1ckb Citations

Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk.

Structure 3 215-26 (1995)
Cited: 162 times
EuropePMC logo PMID: 7735837

Abstract

Background

Proline-rich segments in the guanine nucleotide exchange factor C3G bind much more strongly to the N-terminal Src homology 3 domain (SH3-N) of the proto-oncogene product c-Crk than to other SH3 domains. The presence of a lysine instead of an arginine in the peptides derived from C3G appears to be crucial for this specificity towards c-Crk.

Results

In order to understand the chemical basis of this specificity we have determined the crystal structure of Crk SH3-N in complex with a high affinity peptide from C3G (PPPALPPKKR, Kd approximately 2 microM) at 1.5 A resolution. The peptide adopts a polyproline type II helix that binds, as dictated by electrostatic complementarity, in reversed orientation relative to the orientation seen in the earliest structures of SH3-peptide complexes. A lysine in the C3G peptide is tightly coordinated by three acidic residues in the SH3 domain. In contrast, the co-crystal structure of c-Crk SH3-N and a peptide containing an arginine at the equivalent position (determined at 1.9 A resolution) reveals non-optimal geometry for the arginine and increased disorder.

Conclusion

The c-Crk SH3 domain engages in an unusual lysine-specific interaction that is rarely seen in protein structures, and which appears to be a key determinant of its unique ability to bind the C3G peptides with high affinity.

Reviews - 1ckb mentioned but not cited (4)

  1. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Li SS. Biochem J 390 641-653 (2005)
  2. Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective. Ahmad K, Rizzi A, Capelli R, Mandelli D, Lyu W, Carloni P. Front Mol Biosci 9 899805 (2022)
  3. Binding Analysis Using Accelerated Molecular Dynamics Simulations and Future Perspectives. Pawnikar S, Bhattarai A, Wang J, Miao Y. Adv Appl Bioinform Chem 15 1-19 (2022)
  4. Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond. Benz PM, Frömel T, Laban H, Zink J, Ulrich L, Groneberg D, Boon RA, Poley P, Renne T, de Wit C, Fleming I. Cells 12 1740 (2023)

Articles - 1ckb mentioned but not cited (12)

  1. Structural basis for SH3 domain-mediated high-affinity binding between Mona/Gads and SLP-76. Harkiolaki M, Lewitzky M, Gilbert RJ, Jones EY, Bourette RP, Mouchiroud G, Sondermann H, Moarefi I, Feller SM. EMBO J 22 2571-2582 (2003)
  2. Gaussian accelerated molecular dynamics (GaMD): principles and applications. Wang J, Arantes PR, Bhattarai A, Hsu RV, Pawnikar S, Huang YM, Palermo G, Miao Y. Wiley Interdiscip Rev Comput Mol Sci 11 e1521 (2021)
  3. Folding free energy function selects native-like protein sequences in the core but not on the surface. Jaramillo A, Wernisch L, Héry S, Wodak SJ. Proc Natl Acad Sci U S A 99 13554-13559 (2002)
  4. Peptide Gaussian accelerated molecular dynamics (Pep-GaMD): Enhanced sampling and free energy and kinetics calculations of peptide binding. Wang J, Miao Y. J Chem Phys 153 154109 (2020)
  5. Binding Mechanism of the N-Terminal SH3 Domain of CrkII and Proline-Rich Motifs in cAbl. Bhatt VS, Zeng D, Krieger I, Sacchettini JC, Cho JH. Biophys J 110 2630-2641 (2016)
  6. New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae. Musi V, Birdsall B, Fernandez-Ballester G, Guerrini R, Salvatori S, Serrano L, Pastore A. Protein Sci 15 795-807 (2006)
  7. Murine Itk SH3 domain. Severin A, Fulton DB, Andreotti AH. J Biomol NMR 40 285-290 (2008)
  8. Secondary structure, a missing component of sequence-based minimotif definitions. Sargeant DP, Gryk MR, Maciejewski MW, Thapar V, Kundeti V, Rajasekaran S, Romero P, Dunker K, Li SC, Kaneko T, Schiller MR. PLoS One 7 e49957 (2012)
  9. Bio-mimicking of proline-rich motif applied to carbon nanotube reveals unexpected subtleties underlying nanoparticle functionalization. Zhang Y, Jimenez-Cruz CA, Wang J, Zhou B, Yang Z, Zhou R. Sci Rep 4 7229 (2014)
  10. Grb2 carboxyl-terminal SH3 domain can bivalently associate with two ligands, in an SH3 dependent manner. Arya R, Dangi RS, Makwana PK, Kumar A, Upadhyay SK, Sundd M. Sci Rep 7 1284 (2017)
  11. o-Nitrotyrosine and p-iodophenylalanine as spectroscopic probes for structural characterization of SH3 complexes. De Filippis V, Draghi A, Frasson R, Grandi C, Musi V, Fontana A, Pastore A. Protein Sci 16 1257-1265 (2007)
  12. Challenges and frontiers of computational modelling of biomolecular recognition. Wang J, Bhattarai A, Do HN, Miao Y. QRB Discov 3 e13 (2022)


