1c25 Citations

Crystal structure of the catalytic domain of the human cell cycle control phosphatase, Cdc25A.

Abstract

Cdc25 phosphatases activate the cell division kinases throughout the cell cycle. The 2.3 A structure of the human Cdc25A catalytic domain reveals a small alpha/beta domain with a fold unlike previously described phosphatase structures but identical to rhodanese, a sulfur-transfer protein. Only the active-site loop, containing the Cys-(X)5-Arg motif, shows similarity to the tyrosine phosphatases. In some crystals, the catalytic Cys-430 forms a disulfide bond with the invariant Cys-384, suggesting that Cdc25 may be self-inhibited during oxidative stress. Asp-383, previously proposed to be the general acid, instead serves a structural role, forming a conserved buried salt-bridge. We propose that Glu-431 may act as a general acid. Structure-based alignments suggest that the noncatalytic domain of the MAP kinase phosphatases will share this topology, as will ACR2, a eukaryotic arsenical resistance protein.

Reviews - 1c25 mentioned but not cited (3)

  1. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)
  2. Oncogenic Tyrosine Phosphatases: Novel Therapeutic Targets for Melanoma Treatment. Pardella E, Pranzini E, Leo A, Taddei ML, Paoli P, Raugei G. Cancers (Basel) 12 E2799 (2020)
  3. Rhodanese-Fold Containing Proteins in Humans: Not Just Key Players in Sulfur Trafficking. Alsohaibani R, Claudel AL, Perchat-Varlet R, Boutserin S, Talfournier F, Boschi-Muller S, Selles B. Antioxidants (Basel) 12 843 (2023)

Articles - 1c25 mentioned but not cited (20)

  1. Compound library development guided by protein structure similarity clustering and natural product structure. Koch MA, Wittenberg LO, Basu S, Jeyaraj DA, Gourzoulidou E, Reinecke K, Odermatt A, Waldmann H. Proc Natl Acad Sci U S A 101 16721-16726 (2004)
  2. A small CDC25 dual-specificity tyrosine-phosphatase isoform in Arabidopsis thaliana. Landrieu I, da Costa M, De Veylder L, Dewitte F, Vandepoele K, Hassan S, Wieruszeski JM, Corellou F, Faure JD, Van Montagu M, Inzé D, Lippens G. Proc Natl Acad Sci U S A 101 13380-13385 (2004)
  3. Improved prediction of critical residues for protein function based on network and phylogenetic analyses. Thibert B, Bredesen DE, del Rio G. BMC Bioinformatics 6 213 (2005)
  4. Investigation of protein refolding using a fractional factorial screen: a study of reagent effects and interactions. Willis MS, Hogan JK, Prabhakar P, Liu X, Tsai K, Wei Y, Fox T. Protein Sci 14 1818-1826 (2005)
  5. Predicting protein function from structure: unique structural features of proteases. Stawiski EW, Baucom AE, Lohr SC, Gregoret LM. Proc Natl Acad Sci U S A 97 3954-3958 (2000)
  6. Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models. Stovgaard K, Andreetta C, Ferkinghoff-Borg J, Hamelryck T. BMC Bioinformatics 11 429 (2010)
  7. Adventitious arsenate reductase activity of the catalytic domain of the human Cdc25B and Cdc25C phosphatases. Bhattacharjee H, Sheng J, Ajees AA, Mukhopadhyay R, Rosen BP. Biochemistry 49 802-809 (2010)
  8. Efficient identification of critical residues based only on protein structure by network analysis. Cusack MP, Thibert B, Bredesen DE, Del Rio G. PLoS One 2 e421 (2007)
  9. Design of an optimal Chebyshev-expanded discrimination function for globular proteins. Fain B, Xia Y, Levitt M. Protein Sci 11 2010-2021 (2002)
  10. Solution structure of the rhodanese homology domain At4g01050(175-295) from Arabidopsis thaliana. Pantoja-Uceda D, López-Méndez B, Koshiba S, Inoue M, Kigawa T, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S, Güntert P. Protein Sci 14 224-230 (2005)
  11. Homoharringtonine targets Smad3 and TGF-β pathway to inhibit the proliferation of acute myeloid leukemia cells. Chen J, Mu Q, Li X, Yin X, Yu M, Jin J, Li C, Zhou Y, Zhou J, Suo S, Lu D, Jin J. Oncotarget 8 40318-40326 (2017)
