activated Ras with Raf-1 alone may be sufficient for transformation of rat2 cells. Stang S, Bottorff D, Stone JC. Mol Cell Biol 17 3047-3055 (1997)
  212. Solution structure of ASPP2 N-terminal domain (N-ASPP2) reveals a ubiquitin-like fold. Tidow H, Andreeva A, Rutherford TJ, Fersht AR. J Mol Biol 371 948-958 (2007)
  213. rap1 p21 regulates the interaction of ras p21 with RGL, a new effector protein of ras p21. Ikeda M, Koyama S, Okazaki M, Dohi K, Kikuchi A. FEBS Lett 375 37-40 (1995)
  214. Design of inhibitors of Ras--Raf interaction using a computational combinatorial algorithm. Zeng J, Nheu T, Zorzet A, Catimel B, Nice E, Maruta H, Burgess AW, Treutlein HR. Protein Eng 14 39-45 (2001)
  215. Identification of residues and domains of Raf important for function in vivo and in vitro. Harding A, Hsu V, Kornfeld K, Hancock JF. J Biol Chem 278 45519-45527 (2003)
  216. Molecular dynamics simulations of the Ras:Raf and Rap:Raf complexes. Zeng J, Treutlein HR, Simonson T. Proteins 35 89-100 (1999)
  217. Observation of slow dynamic exchange processes in Ras protein crystals by 31P solid state NMR spectroscopy. Stumber M, Geyer M, Graf R, Kalbitzer HR, Scheffzek K, Haeberlen U. J Mol Biol 323 899-907 (2002)
  218. Solution structure of the Ras-binding domain of RGL. Kigawa T, Endo M, Ito Y, Shirouzu M, Kikuchi A, Yokoyama S. FEBS Lett 441 413-418 (1998)
  219. The GTPase-deficient Rnd proteins are stabilized by their effectors. Goh LL, Manser E. J Biol Chem 287 31311-31320 (2012)
  220. The Ras GDP/GTP cycle is regulated by oxidizing agents at the level of Ras regulators and effectors. Accorsi K, Giglione C, Vanoni M, Parmeggiani A. FEBS Lett 492 139-145 (2001)
  221. The proteasome-ubiquitin pathway in the Schistosoma mansoni egg has development- and morphology-specific characteristics. Mathieson W, Castro-Borges W, Wilson RA. Mol Biochem Parasitol 175 118-125 (2011)
  222. A sensitive fluorescence monitor for the detection of activated Ras: total chemical synthesis of site-specifically labeled Ras binding domain of c-Raf1 immobilized on a surface. Becker CF, Hunter CL, Seidel RP, Kent SB, Goody RS, Engelhard M. Chem Biol 8 243-252 (2001)
  223. C-terminal fluorescence labeling of proteins for interaction studies on the single-molecule level. Becker CF, Seidel R, Jahnz M, Bacia K, Niederhausen T, Alexandrov K, Schwille P, Goody RS, Engelhard M. Chembiochem 7 891-895 (2006)
  224. Selection of phage-displayed fab antibodies on the active conformation of ras yields a high affinity conformation-specific antibody preventing the binding of c-Raf kinase to Ras. Horn IR, Wittinghofer A, de Bruïne AP, Hoogenboom HR. FEBS Lett 463 115-120 (1999)
  225. The Ubp6 family of deubiquitinating enzymes contains a ubiquitin-like domain: SUb. Wyndham AM, Baker RT, Chelvanayagam G. Protein Sci 8 1268-1275 (1999)
  226. Impact of amino acids 22-27 of Rho-subfamily GTPases on glucosylation by the large clostridial cytotoxins TcsL-1522, TcdB-1470 and TcdB-8864. Müller S, von Eichel-Streiber C, Moos M. Eur J Biochem 266 1073-1080 (1999)
  227. Incorporation of spin-labelled amino acids into proteins. Becker CF, Lausecker K, Balog M, Kálai T, Hideg K, Steinhoff HJ, Engelhard M. Magn Reson Chem 43 Spec no. S34-9 (2005)
  228. Mammalian Raf-1 is activated by mutations that restore Raf signaling in Drosophila. Cutler RE, Morrison DK. EMBO J 16 1953-1960 (1997)