Reviews citing this publication (20)

  1. Crk family adaptors-signalling complex formation and biological roles. Feller SM. Oncogene 20 6348-6371 (2001)
  2. Modular peptide recognition domains in eukaryotic signaling. Kuriyan J, Cowburn D. Annu Rev Biophys Biomol Struct 26 259-288 (1997)
  3. Recognition of proline-rich motifs by protein-protein-interaction domains. Ball LJ, Kühne R, Schneider-Mergener J, Oschkinat H. Angew Chem Int Ed Engl 44 2852-2869 (2005)
  4. SH3 domain ligand binding: What's the consensus and where's the specificity? Saksela K, Permi P. FEBS Lett 586 2609-2614 (2012)
  5. SH3 domains. Minding your p's and q's. Mayer BJ, Eck MJ. Curr Biol 5 364-367 (1995)
  6. SH3 domains and drug design: ligands, structure, and biological function. Dalgarno DC, Botfield MC, Rickles RJ. Biopolymers 43 383-400 (1997)
  7. Short linear motifs - ex nihilo evolution of protein regulation. Davey NE, Cyert MS, Moses AM. Cell Commun Signal 13 43 (2015)
  8. Prolyl isomerization and its catalysis in protein folding and protein function. Schmidpeter PA, Schmid FX. J Mol Biol 427 1609-1631 (2015)
  9. Convergent evolution with combinatorial peptides. Kay BK, Kasanov J, Knight S, Kurakin A. FEBS Lett 480 55-62 (2000)
  10. Emerging components of the Crk oncogene product: the first identified adaptor protein. Matsuda M, Kurata T. Cell Signal 8 335-340 (1996)
  11. Two Sides of the Coin: Ezrin/Radixin/Moesin and Merlin Control Membrane Structure and Contact Inhibition. Michie KA, Bermeister A, Robertson NO, Goodchild SC, Curmi PMG. Int J Mol Sci 20 E1996 (2019)
  12. Synthetic metabolons for metabolic engineering. Singleton C, Howard TP, Smirnoff N. J Exp Bot 65 1947-1954 (2014)
  13. How pathogens exploit interactions mediated by SH3 domains. Bliska J. Chem Biol 3 7-11 (1996)
  14. Ligand discovery and virtual screening using the program LIDAEUS. Taylor P, Blackburn E, Sheng YG, Harding S, Hsin KY, Kan D, Shave S, Walkinshaw MD. Br J Pharmacol 153 Suppl 1 S55-67 (2008)
  15. Reading between the lines: SH3 recognition of an intact protein. Lim WA. Structure 4 657-659 (1996)
  16. The Role of Crk Adaptor Proteins in T-Cell Adhesion and Migration. Braiman A, Isakov N. Front Immunol 6 509 (2015)
  17. Involvement of crk adapter proteins in regulation of lymphoid cell functions. Gelkop S, Babichev Y, Kalifa R, Tamir A, Isakov N. Immunol Res 28 79-91 (2003)
  18. Rational development of cell-penetrating high affinity SH3 domain binding peptides that selectively disrupt the signal transduction of Crk family adapters. Amgen Peptide Technology Group. Kardinal C, Posern G, Zheng J, Knudsen BS, Moarefi I, Feller SM. Ann N Y Acad Sci 886 289-292 (1999)
  19. A Systematic Compilation of Human SH3 Domains: A Versatile Superfamily in Cellular Signaling. Mehrabipour M, Jasemi NSK, Dvorsky R, Ahmadian MR. Cells 12 2054 (2023)
  20. BIN1 in the Pursuit of Ousting the Alzheimer's Reign: Impact on Amyloid and Tau Neuropathology. Kaur I, Behl T, Sundararajan G, Panneerselvam P, Vijayakumar AR, Senthilkumar GP, Venkatachalam T, Jaglan D, Yadav S, Anwer K, Fuloria NK, Sehgal A, Gulati M, Chigurupati S. Neurotox Res 41 698-707 (2023)

Articles citing this publication (126)