  12. In Silico Identification of Small Molecules as New Cdc25 Inhibitors through the Correlation between Chemosensitivity and Protein Expression Pattern. Lauria A, Martorana A, La Monica G, Mannino S, Mannino G, Peri D, Gentile C. Int J Mol Sci 22 3714 (2021)
  13. Solution structure of a single-domain thiosulfate sulfurtransferase from Arabidopsis thaliana. Cornilescu G, Vinarov DA, Tyler EM, Markley JL, Cornilescu CC. Protein Sci 15 2836-2841 (2006)
  14. Synthesis, biological evaluation and molecular modeling studies on novel quinonoid inhibitors of CDC25 phosphatases. Evain-Bana E, Schiavo L, Bour C, Lanfranchi DA, Berardozzi S, Ghirga F, Bagrel D, Botta B, Hanquet G, Mori M. J Enzyme Inhib Med Chem 32 113-118 (2017)
  15. Vesicle encapsulation stabilizes intermolecular association and structure formation of functional RNA and DNA. Peng H, Lelievre A, Landenfeld K, Müller S, Chen IA. Curr Biol 32 86-96.e6 (2022)
  16. Potential Stereoselective Binding of Trans-(±)-Kusunokinin and Cis-(±)-Kusunokinin Isomers to CSF1R. Chompunud Na Ayudhya C, Graidist P, Tipmanee V. Molecules 27 4194 (2022)
  17. Identification of Functional and Druggable Sites in Aspergillus fumigatus Essential Phosphatases by Virtual Screening. Thornton BP, Johns A, Al-Shidhani R, Álvarez-Carretero S, Storer ISR, Bromley MJ, Tabernero L. Int J Mol Sci 20 E4636 (2019)
  18. Molecular and Biological Investigation of Isolated Marine Fungal Metabolites as Anticancer Agents: A Multi-Target Approach. Bogari HA, Elhady SS, Darwish KM, Refaey MS, Mohamed RA, Abdelhameed RFA, Almalki AJ, Aldurdunji MM, Lashkar MO, Alshehri SO, Malatani RT, Yamada K, Khedr AIM. Metabolites 13 162 (2023)
  19. Discovery of New 2-Phenylamino-3-acyl-1,4-naphthoquinones as Inhibitors of Cancer Cells Proliferation: Searching for Intra-Cellular Targets Playing a Role in Cancer Cells Survival. Benites J, Valderrama JA, Contreras Á, Enríquez C, Pino-Rios R, Yáñez O, Buc Calderon P. Molecules 28 4323 (2023)
  20. Vitamin D3 promotes gastric cancer cell autophagy by mediating p53/AMPK/mTOR signaling. Wang Y, He Q, Rong K, Zhu M, Zhao X, Zheng P, Mi Y. Front Pharmacol 14 1338260 (2023)


Reviews citing this publication (48)

  1. Protein tyrosine phosphatases in the human genome. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. Cell 117 699-711 (2004)
  2. Combinatorial control of the specificity of protein tyrosine phosphatases. Tonks NK, Neel BG. Curr Opin Cell Biol 13 182-195 (2001)
  3. Fold change in evolution of protein structures. Grishin NV. J Struct Biol 134 167-185 (2001)
  4. Chemical Biology of H2S Signaling through Persulfidation. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R. Chem Rev 118 1253-1337 (2018)
  5. Microbial arsenic: from geocycles to genes and enzymes. Mukhopadhyay R, Rosen BP, Phung LT, Silver S. FEMS Microbiol Rev 26 311-325 (2002)
  6. Controlled elimination of intracellular H(2)O(2): regulation of peroxiredoxin, catalase, and glutathione peroxidase via post-translational modification. Rhee SG, Yang KS, Kang SW, Woo HA, Chang TS. Antioxid Redox Signal 7 619-626 (2005)
  7. Protein tyrosine phosphatases: mechanisms of catalysis and regulation. Denu JM, Dixon JE. Curr Opin Chem Biol 2 633-641 (1998)
  8. Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Strahl T, Thorner J. Biochim Biophys Acta 1771 353-404 (2007)
  9. Cdc25 phosphatases and cancer. Kristjánsdóttir K, Rudolph J. Chem Biol 11 1043-1051 (2004)
  10. Inhibitors of protein tyrosine phosphatases: next-generation drugs? Bialy L, Waldmann H. Angew Chem Int Ed Engl 44 3814-3839 (2005)
  11. The rhodanese/Cdc25 phosphatase superfamily. Sequence-structure-function relations. Bordo D, Bork P. EMBO Rep 3 741-746 (2002)