  229. Structural rearrangements in the active site of smooth-muscle myosin. Robertson CI, Gaffney DP, Chrin LR, Berger CL. Biophys J 89 1882-1892 (2005)
  230. A method for computational combinatorial peptide design of inhibitors of Ras protein. Zeng J, Treutlein HR. Protein Eng 12 457-468 (1999)
  231. COMBINE analysis of the specificity of binding of Ras proteins to their effectors. Tomić S, Bertosa B, Wang T, Wade RC. Proteins 67 435-447 (2007)
  232. Inhibition of RAS activation due to a homozygous ezrin variant in patients with profound intellectual disability. Riecken LB, Tawamie H, Dornblut C, Buchert R, Ismayel A, Schulz A, Schumacher J, Sticht H, Pohl KJ, Cui Y, Reis A, Morrison H, Abou Jamra R. Hum Mutat 36 270-278 (2015)
  233. RAP1A GTP/GDP cycles determine the intracellular location of the late endocytic compartments and contribute to myogenic differentiation. Pizon V, Méchali F, Baldacci G. Exp Cell Res 246 56-68 (1999)
  234. Structural effects of the binding of GTP to the wild-type and oncogenic forms of the ras-gene-encoded p21 proteins. Monaco R, Chen JM, Friedman FK, Brandt-Rauf P, Chung D, Pincus MR. J Protein Chem 14 721-729 (1995)
  235. Conformation-specific inhibitors of activated Ras GTPases reveal limited Ras dependency of patient-derived cancer organoids. Wiechmann S, Maisonneuve P, Grebbin BM, Hoffmeister M, Kaulich M, Clevers H, Rajalingam K, Kurinov I, Farin HF, Sicheri F, Ernst A. J Biol Chem 295 4526-4540 (2020)
  236. Critical roles of interactions among switch I-preceding residues and between switch II and its neighboring alpha-helix in conformational dynamics of the GTP-bound Ras family small GTPases. Matsumoto K, Shima F, Muraoka S, Araki M, Hu L, Ijiri Y, Hirai R, Liao J, Yoshioka T, Kumasaka T, Yamamoto M, Tamura A, Kataoka T. J Biol Chem 286 15403-15412 (2011)
  237. GxcC connects Rap and Rac signaling during Dictyostelium development. Plak K, Veltman D, Fusetti F, Beeksma J, Rivero F, Van Haastert PJ, Kortholt A. BMC Cell Biol 14 6 (2013)
  238. Local Ras activation, PTEN pattern, and global actin flow in the chemotactic responses of oversized cells. Lange M, Prassler J, Ecke M, Müller-Taubenberger A, Gerisch G. J Cell Sci 129 3462-3472 (2016)
  239. Molecular dynamics analysis of the structures of ras-guanine nucleotide exchange protein (SOS) bound to wild-type and oncogenic ras-p21. Identification of effector domains of SOS. Chen JM, Friedman FK, Hyde MJ, Monaco R, Pincus MR. J Protein Chem 18 867-874 (1999)
  240. Molecular dynamics on complexes of ras-p21 and its inhibitor protein, rap-1A, bound to the ras-binding domain of the raf-p74 protein: identification of effector domains in the raf protein. Chen JM, Monaco R, Manolatos S, Brandt-Rauf PW, Friedman FK, Pincus MR. J Protein Chem 16 619-629 (1997)
  241. Molecular dynamics simulations of peptides containing an unnatural amino acid: dimerization, folding, and protein binding. Yu H, Daura X, van Gunsteren WF. Proteins 54 116-127 (2004)
  242. Two new beta-strand mimics. Tsai JH, Waldman AS, Nowick JS. Bioorg Med Chem 7 29-38 (1999)
  243. Anionic Lipids Impact RAS-Binding Site Accessibility and Membrane Binding Affinity of CRAF RBD-CRD. Travers T, López CA, Agamasu C, Hettige JJ, Messing S, García AE, Stephen AG, Gnanakaran S. Biophys J 119 525-538 (2020)
  244. Design, total chemical synthesis, and binding properties of a [Leu-91-N1-methyl-7-azaTrp]Ras-binding domain of c-Raf-1. Sydor JR, Herrmann C, Kent SB, Goody RS, Engelhard M. Proc Natl Acad Sci U S A 96 7865-7870 (1999)