  1. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Chen HI, Sudol M. Proc Natl Acad Sci U S A 92 7819-7823 (1995)
  2. Structure of the p53 tumor suppressor bound to the ankyrin and SH3 domains of 53BP2. Gorina S, Pavletich NP. Science 274 1001-1005 (1996)
  3. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Lee CH, Saksela K, Mirza UA, Chait BT, Kuriyan J. Cell 85 931-942 (1996)
  4. Crystal structure of beta-arrestin at 1.9 A: possible mechanism of receptor binding and membrane Translocation. Han M, Gurevich VV, Vishnivetskiy SA, Sigler PB, Schubert C. Structure 9 869-880 (2001)
  5. The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase. Grzesiek S, Bax A, Clore GM, Gronenborn AM, Hu JS, Kaufman J, Palmer I, Stahl SJ, Wingfield PT. Nat Struct Biol 3 340-345 (1996)
  6. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Cell 113 343-355 (2003)
  7. Structural analysis of the voltage-dependent calcium channel beta subunit functional core and its complex with the alpha 1 interaction domain. Opatowsky Y, Chen CC, Campbell KP, Hirsch JA. Neuron 42 387-399 (2004)
  8. Differential inhibition of signaling pathways by dominant-negative SH2/SH3 adapter proteins. Tanaka M, Gupta R, Mayer BJ. Mol Cell Biol 15 6829-6837 (1995)
  9. A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein. Lee CH, Leung B, Lemmon MA, Zheng J, Cowburn D, Kuriyan J, Saksela K. EMBO J 14 5006-5015 (1995)
  10. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Birge RB, Kalodimos C, Inagaki F, Tanaka S. Cell Commun Signal 7 13 (2009)
  11. Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands. Feng S, Kasahara C, Rickles RJ, Schreiber SL. Proc Natl Acad Sci U S A 92 12408-12415 (1995)
  12. The crystal structure of HIV-1 Nef protein bound to the Fyn kinase SH3 domain suggests a role for this complex in altered T cell receptor signaling. Arold S, Franken P, Strub MP, Hoh F, Benichou S, Benarous R, Dumas C. Structure 5 1361-1372 (1997)
  13. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. Owen DJ, Wigge P, Vallis Y, Moore JD, Evans PR, McMahon HT. EMBO J 17 5273-5285 (1998)
  14. Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. Hou T, Li N, Li Y, Wang W. J Proteome Res 11 2982-2995 (2012)
  15. Proline cis-trans isomerization controls autoinhibition of a signaling protein. Sarkar P, Reichman C, Saleh T, Birge RB, Kalodimos CG. Mol Cell 25 413-426 (2007)
  16. Cell wall-targeting domain of glycylglycine endopeptidase distinguishes among peptidoglycan cross-bridges. Lu JZ, Fujiwara T, Komatsuzawa H, Sugai M, Sakon J. J Biol Chem 281 549-558 (2006)
  17. Structure of the profilin-poly-L-proline complex involved in morphogenesis and cytoskeletal regulation. Mahoney NM, Janmey PA, Almo SC. Nat Struct Biol 4 953-960 (1997)
  18. The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal. Qin J, Clore GM, Kennedy WP, Kuszewski J, Gronenborn AM. Structure 4 613-620 (1996)
  19. Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Kobashigawa Y, Sakai M, Naito M, Yokochi M, Kumeta H, Makino Y, Ogura K, Tanaka S, Inagaki F. Nat Struct Mol Biol 14 503-510 (2007)
  20. Automatic protein design with all atom force-fields by exact and heuristic optimization. Wernisch L, Hery S, Wodak SJ. J Mol Biol 301 713-736 (2000)
  21. Synthetic ligands discovered by in vitro selection. Wrenn SJ, Weisinger RM, Halpin DR, Harbury PB. J Am Chem Soc 129 13137-13143 (2007)
  22. The crystal structure of a major allergen from plants. Thorn KS, Christensen HE, Shigeta R, Huddler D, Shalaby L, Lindberg U, Chua NH, Schutt CE. Structure 5 19-32 (1997)
  23. The C-terminal domain of Rac1 contains two motifs that control targeting and signaling specificity. van Hennik PB, ten Klooster JP, Halstead JR, Voermans C, Anthony EC, Divecha N, Hordijk PL. J Biol Chem 278 39166-39175 (2003)
  24. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. Hou T, Chen K, McLaughlin WA, Lu B, Wang W. PLoS Comput Biol 2 e1 (2006)
  25. The SH3 domain of Eps8 exists as a novel intertwined dimer. Kishan KV, Scita G, Wong WT, Di Fiore PP, Newcomer ME. Nat Struct Biol 4 739-743 (1997)