  12. Functions and mechanisms of redox regulation of cysteine-based phosphatases. Salmeen A, Barford D. Antioxid Redox Signal 7 560-577 (2005)
  13. On the evolution of protein folds: are similar motifs in different protein folds the result of convergence, insertion, or relics of an ancient peptide world? Lupas AN, Ponting CP, Russell RB, Russell RB. J Struct Biol 134 191-203 (2001)
  14. Regulation of protein tyrosine phosphatases by reversible oxidation. Ostman A, Frijhoff J, Sandin A, Böhmer FD. J Biochem 150 345-356 (2011)
  15. How Saccharomyces cerevisiae copes with toxic metals and metalloids. Wysocki R, Tamás MJ. FEMS Microbiol Rev 34 925-951 (2010)
  16. Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. Kennelly PJ. FEMS Microbiol Lett 206 1-8 (2002)
  17. Redox regulation of PTEN and protein tyrosine phosphatases in H(2)O(2) mediated cell signaling. Cho SH, Lee CH, Ahn Y, Kim H, Kim H, Ahn CY, Yang KS, Lee SR. FEBS Lett 560 7-13 (2004)
  18. Redox regulation of signal transduction in mammalian cells. Herrlich P, Böhmer FD. Biochem Pharmacol 59 35-41 (2000)
  19. Sac phosphatase domain proteins. Hughes WE, Cooke FT, Parker PJ. Biochem J 350 Pt 2 337-352 (2000)
  20. Arsenate reduction: thiol cascade chemistry with convergent evolution. Messens J, Silver S. J Mol Biol 362 1-17 (2006)
  21. Dual-specificity phosphatases as targets for antineoplastic agents. Lyon MA, Ducruet AP, Wipf P, Lazo JS. Nat Rev Drug Discov 1 961-976 (2002)
  22. Protein tyrosine phosphatases: structure, function, and implication in human disease. Tautz L, Critton DA, Grotegut S. Methods Mol Biol 1053 179-221 (2013)
  23. Archaeal protein kinases and protein phosphatases: insights from genomics and biochemistry. Kennelly PJ. Biochem J 370 373-389 (2003)
  24. Cyclin-dependent kinases: inhibition and substrate recognition. Endicott JA, Noble ME, Tucker JA. Curr Opin Struct Biol 9 738-744 (1999)
  25. The catalytic mechanism of protein tyrosine phosphatases revisited. Kolmodin K, Aqvist J. FEBS Lett 498 208-213 (2001)
  26. Dual specificity protein phosphatases: therapeutic targets for cancer and Alzheimer's disease. Ducruet AP, Vogt A, Wipf P, Lazo JS. Annu Rev Pharmacol Toxicol 45 725-750 (2005)
  27. The extended human PTPome: a growing tyrosine phosphatase family. Alonso A, Pulido R. FEBS J 283 1404-1429 (2016)
  28. Regulatory Mechanisms and Novel Therapeutic Targeting Strategies for Protein Tyrosine Phosphatases. Yu ZH, Zhang ZY. Chem Rev 118 1069-1091 (2018)
  29. Therapeutic targeting the cell division cycle 25 (CDC25) phosphatases in human acute myeloid leukemia--the possibility to target several kinases through inhibition of the various CDC25 isoforms. Brenner AK, Reikvam H, Lavecchia A, Bruserud Ø. Molecules 19 18414-18447 (2014)
  30. Inhibitors of Cdc25 phosphatases as anticancer agents: a patent review. Lavecchia A, Di Giovanni C, Novellino E. Expert Opin Ther Pat 20 405-425 (2010)
  31. Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. Böhmer F, Szedlacsek S, Tabernero L, Ostman A, den Hertog J. FEBS J 280 413-431 (2013)
  32. Cell cycle regulation by oncogenic tyrosine kinases in myeloid neoplasias: from molecular redox mechanisms to health implications. Rodrigues MS, Reddy MM, Sattler M. Antioxid Redox Signal 10 1813-1848 (2008)
  33. Phosphatases in Mitosis: Roles and Regulation. Moura M, Conde C. Biomolecules 9 E55 (2019)
  34. Regulation of protein tyrosine phosphatase oxidation in cell adhesion and migration. Frijhoff J, Dagnell M, Godfrey R, Ostman A. Antioxid Redox Signal 20 1994-2010 (2014)
  35. Structural studies with inhibitors of the cell cycle regulatory kinase cyclin-dependent protein kinase 2. Johnson LN, De Moliner E, Brown NR, Song H, Barford D, Endicott JA, Noble ME. Pharmacol Ther 93 113-124 (2002)