  245. Oncogenic insertional mutations in the P-loop of Ras are overactive in MAP kinase signaling. Klockow B, Ahmadian MR, Block C, Wittinghofer A. Oncogene 19 5367-5376 (2000)
  246. Ras GTPases' interaction with effector domains: Breaking the families' barrier. Patel M, Côté JF. Commun Integr Biol 6 e24298 (2013)
  247. Structure and function of RLIP76 (RalBP1): an intersection point between Ras and Rho signalling. Mott HR, Owen D. Biochem Soc Trans 42 52-58 (2014)
  248. Active Rap1, a small GTPase that induces malignant transformation of hematopoietic progenitors, localizes in the nucleus and regulates protein expression. Lafuente EM, Iwamoto Y, Carman CV, van Puijenbroek AA, Constantine E, Li L, Boussiotis VA. Leuk Lymphoma 48 987-1002 (2007)
  249. Association rate constants of ras-effector interactions are evolutionarily conserved. Kiel C, Aydin D, Serrano L. PLoS Comput Biol 4 e1000245 (2008)
  250. Characterization of the structural difference between active and inactive forms of the Ras protein by chemical modification followed by mass spectrometric peptide mapping. Akashi S, Shirouzu M, Terada T, Ito Y, Yokoyama S, Takio K. Anal Biochem 248 15-25 (1997)
  251. Conformation of the Ras-binding domain of Raf studied by molecular dynamics and free energy simulations. Zeng J, Treutlein HR, Simonson T. Proteins 31 186-200 (1998)
  252. Novel peptides from the RAS-p21 and p53 proteins for the treatment of cancer. Bowne WB, Michl J, Bluth MH, Zenilman ME, Pincus MR. Cancer Ther 5B 331-344 (2007)
  253. Prediction of Ras-effector interactions using position energy matrices. Kiel C, Serrano L. Bioinformatics 23 2226-2230 (2007)
  254. Structure of the small G protein Rap2 in a non-catalytic complex with GTP. Ménétrey J, Cherfils J. Proteins 37 465-473 (1999)
  255. Tuberous sclerosis-2 tumor suppressor modulates ERK and B-Raf activity in transformed renal epithelial cells. Yoon HS, Ramachandiran S, Chacko MA, Monks TJ, Lau SS. Am J Physiol Renal Physiol 286 F417-24 (2004)
  256. Computed three-dimensional structures for the ras-binding domain of the raf-p74 protein complexed with ras-p21 and with its suppressor protein, rap-1A. Chen JM, Manolatos S, Brandt-Rauf PW, Murphy RB, Monaco R, Pincus MR. J Protein Chem 15 511-518 (1996)
  257. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution. Coyle SM, Lim WA. Elife 5 e12435 (2016)
  258. Comment Ras biology in atomic detail. McCormick F. Nat Struct Biol 3 653-655 (1996)
  259. The tumor suppressor RASSF1A is a novel effector of small G protein Rap1A. Verma SK, Ganesan TS, Kishore U, Parker PJ. Protein Cell 2 237-249 (2011)
  260. Co-existence of Ras activation in a chemotactic signal transduction pathway and in an autonomous wave - forming system. Ecke M, Gerisch G. Small GTPases 10 72-80 (2019)
  261. Comparison of the average structures, from molecular dynamics, of complexes of GTPase activating protein (GAP) with oncogenic and wild-type ras-p21: identification of potential effector domains. Chen JM, Friedman FK, Brandt-Rauf PW, Pincus MR, Chie L. J Protein Chem 21 349-359 (2002)
  262. Design, synthesis and evaluation of synthetic receptors for the recognition of aspartate pairs in an alpha-helical conformation. Albert JS, Peczuh MW, Hamilton AD. Bioorg Med Chem 5 1455-1467 (1997)