  26. Crystal structure of mammalian alpha1,6-fucosyltransferase, FUT8. Ihara H, Ikeda Y, Toma S, Wang X, Suzuki T, Gu J, Miyoshi E, Tsukihara T, Honke K, Matsumoto A, Nakagawa A, Taniguchi N. Glycobiology 17 455-466 (2007)
  27. Improving SH3 domain ligand selectivity using a non-natural scaffold. Nguyen JT, Porter M, Amoui M, Miller WT, Zuckermann RN, Lim WA. Chem Biol 7 463-473 (2000)
  28. Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions. Pisabarro MT, Serrano L, Wilmanns M. J Mol Biol 281 513-521 (1998)
  29. The peroxisomal membrane protein Pex13p shows a novel mode of SH3 interaction. Barnett P, Bottger G, Klein AT, Tabak HF, Distel B. EMBO J 19 6382-6391 (2000)
  30. SH3-SPOT: an algorithm to predict preferred ligands to different members of the SH3 gene family. Brannetti B, Via A, Cestra G, Cesareni G, Helmer-Citterich M. J Mol Biol 298 313-328 (2000)
  31. Rescuing a destabilized protein fold through backbone cyclization. Camarero JA, Fushman D, Sato S, Giriat I, Cowburn D, Raleigh DP, Muir TW. J Mol Biol 308 1045-1062 (2001)
  32. Structural basis for regulation of the Crk signaling protein by a proline switch. Sarkar P, Saleh T, Tzeng SR, Birge RB, Kalodimos CG. Nat Chem Biol 7 51-57 (2011)
  33. Protein folding kinetics beyond the phi value: using multiple amino acid substitutions to investigate the structure of the SH3 domain folding transition state. Northey JG, Maxwell KL, Davidson AR. J Mol Biol 320 389-402 (2002)
  34. Ubiquitin binds to and regulates a subset of SH3 domains. Stamenova SD, French ME, He Y, Francis SA, Kramer ZB, Hicke L. Mol Cell 25 273-284 (2007)
  35. Protein-protein interaction affinity plays a crucial role in controlling the Sho1p-mediated signal transduction pathway in yeast. Marles JA, Dahesh S, Haynes J, Andrews BJ, Davidson AR. Mol Cell 14 813-823 (2004)
  36. Solution structure of the Grb2 N-terminal SH3 domain complexed with a ten-residue peptide derived from SOS: direct refinement against NOEs, J-couplings and 1H and 13C chemical shifts. Wittekind M, Mapelli C, Lee V, Goldfarb V, Friedrichs MS, Meyers CA, Mueller L. J Mol Biol 267 933-952 (1997)
  37. Biochemical and structural studies of ASPP proteins reveal differential binding to p53, p63, and p73. Robinson RA, Lu X, Jones EY, Siebold C. Structure 16 259-268 (2008)
  38. Enteropathogenic Escherichia coli Tir is an SH2/3 ligand that recruits and activates tyrosine kinases required for pedestal formation. Bommarius B, Maxwell D, Swimm A, Leung S, Corbett A, Bornmann W, Kalman D. Mol Microbiol 63 1748-1768 (2007)
  39. Effects of p47phox C terminus phosphorylations on binding interactions with p40phox and p67phox. Structural and functional comparison of p40phox and p67phox SH3 domains. Massenet C, Chenavas S, Cohen-Addad C, Dagher MC, Brandolin G, Pebay-Peyroula E, Fieschi F. J Biol Chem 280 13752-13761 (2005)
  40. Mechanism of fast peptide recognition by SH3 domains. Ahmad M, Gu W, Helms V. Angew Chem Int Ed Engl 47 7626-7630 (2008)
  41. Domain organization differences explain Bcr-Abl's preference for CrkL over CrkII. Jankowski W, Saleh T, Pai MT, Sriram G, Birge RB, Kalodimos CG. Nat Chem Biol 8 590-596 (2012)
  42. The three-dimensional structure of the RNA-binding domain of ribosomal protein L2; a protein at the peptidyl transferase center of the ribosome. Nakagawa A, Nakashima T, Taniguchi M, Hosaka H, Kimura M, Tanaka I. EMBO J 18 1459-1467 (1999)
  43. SH3 domains with high affinity and engineered ligand specificities targeted to HIV-1 Nef. Hiipakka M, Poikonen K, Saksela K. J Mol Biol 293 1097-1106 (1999)
  44. The dominant epitope of Borrelia garinii outer surface protein C recognized by sera from patients with neuroborreliosis has a surface-exposed conserved structural motif. Mathiesen MJ, Holm A, Christiansen M, Blom J, Hansen K, Ostergaard S, Theisen M. Infect Immun 66 4073-4079 (1998)
  45. Regulation of RhoGEF activity by intramolecular and intermolecular SH3 domain interactions. Schiller MR, Chakrabarti K, King GF, Schiller NI, Eipper BA, Maciejewski MW. J Biol Chem 281 18774-18786 (2006)