  36. Turn up the HEAT. Kobe B, Gleichmann T, Horne J, Jennings IG, Scotney PD, Teh T. Structure 7 R91-7 (1999)
  37. Redox regulation of the Cdc25 phosphatases. Rudolph J. Antioxid Redox Signal 7 761-767 (2005)
  38. Design of compound libraries based on natural product scaffolds and protein structure similarity clustering (PSSC). Balamurugan R, Dekker FJ, Waldmann H. Mol Biosyst 1 36-45 (2005)
  39. Protein structure similarity clustering (PSSC) and natural product structure as inspiration sources for drug development and chemical genomics. Dekker FJ, Koch MA, Waldmann H. Curr Opin Chem Biol 9 232-239 (2005)
  40. Small molecule inhibitors of dual specificity protein phosphatases. Pestell KE, Ducruet AP, Wipf P, Lazo JS. Oncogene 19 6607-6612 (2000)
  41. Cdc25 as a potential target of anticancer agents. Eckstein JW. Invest New Drugs 18 149-156 (2000)
  42. The role of protein phosphatases in the regulation of mitogen and stress-activated protein kinases. Keyse SM. Free Radic Res 31 341-349 (1999)
  43. Possible roles of plant sulfurtransferases in detoxification of cyanide, reactive oxygen species, selected heavy metals and arsenate. Most P, Papenbrock J. Molecules 20 1410-1423 (2015)
  44. Toward a molecular understanding of the interaction of dual specificity phosphatases with substrates: insights from structure-based modeling and high throughput screening. Bakan A, Lazo JS, Wipf P, Brummond KM, Bahar I. Curr Med Chem 15 2536-2544 (2008)
  45. K vitamins, PTP antagonism, and cell growth arrest. Carr BI, Wang Z, Kar S. J Cell Physiol 193 263-274 (2002)
  46. Structure and catalytic mechanism of human protein tyrosine phosphatome. Kim SJ, Ryu SE. BMB Rep 45 693-699 (2012)
  47. Voltage sensitive phosphatases: emerging kinship to protein tyrosine phosphatases from structure-function research. Hobiger K, Friedrich T. Front Pharmacol 6 20 (2015)
  48. Comparative Analysis of Arsenic Transport and Tolerance Mechanisms: Evolution from Prokaryote to Higher Plants. Zhang J, Liu J, Zheng F, Yu M, Shabala S, Song WY. Cells 11 2741 (2022)

Articles citing this publication (88)

  1. Ectopic expression of Cdc25A accelerates the G(1)/S transition and leads to premature activation of cyclin E- and cyclin A-dependent kinases. Blomberg I, Hoffmann I. Mol Cell Biol 19 6183-6194 (1999)
  2. Families of arsenic transporters. Rosen BP. Trends Microbiol 7 207-212 (1999)
  3. Regulation of peroxiredoxin I activity by Cdc2-mediated phosphorylation. Chang TS, Jeong W, Choi SY, Yu S, Kang SW, Rhee SG. J Biol Chem 277 25370-25376 (2002)
  4. Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding. Chen MS, Ryan CE, Piwnica-Worms H. Mol Cell Biol 23 7488-7497 (2003)
  5. Arsenate reductases in prokaryotes and eukaryotes. Mukhopadhyay R, Rosen BP. Environ Health Perspect 110 Suppl 5 745-748 (2002)
  6. Pin1 acts catalytically to promote a conformational change in Cdc25. Stukenberg PT, Kirschner MW. Mol Cell 7 1071-1083 (2001)
  7. Identification of a potent and selective pharmacophore for Cdc25 dual specificity phosphatase inhibitors. Lazo JS, Nemoto K, Pestell KE, Cooley K, Southwick EC, Mitchell DA, Furey W, Gussio R, Zaharevitz DW, Joo B, Wipf P. Mol Pharmacol 61 720-728 (2002)
  8. Phosphoprotein-protein interactions revealed by the crystal structure of kinase-associated phosphatase in complex with phosphoCDK2. Song H, Hanlon N, Brown NR, Noble ME, Johnson LN, Barford D. Mol Cell 7 615-626 (2001)
  9. Crystal structure of the catalytic subunit of Cdc25B required for G2/M phase transition of the cell cycle. Reynolds RA, Yem AW, Wolfe CL, Deibel MR, Chidester CG, Watenpaugh KD. J Mol Biol 293 559-568 (1999)
  10. Ultrasensitivity in the Regulation of Cdc25C by Cdk1. Trunnell NB, Poon AC, Kim SY, Ferrell JE. Mol Cell 41 263-274 (2011)