  263. Rap1-suppressed tumorigenesis is concomitant with the interference in ras effector signaling. Lin Y, Mettling C, Chou C. FEBS Lett 467 184-188 (2000)
  264. Ras-interacting domain of RGL blocks Ras-dependent signal transduction in Xenopus oocytes. Koyama S, Chen YW, Ikeda M, Muslin AJ, Williams LT, Kikuchi A. FEBS Lett 380 113-117 (1996)
  265. Role of Raf-1 conserved region 2 in regulation of Ras-dependent Raf-1 activation. Sendoh H, Hu CD, Wu D, Song C, Yamawaki-Kataoka Y, Kotani J, Okada T, Shima F, Kariya K, Kataoka T. Biochem Biophys Res Commun 271 596-602 (2000)
  266. Binding properties and stability of the Ras-association domain of Rap1-GTP interacting adapter molecule (RIAM). Takala H, Ylänne J. PLoS One 7 e31955 (2012)
  267. Identification of the site of inhibition of mitogenic signaling by oncogenic ras-p21 by a ras effector peptide. Chie L, Friedman FK, Kung HF, Lin MC, Chung D, Pincus MR. J Protein Chem 21 367-370 (2002)
  268. RLIP76 (RalBP1): The first piece of the structural puzzle. Mott HR, Owen D. Small GTPases 1 157-160 (2010)
  269. Ras classical effectors: new tales from in silico complexes. Fuentes G, Valencia A. Trends Biochem Sci 34 533-539 (2009)
  270. Letter Structural basis for intramolecular interaction of post-translationally modified H-Ras•GTP prepared by protein ligation. Ke H, Matsumoto S, Murashima Y, Taniguchi-Tamura H, Miyamoto R, Yoshikawa Y, Tsuda C, Kumasaka T, Mizohata E, Edamatsu H, Kataoka T. FEBS Lett 591 2470-2481 (2017)
  271. A comprehensive analysis of RAS-effector interactions reveals interaction hotspots and new binding partners. Rezaei Adariani S, Kazemein Jasemi NS, Bazgir F, Wittich C, Amin E, Seidel CAM, Dvorsky R, Ahmadian MR. J Biol Chem 296 100626 (2021)
  272. Drosophila Raf's N terminus contains a novel conserved region and can contribute to torso RTK signaling. Ding J, Tchaicheeyan O, Ambrosio L. Genetics 184 717-729 (2010)
  273. Afadin couples RAS GTPases to the polarity rheostat Scribble. Goudreault M, Gagné V, Jo CH, Singh S, Killoran RC, Gingras AC, Smith MJ. Nat Commun 13 4562 (2022)
  274. Biochemical and crystallographic characterization of a Rho effector domain of the protein serine/threonine kinase N in a complex with RhoA. Maesaki R, Shimizu T, Ihara K, Kuroda S, Kaibuchi K, Hakoshima T. J Struct Biol 126 166-170 (1999)
  275. Comparison of molecular dynamics averaged structures for complexes of normal and oncogenic ras-p21 with SOS nucleotide exchange protein, containing computed conformations for three crystallographically undefined domains, suggests a potential role of these domains in ras signaling. Duncan T, Chen JM, Friedman FK, Hyde M, Chie L, Pincus MR. Protein J 23 217-228 (2004)
  276. Empirical rules facilitate the search for binding sites on protein surfaces. te Heesen H, Schlitter AM, Schlitter J. J Mol Graph Model 25 671-679 (2007)
  277. Probing mutation-induced conformational transformation of the GTP/M-RAS complex through Gaussian accelerated molecular dynamics simulations. Bao H, Wang W, Sun H, Chen J. J Enzyme Inhib Med Chem 38 2195995 (2023)
  278. Ras-like family small GTPases genes in Nilaparvata lugens: Identification, phylogenetic analysis, gene expression and function in nymphal development. Wang W, Li K, Wan P, Lai F, Fu Q, Zhu T. PLoS One 12 e0172701 (2017)
  279. Structurally unique interaction of RBD-like and PH domains is crucial for yeast pheromone signaling. Yerko V, Sulea T, Ekiel I, Harcus D, Baardsnes J, Cygler M, Whiteway M, Wu C. Mol Biol Cell 24 409-420 (2013)