  46. Induction of cell retraction by the combined actions of Abl-CrkII and Rho-ROCK1 signaling. Huang X, Wu D, Jin H, Stupack D, Wang JY. J Cell Biol 183 711-723 (2008)
  47. Anatomy of a structural pathway for activation of the catalytic domain of Src kinase Hck. Banavali NK, Roux B. Proteins 67 1096-1112 (2007)
  48. Thermal unfolding of small proteins with SH3 domain folding pattern. Knapp S, Mattson PT, Christova P, Berndt KD, Karshikoff A, Vihinen M, Smith CI, Ladenstein R. Proteins 31 309-319 (1998)
  49. Crystal structure of the SH3 domain of betaPIX in complex with a high affinity peptide from PAK2. Hoelz A, Janz JM, Lawrie SD, Corwin B, Lee A, Sakmar TP. J Mol Biol 358 509-522 (2006)
  50. The C-terminal SH3 domain of CRKL as a dynamic dimerization module transiently exposing a nuclear export signal. Harkiolaki M, Gilbert RJ, Jones EY, Feller SM. Structure 14 1741-1753 (2006)
  51. The tryptophan switch: changing ligand-binding specificity from type I to type II in SH3 domains. Fernandez-Ballester G, Blanes-Mira C, Serrano L. J Mol Biol 335 619-629 (2004)
  52. Cell-penetrating SH3 domain blocker peptides inhibit proliferation of primary blast cells from CML patients. Kardinal C, Konkol B, Schulz A, Posern G, Lin H, Adermann K, Eulitz M, Estrov Z, Talpaz M, Arlinghaus RB, Feller SM. FASEB J 14 1529-1538 (2000)
  53. Self-assembly of the amphipathic helix (VHLPPP)8. A mechanism for zein protein body formation. Kogan MJ, Dalcol I, Gorostiza P, López-Iglesias C, Pons M, Sanz F, Ludevid D, Giralt E. J Mol Biol 312 907-913 (2001)
  54. X-ray structure of a novel endolysin encoded by episomal phage phiSM101 of Clostridium perfringens. Tamai E, Yoshida H, Sekiya H, Nariya H, Miyata S, Okabe A, Kuwahara T, Maki J, Kamitori S. Mol Microbiol 92 326-337 (2014)
  55. Deciphering the cross talk between hnRNP K and c-Src: the c-Src activation domain in hnRNP K is distinct from a second interaction site. Adolph D, Flach N, Mueller K, Ostareck DH, Ostareck-Lederer A. Mol Cell Biol 27 1758-1770 (2007)
  56. Solid-phase synthesis of peptide thioesters with self-purification. Mende F, Seitz O. Angew Chem Int Ed Engl 46 4577-4580 (2007)
  57. Biochemistry on a leash: the roles of tether length and geometry in signal integration proteins. Van Valen D, Haataja M, Phillips R. Biophys J 96 1275-1292 (2009)
  58. Supramolecular properties of the proline-rich gamma-Zein N-terminal domain. Kogan MJ, Dalcol I, Gorostiza P, Lopez-Iglesias C, Pons R, Pons M, Sanz F, Giralt E. Biophys J 83 1194-1204 (2002)
  59. Activation of the focal adhesion kinase signaling pathway by structural alterations in the carboxyl-terminal region of c-Crk II. Zvara A, Fajardo JE, Escalante M, Cotton G, Muir T, Kirsch KH, Birge RB. Oncogene 20 951-961 (2001)
  60. Effect of pH and salt bridges on structural assembly: molecular structures of the monomer and intertwined dimer of the Eps8 SH3 domain. Kishan KV, Newcomer ME, Rhodes TH, Guilliot SD. Protein Sci 10 1046-1055 (2001)
  61. SH3 in muscles: solution structure of the SH3 domain from nebulin. Politou AS, Millevoi S, Gautel M, Kolmerer B, Pastore A. J Mol Biol 276 189-202 (1998)
  62. Functional cross-talk between ras and rho pathways: a Ras-specific GTPase-activating protein (p120RasGAP) competitively inhibits the RhoGAP activity of deleted in liver cancer (DLC) tumor suppressor by masking the catalytic arginine finger. Jaiswal M, Dvorsky R, Amin E, Risse SL, Fansa EK, Zhang SC, Taha MS, Gauhar AR, Nakhaei-Rad S, Kordes C, Koessmeier KT, Cirstea IC, Olayioye MA, Häussinger D, Ahmadian MR. J Biol Chem 289 6839-6849 (2014)
  63. The solution structure of Abl SH3, and its relationship to SH2 in the SH(32) construct. Gosser YQ, Zheng J, Overduin M, Mayer BJ, Cowburn D. Structure 3 1075-1086 (1995)
  64. Transactivation of Abl by the Crk II adapter protein requires a PNAY sequence in the Crk C-terminal SH3 domain. Reichman C, Singh K, Liu Y, Singh S, Li H, Fajardo JE, Fiser A, Birge RB. Oncogene 24 8187-8199 (2005)
  65. Crk at the quarter century mark: perspectives in signaling and cancer. Kumar S, Fajardo JE, Birge RB, Sriram G. J Cell Biochem 115 819-825 (2014)