  11. Regulation of receptor protein-tyrosine phosphatase alpha by oxidative stress. Blanchetot C, Tertoolen LG, den Hertog J. EMBO J 21 493-503 (2002)
  12. Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Martin P, DeMel S, Shi J, Gladysheva T, Gatti DL, Rosen BP, Edwards BF. Structure 9 1071-1081 (2001)
  13. Characterization of a 12-kilodalton rhodanese encoded by glpE of Escherichia coli and its interaction with thioredoxin. Ray WK, Zeng G, Potters MB, Mansuri AM, Larson TJ. J Bacteriol 182 2277-2284 (2000)
  14. Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. Kozlov G, Cheng J, Ziomek E, Banville D, Gehring K, Ekiel I. J Biol Chem 279 11882-11889 (2004)
  15. Structure and mechanism of the RNA triphosphatase component of mammalian mRNA capping enzyme. Changela A, Ho CK, Martins A, Shuman S, Mondragón A. EMBO J 20 2575-2586 (2001)
  16. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families. Bordo D, Deriu D, Colnaghi R, Carpen A, Pagani S, Bolognesi M. J Mol Biol 298 691-704 (2000)
  17. The cell cycle-regulatory CDC25A phosphatase inhibits apoptosis signal-regulating kinase 1. Zou X, Tsutsui T, Ray D, Blomquist JF, Ichijo H, Ucker DS, Kiyokawa H. Mol Cell Biol 21 4818-4828 (2001)
  18. Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase. Mukhopadhyay R, Rosen BP. FEMS Microbiol Lett 168 127-136 (1998)
  19. A model of Cdc25 phosphatase catalytic domain and Cdk-interaction surface based on the presence of a rhodanese homology domain. Hofmann K, Bucher P, Kajava AV. J Mol Biol 282 195-208 (1998)
  20. Sialidase-like Asp-boxes: sequence-similar structures within different protein folds. Copley RR, Russell RB, Russell RB, Ponting CP. Protein Sci 10 285-292 (2001)
  21. Bacillus subtilis arsenate reductase is structurally and functionally similar to low molecular weight protein tyrosine phosphatases. Bennett MS, Guan Z, Laurberg M, Su XD. Proc Natl Acad Sci U S A 98 13577-13582 (2001)
  22. Functional cdc25C dual-specificity phosphatase is required for S-phase entry in human cells. Turowski P, Franckhauser C, Morris MC, Vaglio P, Fernandez A, Lamb NJ. Mol Biol Cell 14 2984-2998 (2003)
  23. The distribution of structures in evolving protein populations. Taverna DM, Goldstein RA. Biopolymers 53 1-8 (2000)
  24. Redox regulation of Cdc25B by cell-active quinolinediones. Brisson M, Nguyen T, Wipf P, Joo B, Day BW, Skoko JS, Schreiber EM, Foster C, Bansal P, Lazo JS. Mol Pharmacol 68 1810-1820 (2005)
  25. Crystal structure of the human lymphoid tyrosine phosphatase catalytic domain: insights into redox regulation . Tsai SJ, Sen U, Zhao L, Greenleaf WB, Dasgupta J, Fiorillo E, Orrú V, Bottini N, Chen XS. Biochemistry 48 4838-4845 (2009)
  26. Redox-regulated rotational coupling of receptor protein-tyrosine phosphatase alpha dimers. van der Wijk T, Blanchetot C, Overvoorde J, den Hertog J. J Biol Chem 278 13968-13974 (2003)
  27. Suramin derivatives as inhibitors and activators of protein-tyrosine phosphatases. McCain DF, Wu L, Nickel P, Kassack MU, Kreimeyer A, Gagliardi A, Collins DC, Zhang ZY. J Biol Chem 279 14713-14725 (2004)
  28. Discovery and characterization of novel small molecule inhibitors of human Cdc25B dual specificity phosphatase. Brisson M, Nguyen T, Vogt A, Yalowich J, Giorgianni A, Tobi D, Bahar I, Stephenson CR, Wipf P, Lazo JS. Mol Pharmacol 66 824-833 (2004)
  29. A specific protein-protein interaction accounts for the in vivo substrate selectivity of Ptp3 towards the Fus3 MAP kinase. Zhan XL, Guan KL. Genes Dev 13 2811-2827 (1999)
  30. Escherichia coli GlpE is a prototype sulfurtransferase for the single-domain rhodanese homology superfamily. Spallarossa A, Donahue JL, Larson TJ, Bolognesi M, Bordo D. Structure 9 1117-1125 (2001)
  31. An arsenate reductase from Synechocystis sp. strain PCC 6803 exhibits a novel combination of catalytic characteristics. Li R, Haile JD, Kennelly PJ. J Bacteriol 185 6780-6789 (2003)