  280. An integrated imaging probe design: the synthesis of (99m)Tc/Re-containing macrocyclic peptide scaffolds. Hickey JL, Simpson EJ, Hou J, Luyt LG. Chemistry 21 568-578 (2015)
  281. Coupling cellular mitogenesis to apoptosis by designed biomolecules. Lin Q, Zhu F, Yang W. Cell Signal 22 190-196 (2010)
  282. Identification, using molecular dynamics, of an effector domain of the ras-binding domain of the raf-p74 protein that is uniquely involved in oncogenic ras-p21 signaling. Chen JM, Rijhwani K, Friedman FK, Hyde MJ, Pincus MR. J Protein Chem 19 545-551 (2000)
  283. Non-canonical regulation of phosphatidylinositol 3-kinase gamma isoform activity in retinal rod photoreceptor cells. Gupta VK, Rajala A, Rajala RV. Cell Commun Signal 13 7 (2015)
  284. Piconewton-Scale Analysis of Ras-BRaf Signal Transduction with Single-Molecule Force Spectroscopy. Lim CS, Wen C, Sheng Y, Wang G, Zhou Z, Wang S, Zhang H, Ye A, Zhu JJ. Small 13 (2017)
  285. Structures of BRAF-MEK1-14-3-3 sheds light on drug discovery. Sun Q, Wang W. Signal Transduct Target Ther 4 59 (2019)
  286. A phylogenetic analysis of the ubiquitin superfamily based on sequence and structural information. Yang Z, Chen H, Yang X, Wan X, He L, Miao R, Yang H, Zhong Y, Wang L, Zhao H. Mol Biol Rep 41 6083-6088 (2014)
  287. Antibody interfaces revealed through structural mining. Yin Y, Romei MG, Sankar K, Pal LR, Hoi KH, Yang Y, Leonard B, De Leon Boenig G, Kumar N, Matsumoto M, Payandeh J, Harris SF, Moult J, Lazar GA. Comput Struct Biotechnol J 20 4952-4968 (2022)
  288. Characterization of the Ras binding domain of the RalGDS-related protein, RLF. O'gara MJ, Zhang Xf, Baker L, Marshall MS. Biochem Biophys Res Commun 238 425-429 (1997)
  289. Conformational control and regulation of the pseudokinase KSR via small molecule binding interactions. Chow A, Khan ZM, Marsiglia WM, Dar AC. Methods Enzymol 667 365-402 (2022)
  290. Cryo-EM structure of a RAS/RAF recruitment complex. Park E, Rawson S, Schmoker A, Kim BW, Oh S, Song K, Jeon H, Eck MJ. Nat Commun 14 4580 (2023)
  291. Inhibition mechanism of MRTX1133 on KRASG12D: a molecular dynamics simulation and Markov state model study. Liang F, Kang Z, Sun X, Chen J, Duan X, He H, Cheng J. J Comput Aided Mol Des 37 157-166 (2023)
  292. Positive and negative modulation of H-ras transforming potential by mutations of phenylalanine-28. Ricketts MH, Durrheim GA, North HM, van der Merwe MJ, Levinson AD. Mol Biol Rep 23 109-117 (1996)
  293. 1,3-Dichloroadamantyl-Containing Ureas as Potential Triple Inhibitors of Soluble Epoxide Hydrolase, p38 MAPK and c-Raf. Gladkikh BP, Danilov DV, D'yachenko VS, Butov GM. Int J Mol Sci 25 338 (2023)
  294. Activation Mechanism of RhoA Caused by Constitutively Activating Mutations G14V and Q63L. Chen S, Zhang Z, Zhang Y, Choi T, Zhao Y. Int J Mol Sci 23 15458 (2022)
  295. Insertion state of modular protein nanopores into a membrane. Larimi MG, Ha JH, Loh SN, Movileanu L. Biochim Biophys Acta Biomembr 1863 183570 (2021)


Related citations provided by authors (2)

  1. Ras/Rap effector specificty determined by charge reversal.. Nassar N Nat. Struct. Biol. 3 723-729 (1996)
  2. Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B.. Rehmann H, Arias-Palomo E, Hadders MA, Schwede F, Llorca O, Bos JL Nature 455 124-7 (2008)