  66. CP-HISQC: a better version of HSQC experiment for intrinsically disordered proteins under physiological conditions. Yuwen T, Skrynnikov NR. J Biomol NMR 58 175-192 (2014)
  67. Effect of backbone cyclization on protein folding stability: chain entropies of both the unfolded and the folded states are restricted. Zhou HX. J Mol Biol 332 257-264 (2003)
  68. IR probes of protein microenvironments: utility and potential for perturbation. Adhikary R, Zimmermann J, Dawson PE, Romesberg FE. Chemphyschem 15 849-853 (2014)
  69. Structural basis for APPTPPPLPP peptide recognition by the FBP11WW1 domain. Pires JR, Parthier C, Aido-Machado Rd, Wiedemann U, Otte L, Böhm G, Rudolph R, Oschkinat H. J Mol Biol 348 399-408 (2005)
  70. Tuning protein autoinhibition by domain destabilization. Cho JH, Muralidharan V, Vila-Perello M, Raleigh DP, Muir TW, Palmer AG. Nat Struct Mol Biol 18 550-555 (2011)
  71. Computational protein design: the Proteus software and selected applications. Simonson T, Gaillard T, Mignon D, Schmidt am Busch M, Lopes A, Amara N, Polydorides S, Sedano A, Druart K, Archontis G. J Comput Chem 34 2472-2484 (2013)
  72. Estrogen receptor alpha--identification by a modeling approach of a potential polyproline II recognizing domain within the AF-2 region of the receptor that would play a role of prime importance in its mechanism of action. Jacquot Y, Gallo D, Leclercq G. J Steroid Biochem Mol Biol 104 1-10 (2007)
  73. Structural basis of Robo proline-rich motif recognition by the srGAP1 Src homology 3 domain in the Slit-Robo signaling pathway. Li X, Chen Y, Liu Y, Gao J, Gao F, Bartlam M, Wu JY, Rao Z. J Biol Chem 281 28430-28437 (2006)
  74. The SH3 domain of nebulin binds selectively to type II peptides: theoretical prediction and experimental validation. Politou AS, Spadaccini R, Joseph C, Brannetti B, Guerrini R, Helmer-Citterich M, Salvadori S, Temussi PA, Pastore A. J Mol Biol 316 305-315 (2002)
  75. Stability and folding of the SH3 domain of Bruton's tyrosine kinase. Chen YJ, Lin SC, Tzeng SR, Patel HV, Lyu PC, Cheng JW. Proteins 26 465-471 (1996)
  76. Solution structure of the human Hck SH3 domain and identification of its ligand binding site. Horita DA, Baldisseri DM, Zhang W, Altieri AS, Smithgall TE, Gmeiner WH, Byrd RA. J Mol Biol 278 253-265 (1998)
  77. Solution structure of the human BTK SH3 domain complexed with a proline-rich peptide from p120cbl. Tzeng SR, Lou YC, Pai MT, Jain ML, Cheng JW. J Biomol NMR 16 303-312 (2000)
  78. Determination of the solution structure of the SH3 domain of human p56 Lck tyrosine kinase. Hiroaki H, Klaus W, Senn H. J Biomol NMR 8 105-122 (1996)
  79. A click chemistry approach to site-specific immobilization of a small laccase enables efficient direct electron transfer in a biocathode. Guan D, Kurra Y, Liu W, Chen Z. Chem Commun (Camb) 51 2522-2525 (2015)
  80. Metallofullerenol Gd@C₈₂(OH)₂₂ distracts the proline-rich-motif from putative binding on the SH3 domain. Kang SG, Huynh T, Zhou R. Nanoscale 5 2703-2712 (2013)
  81. Quantifying intramolecular binding in multivalent interactions: a structure-based synergistic study on Grb2-Sos1 complex. Sethi A, Goldstein B, Gnanakaran S. PLoS Comput Biol 7 e1002192 (2011)
  82. Efficient production of gamma-aminobutyric acid using Escherichia coli by co-localization of glutamate synthase, glutamate decarboxylase, and GABA transporter. Dung Pham V, Somasundaram S, Lee SH, Park SJ, Hong SH. J Ind Microbiol Biotechnol 43 79-86 (2016)
  83. Target-assisted iterative screening reveals novel interactors for PSD95, Nedd4, Src, Abl and Crk proteins. Kurakin A, Bredesen D. J Biomol Struct Dyn 19 1015-1029 (2002)
  84. SH3 domain of Bruton's tyrosine kinase can bind to proline-rich peptides of TH domain of the kinase and p120cbl. Patel HV, Tzeng SR, Liao CY, Chen SH, Cheng JW. Proteins 29 545-552 (1997)
  85. Alzheimer's disease BIN1 coding variants increase intracellular Aβ levels by interfering with BACE1 recycling. Perdigão C, Barata MA, Burrinha T, Guimas Almeida C. J Biol Chem 297 101056 (2021)