  32. Crystal structure and anion binding in the prokaryotic hydrogenase maturation factor HypF acylphosphatase-like domain. Rosano C, Zuccotti S, Bucciantini M, Stefani M, Ramponi G, Bolognesi M. J Mol Biol 321 785-796 (2002)
  33. The human immunodeficiency virus Vpr protein binds Cdc25C: implications for G2 arrest. Goh WC, Manel N, Emerman M. Virology 318 337-349 (2004)
  34. Cdc25B functions as a novel coactivator for the steroid receptors. Ma ZQ, Liu Z, Ngan ES, Tsai SY. Mol Cell Biol 21 8056-8067 (2001)
  35. Modeling of Cdc25B dual specifity protein phosphatase inhibitors: docking of ligands and enzymatic inhibition mechanism. Lavecchia A, Cosconati S, Limongelli V, Novellino E. ChemMedChem 1 540-550 (2006)
  36. Structure-based design and discovery of novel inhibitors of protein tyrosine phosphatases. Huang P, Ramphal J, Wei J, Liang C, Jallal B, McMahon G, Tang C. Bioorg Med Chem 11 1835-1849 (2003)
  37. Remote hot spots mediate protein substrate recognition for the Cdc25 phosphatase. Sohn J, Kristjánsdóttir K, Safi A, Parker B, Kiburz B, Rudolph J. Proc Natl Acad Sci U S A 101 16437-16441 (2004)
  38. Identification of putative sulfurtransferase genes in the extremophilic Acidithiobacillus ferrooxidans ATCC 23270 genome: structural and functional characterization of the proteins. Acosta M, Beard S, Ponce J, Vera M, Mobarec JC, Jerez CA. OMICS 9 13-29 (2005)
  39. The minimal essential core of a cysteine-based protein-tyrosine phosphatase revealed by a novel 16-kDa VH1-like phosphatase, VHZ. Alonso A, Burkhalter S, Sasin J, Tautz L, Bogetz J, Huynh H, Bremer MC, Holsinger LJ, Godzik A, Mustelin T. J Biol Chem 279 35768-35774 (2004)
  40. Specificity of natural and artificial substrates for human Cdc25A. Rudolph J, Epstein DM, Parker L, Eckstein J. Anal Biochem 289 43-51 (2001)
  41. Characterization of the Arabidopsis thaliana Arath;CDC25 dual-specificity tyrosine phosphatase. Landrieu I, Hassan S, Sauty M, Dewitte F, Wieruszeski JM, Inzé D, De Veylder L, Lippens G. Biochem Biophys Res Commun 322 734-739 (2004)
  42. Fluorinated Cpd 5, a pure arylating K-vitamin derivative, inhibits human hepatoma cell growth by inhibiting Cdc25 and activating MAPK. Kar S, Wang M, Ham SW, Carr BI. Biochem Pharmacol 72 1217-1227 (2006)
  43. Zinc regulates the ability of Cdc25C to activate MPF/cdk1. Sun L, Chai Y, Hannigan R, Bhogaraju VK, Machaca K. J Cell Physiol 213 98-104 (2007)
  44. A persulfurated cysteine promotes active site reactivity in Azotobacter vinelandii Rhodanese. Bordo D, Forlani F, Spallarossa A, Colnaghi R, Carpen A, Bolognesi M, Pagani S. Biol Chem 382 1245-1252 (2001)
  45. Crystal structure of the MAP kinase binding domain and the catalytic domain of human MKP5. Tao X, Tong L. Protein Sci 16 880-886 (2007)
  46. Identification of new Cdc25 dual specificity phosphatase inhibitors in a targeted small molecule array. Ducruet AP, Rice RL, Tamura K, Yokokawa F, Yokokawa S, Wipf P, Lazo JS. Bioorg Med Chem 8 1451-1466 (2000)
  47. An unusual orientation for Tyr75 in the active site of the aspartic proteinase from Saccharomyces cerevisiae. Gustchina A, Li M, Phylip LH, Lees WE, Kay J, Wlodawer A. Biochem Biophys Res Commun 295 1020-1026 (2002)
  48. General library-based Monte Carlo technique enables equilibrium sampling of semi-atomistic protein models. Mamonov AB, Bhatt D, Cashman DJ, Ding Y, Zuckerman DM. J Phys Chem B 113 10891-10904 (2009)
  49. Structural characterization of the As/Sb reductase LmACR2 from Leishmania major. Mukhopadhyay R, Bisacchi D, Zhou Y, Armirotti A, Bordo D. J Mol Biol 386 1229-1239 (2009)
  50. Structure-based de novo design and biochemical evaluation of novel Cdc25 phosphatase inhibitors. Park H, Bahn YJ, Ryu SE. Bioorg Med Chem Lett 19 4330-4334 (2009)