  86. Probing the chemical basis of binding activity in an SH3 domain by protein signature analysis. Muir TW, Dawson PE, Fitzgerald MC, Kent SB. Chem Biol 3 817-825 (1996)
  87. Turbulent phenomena in protein folding. Kalgin IV, Chekmarev SF. Phys Rev E Stat Nonlin Soft Matter Phys 83 011920 (2011)
  88. Ultrasensitive synthetic protein regulatory networks using mixed decoys. Lu MS, Mauser JF, Prehoda KE. ACS Synth Biol 1 65-72 (2012)
  89. Calculation of affinities of peptides for proteins. Donnini S, Juffer AH. J Comput Chem 25 393-411 (2004)
  90. Letter Identification of novel non-pathogenic mutation in SH3 domain of Btk in an XLA patient. Pérez de Diego R, Bravo J, Allende LM, López-Granados E, Rivera J, Ferreira A, Fontán G, García Rodríguez MC. Mol Immunol 45 301-303 (2008)
  91. Molecular Mechanisms of Tight Binding through Fuzzy Interactions. Shen Q, Shi J, Zeng D, Zhao B, Li P, Hwang W, Cho JH. Biophys J 114 1313-1320 (2018)
  92. Structural investigation of the interaction between the tandem SH3 domains of c-Cbl-associated protein and vinculin. Zhao D, Wang X, Peng J, Wang C, Li F, Sun Q, Zhang Y, Zhang J, Cai G, Zuo X, Wu J, Shi Y, Zhang Z, Gong Q. J Struct Biol 187 194-205 (2014)
  93. MFPred: Rapid and accurate prediction of protein-peptide recognition multispecificity using self-consistent mean field theory. Rubenstein AB, Pethe MA, Khare SD. PLoS Comput Biol 13 e1005614 (2017)
  94. Molecular Basis of the Ternary Interaction between NS1 of the 1918 Influenza A Virus, PI3K, and CRK. Dubrow A, Lin S, Savage N, Shen Q, Cho JH. Viruses 12 E338 (2020)
  95. SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP. Chau JE, Vish KJ, Boggon TJ, Stiegler AL. Nat Commun 13 4788 (2022)
  96. Solution NMR structure of the SH3 domain of human nephrocystin and analysis of a mutation-causing juvenile nephronophthisis. le Maire A, Weber T, Saunier S, Broutin I, Antignac C, Ducruix A, Dardel F. Proteins 59 347-355 (2005)
  97. Conserved patterns and interactions in the unfolding transition state across SH3 domain structural homologues. Demakis C, Childers MC, Daggett V. Protein Sci 30 391-407 (2021)
  98. Crystal structure of the N-terminal SH3 domain of mouse betaPIX, p21-activated kinase-interacting exchange factor. Li X, Liu X, Sun F, Gao J, Zhou H, Gao GF, Bartlam M, Rao Z. Biochem Biophys Res Commun 339 407-414 (2006)
  99. Competitively selected protein ligands pay their increase in specificity by a decrease in affinity. Hoffmann S, Funke SA, Wiesehan K, Moedder S, Glück JM, Feuerstein S, Gerdts M, Mötter J, Willbold D. Mol Biosyst 6 126-133 (2010)
  100. Conformational change of Sos-derived proline-rich peptide upon binding Grb2 N-terminal SH3 domain probed by NMR. Ogura K, Okamura H. Sci Rep 3 2913 (2013)
  101. Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae. Konte T, Terpitz U, Plemenitaš A. Front Microbiol 7 901 (2016)
  102. Solution structures of the SH3 domains from Shank scaffold proteins and their interactions with Cav1.3 calcium channels. Ishida H, Skorobogatov A, Yamniuk AP, Vogel HJ. FEBS Lett 592 2786-2797 (2018)
  103. Transient protein-protein interaction of the SH3-peptide complex via closely located multiple binding sites. Hahn S, Kim D. PLoS One 7 e32804 (2012)
  104. Aggregated gas molecules: toxic to protein? Zhang M, Zuo G, Chen J, Gao Y, Fang H. Sci Rep 3 1660 (2013)
  105. An efficient method for protein phosphorylation using the artificially introduced of cognate-binding modules into kinases and substrates. Kobashigawa Y, Naito M, Inagaki F. J Biotechnol 131 458-465 (2007)
  106. Changing the topology of protein backbone: the effect of backbone cyclization on the structure and dynamics of a SH3 domain. Schumann FH, Varadan R, Tayakuniyil PP, Grossman JH, Camarero JA, Fushman D. Front Chem 3 26 (2015)
  107. Detection of nascent polyproline II helices in solution by NMR in synthetic insect kinin neuropeptide mimics containing the X-Pro-Pro-X motif. Moyna G, Williams HJ, Nachman RJ, Scott AI. J Pept Res 53 294-301 (1999)