  51. Multimodal control of Cdc25A by nitrosative stress. Tomko RJ, Lazo JS. Cancer Res 68 7457-7465 (2008)
  52. Crystal structure of the protein histidine phosphatase SixA in the multistep His-Asp phosphorelay. Hamada K, Kato M, Shimizu T, Ihara K, Mizuno T, Hakoshima T. Genes Cells 10 1-11 (2005)
  53. The interaction of herpes simplex virus 1 regulatory protein ICP22 with the cdc25C phosphatase is enabled in vitro by viral protein kinases US3 and UL13. Smith-Donald BA, Roizman B. J Virol 82 4533-4543 (2008)
  54. Polyprenyl-hydroquinones and -furans from three marine sponges inhibit the cell cycle regulating phosphatase CDC25A. Erdogan-Orhan I, Sener B, de Rosa S, Perez-Baz J, Lozach O, Leost M, Rakhilin S, Meijer L. Nat Prod Res 18 1-9 (2004)
  55. The activation of electrophile, nucleophile and leaving group during the reaction catalysed by pI258 arsenate reductase. Roos G, Loverix S, Brosens E, Van Belle K, Wyns L, Geerlings P, Messens J. Chembiochem 7 981-989 (2006)
  56. Inhibition of a metal-dependent viral RNA triphosphatase by decavanadate. Bougie I, Bisaillon M. Biochem J 398 557-567 (2006)
  57. Interplay between ion binding and catalysis in the thioredoxin-coupled arsenate reductase family. Roos G, Buts L, Van Belle K, Brosens E, Geerlings P, Loris R, Wyns L, Messens J. J Mol Biol 360 826-838 (2006)
  58. An alternate pathway of arsenate resistance in E. coli mediated by the glutathione S-transferase GstB. Chrysostomou C, Quandt EM, Marshall NM, Stone E, Georgiou G. ACS Chem Biol 10 875-882 (2015)
  59. Crystal structure of YnjE from Escherichia coli, a sulfurtransferase with three rhodanese domains. Hänzelmann P, Dahl JU, Kuper J, Urban A, Müller-Theissen U, Leimkühler S, Schindelin H. Protein Sci 18 2480-2491 (2009)
  60. Generation of an Ugi library of phosphate mimic-containing compounds and identification of novel dual specific phosphatase inhibitors. Bergnes G, Gilliam CL, Boisclair MD, Blanchard JL, Blake KV, Epstein DM, Pal K. Bioorg Med Chem Lett 9 2849-2854 (1999)
  61. Sulfonylated aminothiazoles as new small molecule inhibitors of protein phosphatases. Wipf P, Aslan DC, Southwick EC, Lazo JS. Bioorg Med Chem Lett 11 313-317 (2001)
  62. Targeting the neighbor's pool. Rudolph J. Mol Pharmacol 66 780-782 (2004)
  63. Steroidal derived acids as inhibitors of human Cdc25A protein phosphatase. Peng H, Xie W, Kim DI, Zalkow LH, Powis G, Otterness DM, Abraham RT. Bioorg Med Chem 8 299-306 (2000)
  64. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN(-) binding defined by EPR-based hybrid method. Ling S, Wang W, Yu L, Peng J, Cai X, Xiong Y, Hayati Z, Zhang L, Zhang Z, Song L, Tian C. Sci Rep 6 20025 (2016)
  65. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations. Ge Y, van der Kamp M, Malaisree M, Liu D, Liu Y, Mulholland AJ. J Comput Aided Mol Des 31 995-1007 (2017)
  66. N-(cyclohexanecarboxyl)-O-phospho-l-serine, a minimal substrate for the dual-specificity protein phosphatase IphP. Savle PS, Shelton TE, Meadows CA, Potts M, Gandour RD, Kennelly PJ. Arch Biochem Biophys 376 439-448 (2000)
  67. Phosphotyrosine Substrate Sequence Motifs for Dual Specificity Phosphatases. Zhao BM, Keasey SL, Tropea JE, Lountos GT, Dyas BK, Cherry S, Raran-Kurussi S, Waugh DS, Ulrich RG. PLoS One 10 e0134984 (2015)
  68. Prediction of a ligand-induced conformational change in the catalytic core of Cdc25A. Kolmodin K, Aqvist J. FEBS Lett 465 8-11 (2000)
  69. The N-terminal rhodanese domain from Azotobacter vinelandii has a stable and folded structure independently of the C-terminal domain. Melino S, Cicero DO, Forlani F, Pagani S, Paci M. FEBS Lett 577 403-408 (2004)
  70. Flexibility and inhibitor binding in cdc25 phosphatases. Arantes GM. Proteins 78 3017-3032 (2010)
  71. Protein structure similarity clustering: dynamic treatment of PDB structures facilitates clustering. Charette BD, Macdonald RG, Wetzel S, Berkowitz DB, Waldmann H. Angew Chem Int Ed Engl 45 7766-7770 (2006)
  72. Crystal structure of the single-domain rhodanese homologue TTHA0613 from Thermus thermophilus HB8. Hattori M, Mizohata E, Tatsuguchi A, Shibata R, Kishishita S, Murayama K, Terada T, Kuramitsu S, Shirouzu M, Yokoyama S. Proteins 64 284-287 (2006)
  73. Fast conformational exchange between the sulfur-free and persulfide-bound rhodanese domain of E. coli YgaP. Wang W, Zhou P, He Y, Yu L, Xiong Y, Tian C, Wu F. Biochem Biophys Res Commun 452 817-821 (2014)
  74. Inhibition of Azotobacter vinelandii rhodanese by NO-donors. Spallarossa A, Forlani F, Pagani S, Salvati L, Visca P, Ascenzi P, Bolognesi M, Bordo D. Biochem Biophys Res Commun 306 1002-1007 (2003)
  75. Nanosecond molecular dynamics simulations of Cdc25B and its complex with a 1,4-naphthoquinone inhibitor: implications for rational inhibitor design. Ko S, Lee W, Lee S, Park H. J Mol Graph Model 27 13-19 (2008)
  76. Structure of the catalytic phosphatase domain of MTMR8: implications for dimerization, membrane association and reversible oxidation. Yoo KY, Son JY, Lee JU, Shin W, Im DW, Kim SJ, Ryu SE, Heo YS. Acta Crystallogr D Biol Crystallogr 71 1528-1539 (2015)
  77. Toward the virtual screening of Cdc25A phosphatase inhibitors with the homology modeled protein structure. Park H, Jeon YH. J Mol Model 14 833-841 (2008)
  78. CDC25A-inhibitory RE derivatives bind to pocket adjacent to the catalytic site. Tsuchiya A, Asanuma M, Hirai G, Oonuma K, Muddassar M, Nishizawa E, Koyama Y, Otani Y, Zhang KY, Sodeoka M. Mol Biosyst 9 1026-1034 (2013)
  79. Cdc25A-driven proliferation regulates CD62L levels and lymphocyte movement in response to interleukin-7. Kittipatarin C, Li W, Durum SK, Khaled AR. Exp Hematol 38 1143-1156 (2010)
  80. Crystallization and preliminary crystallographic characterization of LmACR2, an arsenate/antimonate reductase from Leishmania major. Bisacchi D, Zhou Y, Rosen BP, Mukhopadhyay R, Bordo D. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 976-979 (2006)
  81. Identification of a C-terminal cdc25 sequence required for promotion of germinal vesicle breakdown. Powers EA, Thompson DP, Garner-Hamrick PA, He W, Yem AW, Bannow CA, Staples DJ, Waszak GA, Smith CW, Deibel MR, Fisher C. Biochem J 347 Pt 3 653-660 (2000)
  82. Purification and biochemical analysis of catalytically active human cdc25C dual specificity phosphatase. Franckhauser C, Fernandez A, Lamb NJ. Biochimie 95 1450-1461 (2013)
  83. Conformational flexibility of the complete catalytic domain of Cdc25B phosphatases. Sayegh RS, Tamaki FK, Marana SR, Salinas RK, Arantes GM. Proteins 84 1567-1575 (2016)
  84. Crystal structure of Saccharomyces cerevisiae Ygr203w, a homolog of single-domain rhodanese and Cdc25 phosphatase catalytic domain. Yeo HK, Lee JY. Proteins 76 520-524 (2009)
  85. Discovery of Cdc25A Lead Inhibitors with a Novel Chemotype by Virtual Screening: Application of Pharmacophore Modeling Based on a Training Set with a Limited Number of Unique Components. Ge YS, Han QQ, Duan W, Zhang JQ, Chen K, Wan JJ, Liu Y, Liu D. ChemMedChem 12 438-447 (2017)
  86. Insights into the interaction of high potency inhibitor IRC-083864 with phosphatase CDC25. Sarkis M, Miteva MA, Dasso Lang MC, Jaouen M, Sari MA, Galcéra MO, Ethève-Quelquejeu M, Garbay C, Bertho G, Braud E. Proteins 85 593-601 (2017)
  87. Cys92, Cys101, Cys197, and Cys203 are crucial residues for coordinating the iron-sulfur cluster of RhdA from Acidithiobacillus ferrooxidans. Dai Y, Liu J, Zheng C, Wu A, Zeng J, Qiu G. Curr Microbiol 59 559-564 (2009)
  88. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. Burroughs AM, Aravind L. NAR Genom Bioinform 5 lqad029 (2023)