  108. Entropy Hotspots for the Binding of Intrinsically Disordered Ligands to a Receptor Domain. Shi J, Shen Q, Cho JH, Hwang W. Biophys J 118 2502-2512 (2020)
  109. Molecular Dynamics model of peptide-protein conjugation: case study of covalent complex between Sos1 peptide and N-terminal SH3 domain from Grb2. Luzik DA, Rogacheva ON, Izmailov SA, Indeykina MI, Kononikhin AS, Skrynnikov NR. Sci Rep 9 20219 (2019)
  110. Solution NMR Structure of the SH3 Domain of Human Caskin1 Validates the Lack of a Typical Peptide Binding Groove and Supports a Role in Lipid Mediator Binding. Tőke O, Koprivanacz K, Radnai L, Merő B, Juhász T, Liliom K, Buday L. Cells 10 173 (2021)
  111. Concentration-dependent binding of CdSe quantum dots on the SH3 domain. Bell DR, Kang SG, Huynh T, Zhou R. Nanoscale 10 351-358 (2017)
  112. Structural studies and SH3 domain binding properties of a human antiviral salivary proline-rich peptide. Righino B, Pirolli D, Radicioni G, Marzano V, Longhi R, Arcovito A, Sanna MT, De Rosa MC, Paoluzi S, Cesareni G, Messana I, Castagnola M, Vitali A. Biopolymers 106 714-725 (2016)
  113. Targeting Molecular Recognition: Exploring the Dual Role of Functional Pseudoprolines in the Design of SH3 Ligands This work was supported by the Swiss National Science Foundation. Tuchscherer G, Grell D, Tatsu Y, Durieux P, Fernandez-Carneado J, Hengst B, Kardinal C, Feller S. Angew Chem Int Ed Engl 40 2844-2848 (2001)
  114. Thermodynamic contribution of backbone conformational entropy in the binding between SH3 domain and proline-rich motif. Zeng D, Shen Q, Cho JH. Biochem Biophys Res Commun 484 21-26 (2017)
  115. Three-dimensional structure prediction of the interaction of CD34 with the SH3 domain of Crk-L. Gangenahalli GU, Singh VK, Verma YK, Gupta P, Sharma RK, Chandra R, Gulati S, Luthra PM. Stem Cells Dev 14 470-477 (2005)
  116. Application of information theory to a three-body coarse-grained representation of proteins in the PDB: insights into the structural and evolutionary roles of residues in protein structure. Thompson JJ, Tabatabaei Ghomi H, Lill MA. Proteins 82 3450-3465 (2014)
  117. Langmuir and Langmuir-Blodgett films of proline-rich N-terminal domain peptide of gamma-zein. Lakshmanan M, Dhathathreyan A. Colloids Surf B Biointerfaces 55 185-191 (2007)
  118. Prolyl isomerization as a molecular memory in the allosteric regulation of the signal adapter protein c-CrkII. Schmidpeter PA, Schmid FX. J Biol Chem 290 3021-3032 (2015)
  119. Synthesis of an intein-mediated artificial protein hydrogel. Ramirez MA, Chen Z. J Vis Exp e51202 (2014)
  120. A Cysteine Residue of Human Cytomegalovirus vMIA Protein Plays a Crucial Role in Viperin Trafficking to Control Viral Infectivity. Kim JJ, Hong S, Seo JY. J Virol 97 e0187422 (2023)
  121. An in silico proteomics screen to predict and prioritize protein-protein interactions dependent on post-translationally modified motifs. Schmoker AM, Driscoll HE, Geiger SR, Vincent JJ, Ebert AM, Ballif BA. Bioinformatics 34 3898-3906 (2018)
  122. Crk proteins activate the Rap1 guanine nucleotide exchange factor C3G by segregated adaptor-dependent and -independent mechanisms. Rodríguez-Blázquez A, Carabias A, Morán-Vaquero A, de Cima S, Luque-Ortega JR, Alfonso C, Schuck P, Manso JA, Macedo-Ribeiro S, Guerrero C, de Pereda JM. Cell Commun Signal 21 30 (2023)
  123. Crystal Structure of the SH3 Domain of ASAP1 in Complex with the Proline Rich Motif (PRM) of MICAL1 Reveals a Unique SH3/PRM Interaction Mode. Jia X, Lin L, Xu S, Li L, Wei Z, Yu C, Niu F. Int J Mol Sci 24 1414 (2023)
  124. Engineered regulation of lysozyme by the SH3-CB1 binding interaction. Pham E, Truong K. Protein Eng Des Sel 25 307-311 (2012)
  125. Experimental Characterization of the Interaction between the N-Terminal SH3 Domain of Crkl and C3G. Pagano L, Malagrinò F, Nardella C, Gianni S, Toto A. Int J Mol Sci 22 13174 (2021)
  126. Structure-guided design of a potent peptide inhibitor targeting the interaction between CRK and ABL kinase. Shen Q, Bhatt VS, Krieger I, Sacchettini JC, Cho JH. Medchemcomm 9 519-524 (2018)